SCS ENGINEERS

Introducing a New Landfill Gas Model for Colombia

Why LMOP's country-specific models are better than the IPCC Model

14th Annual EPA LMOP Conference January 20, 2011 Alex Stege

Presentation Topics

- Introduction The need for LFG modeling and LMOP's modeling support for M2M countries
- Latest data from CDM monitoring reports on international LFG project performance
- Introducing LMOP's LFG model for Colombia
- Why LMOP's LFG models are better than the IPCC Model

Need for International LFG Modeling

- Accurate estimates of LFG recovery are critical for:
 - Evaluating LFG project feasibility and economics
 - Estimating system design and facility sizing requirements
 - Evaluating project performance (predicted vs. actual)
- International LFG modeling is still developing
 - Can be a large source of error in evaluating project feasibility and system requirements
 - Unrealistic model projections can lead to investment in uneconomical projects (or neglecting opportunities)
 - Frequent overestimation of LFG recovery in Clean
 Development Mechanism (CDM) projects' PDDs
 - Current standard CDM modeling method is IPCC Model (uses 4 k values); LandGEM no longer used

IPCC Model Shortcomings

- Global methane emissions model not designed for individual landfills
 - Uses default waste composition for continents based on limited data
- 4 climate categories, but only 2 precipitation categories
 - 2 precipitation regimes too coarse to capture effects on k values
 - Wet vs. dry cutoff is 1000 mm/yr
 - Most landfills in countries in tropical regions (e.g. Colombia) receive more than 1000 mm/yr – no climate differentiation
 - Temperature not likely to have significant effects
- Ratio of waste decay rates for food vs. wood too low except for tropical-wet climates
 - Tropical-wet category very high k values; other climate categories use much lower k values
- No guidance on estimating collection efficiency

LMOP's History of Support in International LFG Modeling

- Developed country-specific models
 - Mexico v. 1 (2003) and v. 2 (2009)
 - Central America (2007)
 - Ukraine (2009)
 - Colombia (2010)
 - Others (non-SCS): Ecuador, China, Philippines, Thailand
- Models reflect data from country's landfills
 - Waste composition
 - Climate
 - Flow data from operating projects (Mexico, Colombia)
 - Realistic collection efficiency estimates reflecting site conditions based on user inputs
- IPCC multiple k model structure to account for high food waste decay rates (used in SCS models)

Historical Overestimation of LFG Recovery in CDM PDDs

- LFG recovery rates limited due to:
 - Poor site conditions
 - Shallow waste depths, poor compaction
 - High leachate levels due to lack of soil cover and/or poor drainage
 - Fires, waste pickers, site security
 - Partial system installation common cause of low overall collection efficiency
 - Limited experience with LFG system operation in developing countries
- Reliance on project developers with incentives to estimate high
 - Bid process for winning a contract often rewards optimistic estimates of CERs
 - Need for independent estimate of LFG recovery

Historical Overestimation of LFG Recovery in CDM PDDs (cont.)

- Effects of site conditions and waste composition on LFG recovery rates often not accounted for in models
 - Prior use of (single-k) LandGEM with poor model k and Lo selection
 - Over-estimating achievable collection efficiency
 - Too optimistic a schedule for wellfield development in all (active) disposal areas
 - IPCC model use for "tropical-wet" sites (max. inputs)
- Measuring historic over-estimation of LFG recovery CDM Monitoring Reports
 - Actual project results when applying for CERs indicate project performance
 - Divide actual recovery by PDD model prediction historical average (2003-2010) = \sim 50%

CDM LFG Project Performance – Worldwide (% of Projected)

SCS ENGINEERS

CDM LFG Project Performance – Brazil (% of Projected)

CDM LFG PROJECT PERFORMANCE - BRAZIL SITES (23)

CDM LFG Project Performance – China (% of Projected)

CDM LFG PROJECT PERFORMANCE - CHINA SITES (20)

CDM LFG Project Performance – Mexico & Colombia

COLOMBIA (3) AND MEXICO (8) PROJECTS

Developing the Colombia Model

- Waste composition data
 - Waste composition database covers 57 cities in 21 states
 - Average waste composition values assigned to each state (site data not needed to run model)
- Climate data (precipitation)
 - Precip. largely determined by geographic region but varies widely within some states
 - Requires model user to select 1 of 5 climates;
 model automatically selects k values
- Site data (collection efficiency & recovery)
 - Dona Juana Landfill in Bogota February 2010 visit
 - 2. Antanas Landfill in Pasto July 2010 visit

Dona Juana Landfill, Bogota, Colombia

Summary of Colombia LFG Model Features

Inputs worksheet

- User answers a series of questions about the site
- Model automatically calculates model input values for: waste disposal rates, k, Lo, MCF, fire adjustment, and collection efficiency

• Disposal & LFG Recovery worksheet

- Shows annual disposal and collection efficiency estimates calculated by the model
- Allows the user to input site-specific waste disposal estimates, collection efficiency, actual LFG recovery, and baseline LFG recovery

Waste Composition worksheet

- Shows waste composition values assigned to each state
- Allows user to input site specific waste composition data

Output Table worksheet

- Shows model results in table format

Output Graph worksheet

Shows model results in graph format

Why LMOP's Colombia Model* is Better than IPCC

- Country-specific LFG generation and recovery model instead of global methane emissions model
 - Default waste composition values based on large in-country database
 - Model reflects detailed evaluation of climate and categorization of country into 5 climate zones, instead of user selecting "wet" vs. "dry" and "tropical" vs. "temperate"
 - Model assigns k values that better capture the effects of local climate on LFG generation
- Model incorporates site data based on user inputs
 - Automatically develops waste composition, annual disposal, and collection efficiency estimates which can be over-ridden with user data
- Model projects LFG recovery as well as generation
 - If project is operating, model user can apply actual flow data to adjust collection efficiency & recovery projections
- Output provided in both table and graph format

15