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< EPA Motivation

PM, s Concentrations from 1999-2011 * Significant and diverging trends in
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Eastern N. America

* Modeling systems accounting for the
spatially hetereogeneous changes in
emissions and air quality and incorporating
aerosol/radiation interactions can help to
better quantify these impacts

- perform long-term simulations over both
- — .. North America and the entire Northern

2 5’ Iy PO " ” Hemisphere with the coupled WRF-CMAQ
van Donkelaar et al, Environmental Health Perspectives, 2015 model




Continental-Scale WRF-CMAQ Simulations

WRF-CMAQ, two-way model

Domain:

—WRF3.4: NARR Reanalysis data; RRTMg radiation scheme, v'36%36 km resolution over the CONUS

ACM2 (Pleim) PBL, PX LSM.

v'35 layers from surface to 100mb

—CMAQ5.0: CBO5-AERO6 chemistry, inline photolysis, inline Period:

dust emission module.

—Two-way coupling captures aerosol direct effects (ADE) by
transferring CMAQ aerosol information available to RRTMg in
WRF
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v from 1990 to 2010
Emissions:

v' Xing et al. (2013)
Boundary Conditions:

v' Hemispheric WRF-CMAQ simulations (Xing et al., 2015
a,b,c)

Scenarios:
v" No feedback (turn off the aerosol direct effects)

v" with feedback
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Changes in U.S. Emissions

Constructed internally consistent 1990 — 2010
model-ready emission dataset based on
available emission inventories, activity data,
emission factors and control technologies

NEI Data for the years of 90/95/96/99/01/02/05
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Xing et al., Historical gaseous and primary aerosol emissions in the US from 1990 to 2010, Atmos. Chem. Phys., 2013.



\.-“’EPA Trends in Summer Daily Maximum 8-hr Ozone

May - September

| | * Decreasing trends for 90t percentile and
S T T - 5 flat or increasing trends for 10t percentile
' T in both observations and model
N T simulations

e Trends are more negative for rural and
suburban sites compared to urban sites
and the model picks up this difference.

ppb/year

L * At rural and suburban sites, modeled
CMAQ Urban A trends tend to be somewhat more
L negative than the observed trends.
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CMAQ Suburban o
CMAQ Rural i

T T |
10th Percentile 50th Percentile 90th Percentile
(= 0-45ppb) (= 35-65ppb) (= 50-160ppb)

Foley et al., A Comparison of Observed and Simulated 1990 — 2010 U.S. Ozone Trends, A&WMA 108th Annual Conference, Raleigh, NC, June 25th, 2015



o Observed and Simulated Trends in Air Qualit
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Gan et al., Assessment of long-term WRF—CMAQ simulations for understanding direct aerosol effects on radiation “brightening” in the United States, Atmos. Chem. Phys., 2015.
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* The greatest decreases
occurred over the Eastern
U.S.

» * The model simulations tend

to capture the magnitude

and spatial variability of
observed trends
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Observed and Simulated Trends in AOD and Radiation
(Observations are from SURFRAD)

Clear-Sky Shortwave Radiation All-Sky Shortwave Radiation

o

-0.003

-0.005

1/yr

* Decreasing AOD in areas of decreasing surface PM, . concentrations, i.e. Eastern U.S.

* Associated increases in clear-sky and all-sky radiation

Gan et al., Assessment of long-term WRF—CMAQ simulations for understanding direct aerosol effects on radiation “brightening” in the United States, Atmos. Chem. Phys., 2015.



< EFPA X Hemispheric WRF-CMAQ Simulations

Hemispheric WRF-CMAQ two-way model

—WRF3.4: NCEP/NCAR Reanalysis data with 2.5 degree spatial and 6-hour temporal resolution;
NCEP ADP Operational Global Surface/ Upper Air Observations with 6 hour intervals, MODIS land-
use type, RRTMg radiation scheme, ACM2 (Pleim) PBL, PX LSM.

—CMAQ5.0: CBO5-AERO6 chemistry, tropopause ozone calculated from potential vorticity, inline
photolysis, inline dust emission module.

East China

Domain:

v'108%108 km resolution over the northern hemisphere
v'44 |ayers from surface to 50mb

Period:

v" from 1990 to 2010 (JJA, summer)

Scenarios:

v" No feedback (turn off the aerosol direct effects)

v" with feedback
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wEPA X Hemispheric Emission Trends

Emissions for Hemispheric WRF-CMAQ model

v" Anthropogenic emissions were derived from EDGAR (Emission Database for Global Atmospheric Research);
v’ Biogenic VOC and lightning NOx emissions were obtained from GEIA (Global Emission Inventory Activity);
v" Temporal distribution was based on EDGAR default profiles;

v’ Speciation was based on standard SMOKE profiles;

v’ Vertical allocation was based on SMOKE plume-rise and EMEP profiles.

1990-2008 emissions in China, US and Europe from EDGAR
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Striking contrast in emission trends between developed and developing countries
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Trends in Annual Maximum of Daily Maximum 8-hr
Ozone (1990-2010)
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Xing et al.,
Observations and
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Europe. ACP, 2015
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Trends in Aerosol Optical Depth (2000-2010)

MODIS-terra
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EPA R Trends in Clear-sky SWR at the Surface (2000-2010)

WRF-CMAQ(no feedback) summer (31A)
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v EPA Estimating Trends in PM, . Related Mortality

Calculation of PM, ;. Related Mortality: * Method based on BenMap —
CE and GBD (Lim et al., 2012;
Mortalityppyos = Yi=imp.stroke.copp.ic.airi incidencey; X PAF; X Population  [1] Burnett et al., 2014)
B * Incidence rates from Naghavi
PAF, = (RR; = 1?/}?5 c RE]C _ et al. (2015)
or € < Co, RR(C) = 5 [3] * RR estimates from Apte et al.
forC = C,, RR;(C) =1+ ax {1 - exp[—y X (C —C,) ]} (2015)

Calculation of Species-Specific Mortality and Emission Mitigation Efficiency (EME):

Mortalityy

Mortalityy, = X Concentrationpy,,,y (v =1990...2010) [4]

Concentrationpy, .y

Morta!itypry - —Mortalityp,1990

EME,,, =

(y' =1991..2010) [5]

Emissionp}y » —Emissionp 1990

p = {50,, NO,, NH;, primary PM}

PM, = {S0;~,NO3,NH{, other inorganic particles and primary organic aerosols}

Population Scale Factor (PSF): Population-Weighted PM, . / Regional-Average PM,
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Changes in PM, ; and Population 1990 - 2010
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Changing population exposure to ambient
PM2.5 levels across six sub-regions of the
northern hemisphere

WRF-CMAQ estimated surface PM, .
concentrations across grid cells in a region
are grouped by population distribution
d(Population)/d(log([PM2.5])) represents
the population per unit PM, . section in log
scale. The area below a curve represents
the total population for that region for that
year.

East and South Asia: Population growth and
shift towards higher PM, .

Europe and North America: Shift of
population distribution towards lower PM, .

Wang et al., Historical Trends in PM2.5-Related Premature Mortality during 1990-2010 across the Northern Hemisphere. EHP, 2016
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Trends in PM, ;. and Population Scale Factor (PSF)

1990 -

2010

B —
Trends in Population-Weighted Trends in PSE
and Regional Average PM |
2.5 2.5 1 + T
50 + + 25 {Q_:I
(a) East Asia (d) Europe
40 ., 20 —e—Population-weighted | -
= . L] o - --O--Reoiona-avergce_ -
E 301 e, L °E ©
g P ® X g
2::20‘ ooo] 22
= -9.900_3_3045_0__5@_;,505—--~- o &
10 i
R T 72 . 3 .
g, oemeeml | & . * South and East Asia:
1990 1995 2000 2005 2010 B
o . .
" | = 2 increases in PSF
(b) South Asia (e) North Africa & @ .
0 L gl M S 1.5+ ! * Europe and High-Income
_— F ] -2 o o O (V2]
E G =82 - = H . H
2™ J B e k5 North America: decreases in
o L] i o "t eveces ¥ & o = - o
=20 75 onfr = 10 e V o — e
IR oot MR = = S v e PSF
L —e— Popuaton-weighted T 5 —e— Population-weighted o o £
= Raoicost-everage S>-Rasichatarernoe’ | J % o
?990 19’95 20’00 20,06 2610 ?m 19105 2600 2605 201Q 1
25 25 |2 =
(c) High-income North America (f) Eastern & Westam o
B B — Sub-Saharan Africa o
20 e Popuaton-wicghted 20+
— -<--Regional-average —_—
E s g
g e 3:’: = _.‘.-g-o-gog-:-.':%_'.;‘g'c’?:':"“ :
], e . S0 o 2 N 0.5 - t
o o 1990 1995 2000 2005 2010
s} OovOSeoeteovoo00000s N [—e—Popuationweighted| |
| -< -Regional-average |  —@—[East Asia
o ' ol | == South Asia
1990 1995 2000 2005 2010 1990 1995 2000 2005 201C ]

| =8 Population-weighted
! -<Cr-Regicna-average

| —¥— High-Income North America
| ==D=+Europe
| = North Africa and Middle East
Eastern & Westem Sub-Saharan Africa

Wang et al., Historical Trends in PM2.5-Related Premature Mortality during 1990-2010 across the Northern Hemisphere. EHP, 2016



<vEPA

Precursor-Attributed Mortality and Emission Mitigation

Efficiency (EME)
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Results show highest EME for
primary PM, ¢ in all regions and
benefit of controlling NH; in
Europe

Wang et al., Historical Trends in PM2.5-Related Premature Mortality during 1990-2010 across the Northern Hemisphere. EHP, 2016



Impact of Aerosol Direct Effects (ADE) on Atmospheric Dynamics
v EPA \ i (AP i !
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We need a comprehensive assessment with consideration of multiple manifestations of
aerosol direct effects



v EPA \ Health Impacts Associated with ADE

Direct benefit

PM pollution controls =————— s s——) Human health

1

: Increasing Heat- Indirect disbenefit
Reducing mp mortality from
ADE reduced cooling
‘ Reducing PM, . Indirect benefit
enhancement

effects
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EPA ™ PM, . Response to ADE
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PM, . Response vs Population

Landscan Population Data 21-year Averaged PM, ; Response Due to ADE
(from Oak Ridge National Laboratory) o w
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< EFPA "3, Estimation of PM, ; Related Premature Mortality

Based on the GBD (Global Burden of Disease) Integrated Exposure—Response Model

-

population attributable fraction

MortalityPMz_S =

N

. . Difference of mortalit
A — . e
N} L S S N QS )
S & &S S &S RO A ,ﬁ@ ’q@ R &S N
O A N &N ¥ ™ o

P ey . - . R -SSR« &

ENEN RS > > > > > N »

N & L I < J L S
SR RS A

S MR R N S
3 E A S
AN

&

Xinag et al.. Unexpected benefits of reducinag aerosol coolina effects. Environmental Science & Technoloav. 2016



<vEPA Health Impacts Associated with ADE

Cooling effects Enhancement effects Total effects

Due to AT-fb Due to APM, .-fb Due to (APM, s-fb + AT-fb)

Heat-related mortality calculations Change in mortality (per 108x108km” grid cell)
were based on Basu et al. (2005; 2008) _ﬁ) e U SN _\c, I

PP L N T B
\@)@rﬁ’\mﬂﬁﬂ» v b.\‘\\b,,)\%\

and Voorhees et al. (2009)

mortahtytemperamfe = incidence, X (exp(f X Atemperature) — 1)

X population

Xing et al., Unexpected benefits of reducing aerosol cooling effects. Environmental Science & Technology, 2016




Health Impacts Associated with ADE

Direct benefit

PM pollution controls =————— s s——) Human health

1

Reducing
ADE

Increasing Heat- Indirect disbenefit

Indir

reduced cooling

Reducing PM, ¢ Indirect benefit
enhancement

effects

Mitigating aerosol pollution provides direct benefits on health, and indirect benefits on
health through changes in local climate and not offsetting changes as traditionally thought.
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Excess Mortality Due to ADE
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Xing et al., Unexpected benefits of reducing aerosol cooling effects. Environmental Science & Technology, 2016



Summary

 Changes in emissions over the past decades led to substantial
changes in air quality, aerosol/radiation feedback effects, and
PM, -related mortality in the U.S. as well as the entire
hemisphere

* The coupled WRF-CMAQ system was used to quantify the
changes in air quality and aerosol/radiation feedback effects

 Qutput from these WRF-CMAQ simulations was used to
estimate changes in mortality due to changes in PM, .
concentrations as well as changes in aerosol/radiation feedback
effects
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