### Problem 8: Minimum detectable change analysis

Appropriate sampling frequency and duration for a NPS monitoring program can be estimated by performing a minimum detectable change (MDC) analysis using existing data from the watershed. The MDC is the minimum change in a pollutant concentration (or load) over a given period of time required to be considered statistically significant (see section 3.4.2 and <u>Tech</u> <u>Notes 7</u> for details). In other words, MDC is the amount of change you can detect given the sample variability and number of samples collected.

Using Dataset 3 in Sampledata.xlsx, estimate the MDC for fecal coliform bacteria (FC). This dataset represents a typical situation in that available data are limited to grab samples from four, nonconsecutive years. As a general guideline, we would prefer to examine sites with 20 or more observations taken over at least two years. The sites and monitoring data should be representative of either a pre-BMP or baseline condition and similar to the monitoring strategy envisioned for post-BMP implementation.

Perform 36 MDC calculations for a single monitoring station using the following options:

- Sample size for pre-BMP period = 13
- Sampling frequency and duration for post-BMP period
  - $\circ$  3x/yr for 5 years
  - $\circ$  6x/yr for 5 years
  - $\circ$  12x/yr for 5 years
- One-sided *t* values for 95%, 90%, and 80% confidence levels (α=.05, .10, and .20, respectively)
- Two power levels: 0.5 (50 percent) and 0.8 (80 percent)
- Two values of  $\rho$  (0 and 0.2) to estimate the impact of autocorrelation
- Assume variance pre- and post-BMP variance is equal

Report the MDC output as a percentage. For log-transformed data, MDC as a percent decrease in the geometric mean concentration relative to the initial geometric mean concentration is calculated as:

$$MDC\% = (1 - 10^{-MDC'}) \times 100$$

where MDC<sup>1</sup> is the MDC on the log scale and MDC% is a percentage of the initial geometric mean expressed on an untransformed scale.

## **Results:**

Minitab was used for exploratory data analysis in this example, while Tetra Tech's *MDC Step Trend Analysis Tool v1* was used for the MDC analysis.

All raw data were plotted (Figure 1), and three tests were applied (Anderson-Darling, Ryan-Joiner, and Kolmogorov-Smirnov) to determine if the data met the normality requirement for MDC analysis. All three tests indicated that data were not normal, with p<0.005, p<0.010, and p<0.010, respectively. The Box-Cox transformation confirmed the need for log transformation of the data (Figure 2). The rounded value of  $\lambda$ =0.0 suggests that logarithmic transformation is a good option. Values of 0.5 and 1.0 would indicate square root and no transformation, respectively.



Figure 1. Fecal coliform (col/100ml) time series.



Figure 2. Box-Cox transformation.

The data are not evenly spaced so the autocorrelation test could not be performed. We therefore performed the MDC analysis assuming two levels of autocorrelation ( $\rho$ =0 and 0.2).

Summary statistics for the raw and log-transformed data are shown in Table 1.

# Descriptive Statistics: FC, Log10FC

| Variable | N  | N* | Mean  | SE Mean | StDev | Variance | CoefVar | Minimum | Q1    | Median | Q3    | Maximum |
|----------|----|----|-------|---------|-------|----------|---------|---------|-------|--------|-------|---------|
| FC       | 13 | 0  | 2385  | 1722    | 6210  | 38566681 | 260.34  | 11      | 255   | 690    | 1200  | 23000   |
| Log10FC  | 13 | 0  | 2.742 | 0.211   | 0.759 | 0.576    | 27.69   | 1.041   | 2.357 | 2.839  | 3.079 | 4.362   |

#### Table 1. Summary statistics for data used in MDC analysis.

Table 2 shows the results of 36 MDC calculations presented as the percent reduction in geometric mean concentration.

| Darman                                                                             | Baseline | Post- BMP      | MDC as % (ρ=0) |        |        | MDC as % (ρ=0.2) |        |        |  |
|------------------------------------------------------------------------------------|----------|----------------|----------------|--------|--------|------------------|--------|--------|--|
| Power                                                                              | n        | $\mathbf{n}^1$ | 95% CL         | 90% CL | 80% CL | 95% CL           | 90% CL | 80% CL |  |
| 0.5                                                                                | 13       | 15             | 68             | 58     | 43     | 75               | 66     | 50     |  |
|                                                                                    | 13       | 30             | 62             | 53     | 39     | 70               | 60     | 45     |  |
|                                                                                    | 13       | 60             | 59             | 50     | 36     | 66               | 57     | 43     |  |
| 0.8                                                                                | 13       | 15             | 82             | 76     | 68     | 87               | 83     | 75     |  |
|                                                                                    | 13       | 30             | 77             | 71     | 63     | 83               | 78     | 70     |  |
|                                                                                    | 13       | 60             | 74             | 68     | 60     | 81               | 75     | 67     |  |
| <sup>1</sup> 15 is 3x/yr for 5 yr, 30 is 6x/yr for 5 yr, and 60 is 12x/yr for 5 yr |          |                |                |        |        |                  |        |        |  |

### Table 1. MDC Analysis Results.