Problem 4: Compare input and output from an individual BMP

Some monitoring studies compare water quality input and output from an individual BMP such as a stormwater treatment device or a detention pond. In these cases, it is usually important to determine if a concentration or load leaving the BMP is significantly different from that entering the BMP, i.e., did the practice have a significant effect? If paired samples are collected simultaneously from input and output (e.g., for the same day or the same storm event), a paired t-Test (or comparable nonparametric test) that considers the differences between each pair of observations rather than the difference in group means can give a better interpretation of the difference between the two sampling points.

Dataset 2 in file Sampledata.xlsx represents event mean concentration data for inflow (TSS IN, EC IN) and outflow (TSS OUT, EC OUT) samples collected from a detention pond treating residential stormwater runoff during 32 individual storm events from 1992 to 1995.

a. Paired t-Test

Assume that the log-transformed data meet the requirements for parametric statistics. Use a paired t-Test to determine if total suspended solids (TSS) and *E. coli* (EC) concentrations were significantly different between inflow and outflow from the pond.

TSS		
logTSS_OUT	0.99764 t-Ratio	<mark>-7.70661</mark>
logTSS_IN	<mark>1.84086</mark> DF	31
Mean Difference	<mark>-0.8432</mark> Prob > t	<mark><.0001*</mark>
Std Error	0.10942 Prob > t	<mark>1.0000</mark>
Ν	32 Prob < t	<mark><.0001*</mark>
EC		
logEC_OUT	<mark>4.10307</mark> t-Ratio	<mark>0.982301</mark>
logEC_IN	<mark>4.02099</mark> DF	31
Mean Difference	<mark>0.08208</mark> Prob > t	<mark>0.3336</mark>
Std Error	0.08356 Prob > t	<mark>0.1668</mark>
N	32 Prob < t	<mark>0.8332</mark>

The paired t-Test shows that TSS concentrations into and out of the pond differed significantly ($P \le 0.001$); the one-tailed t statistic shows that TSS_OUT was significantly lower than TSS_IN (*P* of obtaining a lower t statistic ≤ 0.001). This is confirmed by comparing the mean logTSS_IN (1.84) against the mean logTSS_OUT (1.00). The mean difference between input/output pairs was 0.843, suggesting that the mean storm event treatment effect was about 7.0 mg/L TSS (10^{0.8432}).

In contrast, the paired t-Test shows that EC counts into and out of the pond did not differ significantly (P = 0.33). Mean EC count for outflow (12,679 col/100 ml, $10^{4.10307}$) tended to be somewhat higher than for inflow (10,495 col/100 ml, $10^{4.02099}$). The mean difference between input and output pairs was about 1 col/100 ml ($10^{0.08208}$).

b. Wilcoxon Rank Sum Test

Use the nonparametric Wilcoxon test on raw data in Dataset 2 to determine if TSS and EC concentrations differed significantly between inflow and outflow from the pond.

TSS Wilcoxon Signed Rank

	135_001-	
	TSS_IN	
Test Statistic S	-239.00	
Prob> S	<mark><.0001*</mark>	
Prob>S	<mark>1.0000</mark>	
Prob <s< td=""><td><mark><.0001*</mark></td></s<>	<mark><.0001*</mark>	

The result above yields the same conclusions as the paired t-Test: TSS concentrations were significantly lower in pond outflow compared to inflow (negative S statistic [TSS_OUT minus TSS_IN]).

EC

Wilcoxon Signed Rank

	EC_OUT-
	EC_IN
Test Statistic S	19.000
Prob> S	<mark>0.7284</mark>
Prob>S	<mark>0.3642</mark>
Prob <s< td=""><td><mark>0.6358</mark></td></s<>	<mark>0.6358</mark>

The result for this test supports the same conclusions as the paired t-Test: EC counts did not differ significantly between pond inflow and outflow, although there was a slight tendency for EC counts to be higher in outflow (positive S statistic [EC_OUT minus EC_IN]).