INTRODUCTION

Occasionally a horizontal duct may contain bottom sediment that has been deposited over a period of time. The volumetric flow rate calculation may be significantly affected by this displaced cross sectional area. To determine the effective duct area, the following calculation steps are given.

EFFECTIVE DUCT AREA CALCULATION

1. Measure distance to sediment from top of duct "a".
2. Determine the radius of the duct "r".
3. Determine the depth of sediment "\(d \)".

\[
\begin{align*}
\text{\(\bar{d} \)} &= \text{diameter - } s \\
\text{and } a &= \text{diameter - (} j + r) \\
\end{align*}
\]

4. Determine angle \(\theta_1 \)

\[
\begin{align*}
\theta_1 &= \arccos \left(\frac{a}{c} \right) \\
\text{and } c &= r \\
\end{align*}
\]

5. Determine lengths "b" and "B":

\[
\begin{align*}
b &= c \left(\sin \theta_1 \right) \\
B &= 2 \times b \\
\end{align*}
\]

6. Determine \(\theta \)

\[
\theta = 2 \times \theta_1 \\
\]

7. Determine length of ARC (nop)

\[
\text{ARCnop} = \frac{B \theta}{180} \\
\]

8. Determine area of segment nop.

\[
\text{Area nop} = \frac{(\text{ARCnop} \times r) \times aB}{2} \\
\]

9. Determine duct area.

\[
\text{Duct area } "A" = \frac{r^2}{2} \\
\]

10. Determine effective duct area "\(A' \)".

\[
A' = A \times \text{Area nop} \\
\]