

PM Hot-spot Modeling: Lessons Learned in the Field

Chris Dresser

U.S. EPA - Office of Transportation and Air Quality

TRB Sunday Workshop January 12th, 2014

Overview

- Background
- State and local lessons learned so far
- Summary and conclusions for future air quality modeling implementation

Conformity Requirements

- CAA and transportation conformity rule (40 CFR Part 93) require that federally supported transportation projects in nonattainment and maintenance areas cannot:
 - » Cause or contribute to new air quality violations,
 - » Worsen existing violations, or
 - » Delay timely attainment of the NAAQS or interim milestones
- A hot-spot analysis is an estimation of likely future localized pollutant concentrations and a comparison to the CO, PM_{2.5}, and PM₁₀ NAAQS
 - » In PM areas, required for major new or expanded highways, intersections, or terminals that significantly increase diesel traffic
- A project meets conformity, if at each appropriate receptor: PM concentration of build < NAAQS, or PM concentration of build < PM concentration of no-build

€EPA

EPA Guidance

- In December 2010, EPA released original PM Hot-spot Guidance
 - » Developed through Agency-wide effort and stakeholder involvement
 - » EPA's November 2013 guidance update supersedes the 2010 guidance
- Provides first-of-its-kind method for estimating air quality impacts of specific transportation projects
 - » Emissions from EPA's MOVES model
 → input to AQ model (AERMOD)
 - Estimate a project's impact on air quality concentrations
 - Relevant for other modeling applications

Example of Project Needing a PM Hot-spot Analysis

MOVES Modeling

- In general, MOVES is being successfully used for PM hotspot analyses
- General observations include:
 - » Modeling based on all four quarters (i.e., 16 MOVES runs)
 - » Meteorology based on temperature and humidity from regional conformity analysis for county where projected located
 - » Average speed option is being used for highway analyses
 - » Some questions regarding fleet mix (see next slide)
- Interagency consultation has been important to determine appropriate MOVES inputs (including available data)

MOVES Modeling

- Some questions about fleet mix
 - » Fleet mix (linksourcetype input) should be based on latest regional conformity analysis or SIP
 - » LD/HD mix should be specific to the project
- Weight regional fleet mix by project-specific LD/HD mix
 - » LD = 11,21,31,32
 - » HD = 41,42,43,51,52,53,54,61,62

Set EPA

Selecting an Appropriate Air Quality Model

Type of Project	Recommended Model	
Highway and intersection projects	AERMOD, CAL3QHCR	
Transit, freight, and other terminal projects	AERMOD	
Projects that involve both highway/intersections and terminals, and/or nearby sources	AERMOD	

 Recommendations are consistent with EPA's current recommended models in 40 CFR Part 51, App. W, approved models on SCRAM

 PM hot-spot analyses are refined analyses; CAL3QHC is not appropriate for modeling refined PM hot-spot analyses

- - -	Guidance Reference:	
 	Exhibit 7-2 & Sec. 7.3.1	

8

EPA Characterizing Emission Sources

	Line Source	Point Source	Area Source	Volume Source
Different source types can be used in a hot- spot analysis to represent	 Highways and intersections 	 Bus garage or transit terminal exhaust stacks 	 Transit or frei Parking lots Highways and 	ght terminals d intersections
Model	AERMOD* CAL3QHCR	AERMOD	AERMOD	

*AERMOD can simulate line sources using a series of adjacent area or volume sources.

Note: Only approved versions of models on SCRAM can be used for PM hot-spot analyses

Sect 7.3.2, 7.4, App J.3.3-3.5

9

SEPA Air Quality Modeling Issues in Field

- Characterizing area and volume sources
- Obtaining representative meteorological data
- Specifying receptors in project area
- Running the air quality model
- <u>Note:</u> Interagency consultation has been important for determining appropriate air quality model, methods, and data

€PA

Area Source Characterization

€PA

Area Source Characterization

- Most projects will include many roadway links
- Area sources may be easier to use:
 - » (X₁Y₁),(X₂,Y₂) defined for each source
- GIS software is essential for this process

- Xs, Ys = Coordinates of volume source center
- Syinit = Initial lateral dispersion coefficient (W / 2.15)
- Szinit not shown

Volume Sources

Issues to consider when using volume sources:

- 1. Source width
- 2. Spacing

€PA

Volume Sources: Appropriate Width

- Receptors <u>should not</u> be placed within exclusion zone
 - » based on EPA guidance from OAQPS
 - » concentrations are not calculated within it
- Receptors <u>should</u> be sited as near as 5 m from a source (e.g., the edge of a traffic lane)
- Because of the exclusion zone, the width of a volume source should be <u>< 8 m</u>
 - » Typical highway lane = 12 ft (3.6 m)
- Model any 3 lane or larger highway using
 - » Volume sources for each lane, or
 - » Area sources

SEPA Incorrect Volume Source Width

- Volume sources are too wide, excluding area where receptors should be placed
- W = Link width

Correct Volume Source Width

- Volume sources are no more than 8 m wide
 - » Receptor A is no longer in the exclusion zone

€PA

Incorrect Volume Source Spacing

- Volume sources are spaced too far apart, which creates a nonuniform emission characterization
- Adjacent receptors, depending on their proximity to the center of a volume source, are over/underestimated

Correct Volume Source Spacing

 Adjacent volume sources, spaced properly, create an even emissions characterization

Obtaining Met Data

- Use most recent 5 consecutive years of representative offsite data (most common)
 - » Assess representativeness based on latest AERMOD Implementation Guide
 - State air quality agency has experience providing met data for NSR/PSD permitting applications, will likely have pre-processed data available
- Surface station data should be from an ASOS station
 - » Met data should be processed with AERMINUTE and the most recent version of AERMET
 - » Appropriate threshold value: 0.5 m/s (Consistent with OAQPS guidance in March 8, 2013 memo)
- Most PM hot-spot analyses will be done in urban or suburban areas, where URBANOPT should be used

SEPA Placing Receptors for AQ Modeling

- Receptor spacing should be of sufficient resolution to capture concentration gradients around the locations of maximum modeled concentrations
 - Receptors should begin 5 m from roadway edge, extending out ~500 m
 - » Dense spacing (e.g., 25 m) near areas of potential high concentrations (near-road), less dense (e.g., 100 m) further away from high emitting sources
- Place receptors in locations public can access (e.g., sidewalks, neighborhoods, parks)
- Consider excluding locations where public cannot access (e.g., fenced private property, within right-of-way, onfacility)

Guidance Reference:	÷	
Sections 7.5 and 7.6	_;	2

Defining Receptors

Running the Model

- Hot-spot analyses may cover large geographic areas (e.g., a 15 mile long highway expansion) and include hundreds of sources and potentially thousands of receptors
- EPA recommends the following strategy to minimize AERMOD run-times:
 - » Modeling the areas of highest likely impact:
 - May be evident from traffic volumes, emission rates
 - Can be determined from an iterative modeling process (using FASTALL and/or coarse receptor grid)
- Some users have expressed interest in parallel processing
 - » Use of commercial software is covered in a Dec 2007 EPA clarification memo
 - » Decisions on the use of third-party software is the EPA Region's responsibility

MOVES2AERMOD

- EPA created an interface between the MOVES emission model and the AERMOD dispersion model
- Designed specifically for use in PM Hot-spot Analyses Available only for Area sources at this time
 - » Uses output from 16 MOVES runs (representative time periods)
 - » Produces SEASONHR EMISFACT table that can be used directly in an AERMOD input file
- Script can be run through the MOVES GUI
- Download package available on the MOVES Tools website: <u>http://www.epa.gov/otaq/models/moves/tools.htm</u>

Other EPA PM Hot-spot Tools

- Emission Rate Post-processing Tool (now in MOVES2010b)
 - » Automates the summing of MOVES emissions for PM or CO projectlevel analyses (e.g., PM grams/hour or grams/mile)
- 24-hour PM_{2.5} NAAQS Design Value Tool
 - » Automates a computationally intensive process for this NAAQS
 - » Design value calculations for other PM NAAQS are less complicated and can be done using a spreadsheet
- If you have suggestions for other tools, contact EPA at: <u>conformity-hotspot@epa.gov</u>

For More Information

- See EPA's conformity project-level website for:
 - » Regulations, policy guidance, FR notices, training
 - » www.epa.gov/otaq/stateresources/transconf/projectlevel-hotspot.htm
- See EPA's MOVES website for:
 - » Software, MOVES MySQL scripts, technical documentation, and other helpful background materials
 - » www.epa.gov/otaq/models/moves/
- Questions?
 - » Specific questions on a particular project analysis
 - Contact appropriate EPA Region or DOT field office
 - » General questions on PM hot-spot guidance and training
 - patulski.meg@epa.gov
 - » Technical questions about guidance document
 - <u>conformity-hotspot@epa.gov</u>