SUMMARY

PROPOSED EMISSION GUIDELINES FOR EXISTING SMALL MUNICIPAL WASTE COMBUSTION UNITS

40 CFR 60 SUBPART BBBB

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>2</td>
</tr>
<tr>
<td>Compliance Schedule</td>
<td>3</td>
</tr>
<tr>
<td>Good Combustion Practices: Operator Training and Certification</td>
<td>4</td>
</tr>
<tr>
<td>Good Combustion Practices: Operating Requirements</td>
<td>4</td>
</tr>
<tr>
<td>Emission Limits</td>
<td>5</td>
</tr>
<tr>
<td>Continuous Monitoring Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Stack Testing Requirements</td>
<td>11</td>
</tr>
<tr>
<td>Abbreviations and Acronyms</td>
<td>12</td>
</tr>
</tbody>
</table>
APPLICABILITY

The proposed guidelines would apply to all existing small MWC units with capacity to combust at least 35 tpd of MSW but no more than 250 tpd of MSW. Existing small MWC units are defined as small MWC units that commence construction before the publication date of the small MWC NSPS (subpart AAAA) proposal in the Federal Register. The emission guidelines subcategorizes small MWC unit into three classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nonrefractory-type units located at plants with an aggregate capacity > 250 tpd</td>
</tr>
<tr>
<td>B</td>
<td>Refractory-type units located at plants with an aggregate capacity > 250 tpd</td>
</tr>
<tr>
<td>C</td>
<td>All other units located at plants with an aggregate combustion capacity ≤ 250 tpd</td>
</tr>
</tbody>
</table>

IMPLEMENTATION

States are required to develop State plans to implement the emission guidelines. State plans are submitted to EPA for approval. If an approvable State plan is not developed, EPA will develop a Federal plan to apply to MWC units not covered by State plans. State and Federal plans must be “as protective as” the emission guidelines.

*[Municipal solid waste] or municipal-type solid waste means household, commercial/retail, or institutional waste. Household waste includes material discarded by residential dwellings, hotels, motels, and other similar permanent or temporary housing. Commercial/retail waste includes material discarded by stores, offices, restaurants, warehouses, nonmanufacturing activities at industrial facilities, and other similar establishments or facilities. Institutional waste includes materials discarded by schools, by hospitals (nonmedical), by nonmanufacturing activities at prisons and government facilities, and other similar establishments or facilities. Household, commercial/retail, and institutional waste does include yard waste and refuse-derived fuel. Household, commercial/retail, and institutional waste does not include used oil; sewage sludge; wood pallets; construction, renovation, and demolition wastes (which include railroad ties and telephone poles); clean wood; industrial process or manufacturing wastes; medical waste; or motor vehicles (including motor vehicle parts or vehicle fluff).
COMPLIANCE SCHEDULE

State plans must include one of the following two schedules for compliance with regulatory requirements: (1) full compliance within 1 year after the effective date of State plan approval; or (2) full compliance within 3 years following issuance of a revised construction or operation permit if a permit modification is required, or within 3 years after the effective date of State plan approval if a permit modification is not required. If the State plan includes compliance schedules longer than 1 year after State plan approval, the State plan must include measurable and enforceable incremental steps of progress toward compliance. In no case can compliance be later than 5 years after promulgation of these emission guidelines.

State plans must specify that all Class A and Class B small MWC units for which construction, modification, or reconstruction commenced after June 26, 1987 comply with the emission guidelines for mercury and dioxins/furans within: (1) 1 year following issuance of a revised construction or operation permit if a permit modification is required, or, (2) 1 year after the effective date of State plan approval if a permit modification is not required.

State plans must require compliance with the MWC unit operator training by the later of three dates:

1. One year after the effective date of State plan approval.
2. Six months after the MWC unit starts up.
3. The date before an employee assumes responsibilities that affect operation of the MWC unit.

State plans must require compliance with the MWC unit operator certification requirements by the later of three dates:

1. For Class A and Class B units, 12 months after the effective date of State plan approval. For Class C units, 18 months after the effective date of State plan approval.
2. Six months after the MWC unit starts up.
3. Six months after the chief facility operator and shift supervisor transfer to the MWC plant or 6 months after the chief facility operator and shift supervisor are hired to work at the MWC plant.
GOOD COMBUSTION PRACTICES:

OPERATING TRAINING AND CERTIFICATION

< Applies to all units.

< A plant-specific operator training manual must be developed and available for MWC plant employees. MWC plant employees must review the plant-specific operator training manual every year. MWC plant chief facility operators, shift supervisors, and control room operators must complete the EPA or a State operator training course.

< MWC plant chief facility operators and shift supervisors must obtain the ASME (or State equivalent) operator certification.

GOOD COMBUSTION PRACTICES:

OPERATING REQUIREMENTS

< The load level of the MWC unit must be measured and must not exceed 110 percent of the maximum load level as demonstrated during the most recent dioxin/furan stack test.

< The particulate matter control device inlet flue gas temperature must be measured and must not exceed $17{}^\circ{}C$ above the maximum temperature demonstrated during the most recent dioxin/furan stack test.

< If the MWC unit uses activated carbon injection to control dioxins/furans or mercury, the 8-hour block average carbon feed rate must be maintained at or above the highest average level established during the most recent dioxin/furan or mercury test.

< If the MWC unit uses activated carbon injection to control dioxins/furans or mercury, the amount of carbon purchased and delivered to your MWC plant must not fall below the required quarterly usage for carbon injection.
EMISSION LIMITS

Organic Emissions (measured as total dioxins/furans)b,c

\begin{itemize}
 \item [\textless] Dioxins/furans (compliance test by EPA Reference Method 23)
 \begin{itemize}
 \item Class A units: 30 ng/dscm total mass (MWC units utilizing a non-ESP-based air pollution control system)
 \item -or-
 \item 60 ng/dscm total mass (MWC units utilizing an ESP-based air pollution control system)
 \end{itemize}
 \item Class B units: 123 ng/dscm total mass
 \item Class C units: 125 ng/dscm total mass
 \end{itemize}

\item [\textless] Basis for dioxin/furan guidelines
 \begin{itemize}
 \item Class A units: GCP and SD/ESP/CI
 \begin{itemize}
 \item - or -
 \item GCP and SD/FF/CI
 \end{itemize}
 \item Class B units: GCP and DSI/ESP/CI
 \item Class C units: GCP and DSI/ESP/CI
 \end{itemize}

\end{itemize}

b All limits are corrected to 7 percent oxygen, dry basis.

c Dioxins/furans are on a total mass basis measured as tetra- through octachlorinated dibenzo-p-dioxins and dibenzofurans.
EMISSION LIMITS (Continued)

Metal Emissionsb

\begin{itemize}
\item \textbf{Cadmium} (compliance test by EPA Reference Method 29)
\begin{itemize}
\item Class A units \hspace{1cm} 0.04 mg/dscm
\item Class B units \hspace{1cm} 0.1 mg/dscm
\item Class C units \hspace{1cm} 0.1 mg/dscm
\end{itemize}

\item \textbf{Lead} (compliance test by EPA Reference Method 29)
\begin{itemize}
\item Class A units \hspace{1cm} 0.49 mg/dscm
\item Class B units \hspace{1cm} 1.6 mg/dscm
\item Class C units \hspace{1cm} 1.6 mg/dscm
\end{itemize}

\item \textbf{Mercury} (compliance test by EPA Reference Method 29)
\begin{itemize}
\item All small units \hspace{1cm} 0.08 mg/dscm or 85-percent reduction of potential mercury emissions
\end{itemize}

\item \textbf{Particulate matter} (compliance test by EPA Reference Method 5)
\begin{itemize}
\item Class A units \hspace{1cm} 27 mg/dscm
\item Class B units \hspace{1cm} 34 mg/dscm
\item Class C units \hspace{1cm} 70 mg/dscm
\end{itemize}

\item \textbf{Opacity} (compliance test by EPA Reference Method 9)
\begin{itemize}
\item All small MWC units \hspace{1cm} 10 percent
\end{itemize}
\end{itemize}

bAll limits are corrected to 7 percent oxygen, dry basis.
EMISSION LIMITS (Continued)

< Basis for cadmium, lead, mercury, particulate matter and opacity guidelines

<table>
<thead>
<tr>
<th>Class</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A units</td>
<td>GCP and SD/ESP/CI</td>
</tr>
<tr>
<td></td>
<td>- or -</td>
</tr>
<tr>
<td></td>
<td>GCP and SD/FF/CI</td>
</tr>
<tr>
<td>Class B units</td>
<td>GCP and DSI/ESP/CI</td>
</tr>
<tr>
<td>Class C units</td>
<td>GCP and DSI/ESP/CI</td>
</tr>
</tbody>
</table>

Acid Gas Emissions\(^b\)

< Sulfur dioxide (compliance test by CEMS)

<table>
<thead>
<tr>
<th>Class</th>
<th>Limit and Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A units</td>
<td>31 ppmv or 75-percent reduction of potential sulfur dioxide emissions</td>
</tr>
<tr>
<td>Class B units</td>
<td>55 ppmv or 50-percent reduction of potential sulfur dioxide emissions</td>
</tr>
<tr>
<td>Class C units</td>
<td>80 ppmv or 50-percent reduction of potential sulfur dioxide emissions</td>
</tr>
</tbody>
</table>

< Hydrogen chloride (compliance test by EPA Reference Method 26)

<table>
<thead>
<tr>
<th>Class</th>
<th>Limit and Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A units</td>
<td>31 ppmv or 95-percent reduction of potential hydrogen chloride emissions</td>
</tr>
<tr>
<td>Class B units</td>
<td>200 ppmv or 50-percent reduction of potential hydrogen chloride emissions</td>
</tr>
<tr>
<td>Class C units</td>
<td>250 ppmv or 50-percent reduction of potential hydrogen chloride emissions</td>
</tr>
</tbody>
</table>

\(^b\)All limits are corrected to 7 percent oxygen, dry basis.
EMISSION LIMITS (Continued)

< Basis for sulfur dioxide and hydrogen chloride guidelines

Class A units GCP and SD/ESP/CI
- or -
GCP and SD/FF/CI

Class B units GCP and DSI/ESP/CI

Class C units GCP and DSI/ESP/CI

< Nitrogen oxides (compliance test by CEMS)\(^b\)

Class A units 171 ppmv

Class B units No emission limit

Class C units No emission limit

< Basis for nitrogen oxides guideline

Class A units SNCR

Class B units No control requirement

Class C units No control requirement

Fugitive Ash Emissions\(^b\)

< Fugitive ash (compliance test by EPA Reference Method 22)

All small MWC units Visible emissions for no more than 5 percent of the hourly observation period from ash transfer systems except during periods of maintenance and repair activities

< Basis for fugitive ash emission handling guideline Wet ash handling or enclosed ash handling

\(^b\)All limits are corrected to 7 percent oxygen, dry basis.
EMISSION LIMITS (Continued)

CO Emissions

The CO level would be required to be measured using a CEMS, and the concentration in the flue gas would be required not to exceed the following:

<table>
<thead>
<tr>
<th>MWC Unit Type</th>
<th>CO Limit (ppmv)³</th>
<th>Averaging Timeᵈ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidized bed</td>
<td>100</td>
<td>4-hour</td>
</tr>
<tr>
<td>Fluidized bed, mixed fuel (wood/RDF)</td>
<td>200</td>
<td>24-hour</td>
</tr>
<tr>
<td>Mass burn rotary refractory</td>
<td>100</td>
<td>4-hour</td>
</tr>
<tr>
<td>Mass burn rotary waterwall</td>
<td>250</td>
<td>24-hour</td>
</tr>
<tr>
<td>Mass burn waterwall and refractory</td>
<td>100</td>
<td>4-hour</td>
</tr>
<tr>
<td>Mixed fuel-fired (pulverized coal/RDF)</td>
<td>150</td>
<td>4-hour</td>
</tr>
<tr>
<td>Modular starved-air and excess-air</td>
<td>50</td>
<td>4-hour</td>
</tr>
<tr>
<td>Spreader stoker, mixed fuel-fired (coal/RDF)</td>
<td>200</td>
<td>24-hour</td>
</tr>
<tr>
<td>Stoker, RDF</td>
<td>200</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

³All limits in the table are corrected to 7 percent oxygen, dry basis.

ᵈAll averages are block averages.
CONTINUOUS MONITORING REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide</td>
<td>CEMS, 24-hour daily geometric mean</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>CEMS, 24-hour daily arithmetic average</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CEMS, 4-hour block or 24-hour daily arithmetic average, as applicable</td>
</tr>
<tr>
<td>Opacity</td>
<td>COMS (6-minute average) and annual stack test</td>
</tr>
<tr>
<td>Load</td>
<td>CEMS, 4-hour block arithmetic average</td>
</tr>
<tr>
<td>Flue gas temperature</td>
<td>CEMS, 4-hour block arithmetic average</td>
</tr>
<tr>
<td>Carbon feed rate (if carbon injection is used to meet the dioxin/furan or mercury emission limits)</td>
<td>Continuously monitor parameters and calculate 8-hour block arithmetic average carbon feed rate during periods of operation.</td>
</tr>
</tbody>
</table>
STACK TESTING REQUIREMENTS

Stack Testing Schedule

< Class A units
Annual stack test

< Class B units
Annual stack test

< Class C units
Annual or third year stack test

Stack Testing Methods

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxins/furans(^d)</td>
<td>EPA Method 23</td>
</tr>
<tr>
<td>Cadmium</td>
<td>EPA Method 29</td>
</tr>
<tr>
<td>Lead</td>
<td>EPA Method 29</td>
</tr>
<tr>
<td>Mercury</td>
<td>EPA Method 29</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>EPA Method 5</td>
</tr>
<tr>
<td>Opacity</td>
<td>EPA Method 9</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>EPA Method 26</td>
</tr>
<tr>
<td>Fugitive ash</td>
<td>EPA Method 22</td>
</tr>
</tbody>
</table>

\(^d\) Dioxins/furans are on a total mass basis measured as tetra- through octachlorinated dibenzo-p-dioxins and dibenzofurans.

\(^e\) Reduced testing option is available for Class A MWC units that meet a dioxin/furan emission limit of 15 ng/dscm and for Class B and C MWC units that meet a dioxin/furan emission limit of 30 ng/dscm.

\(^f\) The proposed guidelines include provisions that would allow Class C small MWC units to conduct stack tests for dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, and hydrogen chloride every third year if the MWC unit meets certain specified criteria.
ABBREVIATIONS AND ACRONYMS

Abbreviations, acronyms, and other terms used:

ASME = American Society of Mechanical Engineers
CEMS = continuous emission monitoring system
CO = carbon monoxide
COMS = continuous opacity monitoring system
DSI/ESP/CI = dry sorbent injection/electrostatic precipitator/activated carbon injection system
EPA = Environmental Protection Agency
ESP = electrostatic precipitator
GCP = good combustion practices
mg/dscm = milligrams per dry standard cubic meter*
MSW = municipal solid waste
MWC = municipal waste combustion
ng/dscm = nanograms per dry standard cubic meter*
ppmv = parts per million by volume*
RDF = refuse-derived fuel
SD/ESP/CI = spray dryer/electrostatic precipitator/activated carbon injection system
SD/FF/CI = spray dryer/fabric filter/activated carbon injection system
SNCR = selective noncatalytic reduction
tpd = tons per day
Total mass = total mass basis of tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofurans (not toxic equivalency (TEQ) basis)

* At standard temperature and pressure (20 °C, 101.3 kilopascals).