AUTHORIZATION TO DISCHARGE UNDER THE RHODE ISLAND POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of Chapter 46-12 of the Rhode Island General Laws, as amended,

Arkwright Advanced Coating Incorporated 538 Main Street Fiskeville, RI 02823

is authorized to discharge from a facility located at

538 Main Street Fiskeville, RI 02823

to receiving waters named

Pawtuxet River - North Branch

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective on _____

This permit and the authorization to discharge expire at midnight, five (5) years from the effective date.

This permit supersedes the permit issued on May 18, 2011 and subsequently modified on January 9, 2013.

This permit consists of 13 pages in Part I including effluent limitations, monitoring requirements, etc. and 10 pages in Part II including General Conditions.

Signed this _____day of _____, 2016.

Angelo S. Liberti, P.E., Chief of Surface Water Protection Office of Water Resources Rhode Island Department of Environmental Management Providence, Rhode Island PARTI

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

 During the period beginning on the effective date and lasting through permit expiration, the permittee is authorized to discharge from outfall serial number(s) 100 (large cooling tower blowdown discharge) and 200 (small cooling tower blowdown discharge). Each discharge shall be limited and monitored by the permittee as specified below:

Effluent	Discharge Limitations			Monitoring Requirement			
Characteristic	Quantity - Ibs.	/day	Concentra	ation - specify uni	ts		
	Average	Maximum	Average	Average	Maximum	Measurement	Sample
	Monthly	Daily	<u>Monthly</u>	Weekly	<u>Daily</u>	Frequency	<u>Type</u>
			*(<u>Minimum</u>)	*(<u>Average</u>)	"(<u>Maximum</u>)		
Flow	GPD	3,000 GPD				1/Month	Estimate
TSS			mg/l		mg/l	1/Month	Grab
рН			(6.5 s.u.)		(9.0 s.u.)	1/Month	4 Grabs ¹

¹ Compliance with these limitations shall be determined by taking a minimum of four (4) grab samples equally spaced over the course of a normal operating day. The maximum value to be reported is the highest individual measurement obtained during the monitoring period. The minimum value to be reported is the lowest individual measurement obtained during the monitoring period.

Values in parentheses () are to be reported as Minimum/Maximum for the reporting period rather than Average Monthly/Maximum Daily.

--- Signifies a parameter which must be monitored and data must be reported; no limit has been established at this time.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following locations: Outfall 100 – internal outfall located prior to where the large cooling tower blowdown discharge combines with the small cooling tower discharge and Outfall 200 – internal outfall located prior to where the small cooling tower blowdown discharge combines with the large cooling tower discharge.

PARTI

•

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

2. During the period beginning on the effective date and lasting through permit expiration, the permittee is authorized to discharge from outfall serial number(s) 013 (non-contact cooling water).

Such discharges shall be monitored by the permittee as specified below:

Effluent	•	Discharge Limita	ations		- 100 ¹	Monitoring Require	ement
Characteristic	Quantity - lbs. Average <u>Monthly</u>	per day Maximum Daily	Concentra Average <u>Monthly</u>	ation - specify uni Average <u>Weekly</u>	ts Maximum Daily	Measurement Frequency	Sample <u>Type</u>
Flow	GPD	31,500 GPD				1/Month	Measurement
pH influent			S.U.		S.U.	1/Month	4 Grabs1
pH effluent			s.u.	÷.	s.u.	1/Month	4 Grabs ¹
pH change					0.5 s.u. ²	1/Month	Calculated

¹ Compliance with these limitations shall be determined by taking a minimum of four (4) grab samples equally spaced over the course of a normal operating day. The maximum value to be reported is the highest individual measurement obtained during the monitoring period. The minimum value to be reported is the lowest individual measurement obtained during the monitoring period.

2 In no case shall the discharge cause the receiving water's pH to be outside of the range of 6.5-9.0 s.u.

--- Signifies a parameter which must be monitored and data must be reported; no limit has been established at this time.

Sampling for influent and effluent shall be conducted using appropriate allowances for hydraulic detention (flow-through) time. These values will then be used to calculate the pH change. Effluent samples taken in compliance with the monitoring requirements specified above shall be taken at the following locations: Outfall 013. (Non-contact cooling water)

- 3. a. The pH of the effluent shall not be less than 6.5 nor greater than 9.0 standard units at any time, unless these values are exceeded due to natural causes or as a result of the approved treatment processes.
 - b. The discharge shall not cause visible discoloration of the receiving waters.
 - c. The effluent shall contain neither a visible oil sheen, foam, nor floating solids at any time.
- 4. Unless authorized elsewhere in this Permit, the permittee must meet the following requirements concerning maintenance chemicals for cooling tower blowdown waste streams. Maintenance chemicals shall be defined as any man-induced additives to the above-referenced waste streams. This permit prohibits the use of additives expected to pose significant risks to wildlife or human health based on bioconcentration/bioaccumulation data. The permittee is required to demonstrate that the expected discharge concentration of the additive(s) to be used will not be harmful to aquatic life. This requirement is imposed in lieu of a continuing monitoring program for the additives in the discharge.
 - 5. The permittee shall evaluate the use of non-intrusive methods for cooling system maintenance in order to minimize chemical use at the facility and subsequent discharge to state surface waters. If chemical addition is the only alternative the permittee should attempt to utilize maintenance chemicals that will degrade rapidly, either due to hydrolytic decomposition or biodegradation.
 - a. Maintenance chemicals must not contain any compounds that are listed as being a cause for impairment of the receiving water body as listed in the most recent State of Rhode Island 303(d) List of Impaired Waters. In addition, any maintenance chemicals or biocides that contain tributyl tin, bis (tributyltin) oxide, or chlorinated phenols are strictly prohibited by this permit.
 - b. Algicides and biocides are to be used in accordance with registration requirements of the Federal Insecticide, Fungicide and Rodenticide Act.
 - c. The permittee must keep sufficient documentation on-site to show that the above requirements are being met. The following information shall be made available for on-site review by Department personnel during normal working hours:
 - i. Material Safety Data Sheets (MSDS) for each additive.
 - ii. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)/U.S. EPA registration number.
 - iii. A bound logbook that documents the quantity of additives added to the discharge, the frequency of additive applications, the duration of additive applications, and the approximate concentration of each additive in the blowdown.
 - 6. This permit authorizes the use of the chemical additive Stabrom Plus cooling tower biocide for the treatment of the small and large cooling towers. This chemical additive may only be used in a manner such that its concentration in the blowdown discharge will not exceed 1.5 mg/l. This permit also authorizes the use of the chemical additive AWM-413 for the treatment of the small and large cooling towers. AWM-413 may only be used in such a manner such that the dosage concentration into the cooling towers does not exceed 100 mg/l.
- 7. The permittee shall obtain Department approval before increasing the amount of any of the treatment chemicals listed in Part I.A.6 or prior to using any other additive(s) in conjunction with or in place of the treatment chemicals listed in Part I.A.6 of this permit. Prior to using any other chemical additives the permittee shall submit for DEM approval a complete list of all chemical additives, including Material Safety Data Sheets. The permittee shall not begin to

use any additional chemical additives other than those specified in Part I.A.6 of this permit without prior written approval from the Office of Water Resources.

- 8. All existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Director as soon as they know or have reason to believe:
 - a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - (1) One hundred micrograms per liter (100 ug/l);
 - (2) Two hundred micrograms per liter (200 ug/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitro-phenol; and one milligram per liter (1 mg/l) for antimony;
 - (3) Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 C.F.R. s122.21(g)(7); or
 - (4) Any other notification level established by the Director in accordance with 40 C.F.R. s122.44(f) and Rhode Island Regulations.
 - b. That any activity has occurred or will occur which would result in the discharge, on a non-routine or infrequent basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - Five hundred micrograms per liter (500 ug/l);
 - (2) One milligram per liter (1 mg/l) for antimony;
 - (3) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 C.F.R. s122.21(g)(7); or
 - (4) Any other notification level established by the Director in accordance with 40 C.F.R. s122.44(f) and Rhode Island Regulations.
 - c. That they have begun or expect to begin to use or manufacture as an intermediate or final product or by-product any toxic pollutant which was not reported in the permit application.
- 9. This permit serves as the State's Water Quality Certificate for the discharges described herein.

B. STORMWATER POLLUTION PREVENTION PLAN REQUIREMENTS

- 1. A Stormwater Pollution Prevention Plan (SWPPP) shall be maintained by the permittee. The SWPPP shall be prepared in accordance with good engineering practices and identify potential sources of pollutants, which may reasonably be expected to affect the quality of stormwater discharges associated with industrial activity from the facility. In addition, the Plan shall describe and ensure the implementation of Best Management Practices (BMPs) which are to be used to reduce or eliminate the pollutants in stormwater discharges associated with industrial activity at the facility and to assure compliance with the terms and conditions of this permit. A copy of this SWPPP shall be submitted to the RIDEM RIPDES Program within sixty (60) days of the effective date of the permit.
- 2. The Plan shall be signed by the permittee in accordance with RIPDES Rule 12 and retained onsite for at least five (5) years. The Plan shall be made available upon request to the Director.

- 3. If the Plan is reviewed by the Director, he or she may notify the permittee at any time that the Plan does not meet one or more of the minimum requirements of this part. After such notification from the Director, the permittee shall make changes to the Plan and shall submit to the Director a written certification that the requested changes have been made. Unless otherwise provided by the Director, the permittee shall have thirty (30) days after such notification to make the necessary changes.
- 4. The permittee shall immediately amend the Plan whenever there is a change in design, construction, operation, or maintenance, which has a significant effect on the potential for the discharge of pollutants to the waters of the State; a release of reportable quantities of hazardous substances and oil; or if the SWPPP proves to be ineffective in achieving the general objectives of controlling pollutants in stormwater discharges associated with industrial activity. Changes must be noted and then submitted to this department. Amendments to the Plan may be reviewed by DEM in the same manner as Part B.3. of this permit.
- 5. The SWPPP shall include, at a minimum, the following items:
 - a. <u>Description of Potential Pollutant Sources.</u> The Plan must provide a description of potential sources which may be reasonably expected to add significant amounts of pollutants to stormwater discharges or which may result in the discharge of pollutants during dry weather from separate storm sewers draining the facility. It must identify all activities and significant materials, which may potentially be significant pollutant sources. Each plan shall include:
 - (1) A site map indicating: a delineation of the drainage area of each stormwater outfall, each existing structural control measure to reduce pollutants in stormwater runoff, locations where significant materials are exposed to stormwater, locations where significant leaks or spills have occurred, a delineation of all impervious surfaces, all surface water bodies, all separate storm sewers, and the locations of the following activities where such areas are exposed to stormwater: fueling stations, vehicle and equipment maintenance and/or cleaning areas, material handling areas, material storage areas, process areas, and waste disposal areas;
 - (2) A topographic map extending one-quarter of a mile beyond the property boundaries of the facility;
 - (3) An estimate of the overall runoff coefficient for the site, determined by an acceptable method, such as, but not limited to, area weighting;
 - (4) A narrative description of significant materials that have been treated, stored, or disposed of in a manner to allow exposure to stormwater between the time of three (3) years prior to the issuance of this permit to the present; method of on-site storage or disposal; materials management practices employed to minimize contact of these materials with stormwater runoff between the time of three (3) years prior to the issuance of this permit and the present; materials loading and access areas; the location and description of existing structural and non-structural control measures to reduce pollutants in stormwater runoff; and description of any treatment the stormwater receives;
 - (5) A list of significant spills and significant leaks of toxic or hazardous pollutants that occurred at the facility three (3) years prior to the effective date of this permit to the present;
 - (6) A list of any pollutants limited in effluent guidelines to which a facility is subject under 40 CFR Subchapter N, any pollutants listed on a RIPDES permit to discharge process water, and any information required under RIPDES Rule 11.02(a)(14)(iii)-(v) or 40 CFR 122.21(g)(iii)-(v);

- (7) For each area of the facility that generates stormwater discharges associated with industrial activity with a reasonable potential for containing significant amounts of pollutants, a prediction of the direction of flow and an estimate of the types of pollutants, which are likely to be present in stormwater associated with industrial activity;
- (8) A summary of existing sampling data describing pollutants in stormwater discharges from the facility; and
- b. <u>Stormwater Management Controls.</u> The permittee must develop a description of stormwater management controls appropriate for the facility and implement such controls. The appropriateness for implementing controls listed in the Plan must reflect identified potential sources of pollutants at the facility. The description of stormwater management controls must address the following minimum components, including a schedule for implementing such controls:
 - (1) Pollution Prevention Team. The Plan must identify a specific individual(s) within the facility organization as members of a team that are responsible for developing the Plan and assisting the plant manager in its implementation, maintenance, and revision. The Plan must clearly identify the responsibilities of each team member. The activities and responsibilities of the team must address all aspects of the facility's Plan.
 - (2) Risk Identification and Assessment/Material Inventory. The Plan must assess the potential of various sources which contribute pollutants to stormwater discharge associated with the industrial activity. The Plan must include an inventory of the types of materials handled. Each of the following must be evaluated for the reasonable potential for contributing pollutants to runoff: loading and unloading operations, outdoor manufacturing or processing activities, significant dust or particulate generating processes, and on-site waste disposal practices. Factors to consider include the toxicity of chemicals; quantity of chemicals used, produced, or discharged; the likelihood of contact with stormwater, and the history of significant leaks or spills of toxic or hazardous pollutants.
 - (3) Controls Specific to Plastic Products Manufacturers. The SWPPP must address minimizing the discharge of plastic resin pellets in the stormwater discharges. Control measures to be considered for implementation (or their equivalents) must include minimization of spills, cleaning up of spills promptly and thoroughly, sweeping thoroughly, pellet capturing, employee education, and disposal precautions.
 - (4) Preventative Maintenance. A preventative maintenance program must involve inspection and maintenance of stormwater management devices (i.e., oil/water separators, catch basins) as well as inspecting and testing plant equipment and systems to uncover conditions that could cause breakdown or failures resulting in discharges of pollutants to surface waters.
 - (5) *Good Housekeeping.* Good housekeeping requires the maintenance of a clean, orderly facility.
 - (6) Spill Prevention and Response Procedure. Areas where potential spills can occur, and their accompanying drainage points, must be identified clearly in the SWPPP. The potential for spills to enter the stormwater drainage system must be eliminated wherever feasible. Where appropriate, specific material handling procedures, storage requirements, and procedures for cleaning up spills must be identified in the Plan and made available to the appropriate personnel. The necessary equipment to implement a clean up must also be made available to personnel. The permittee shall immediately notify the office of releases in excess of reportable quantities.

Permit No. RI0000035 Page 8 of 13

- (7) Stormwater Management. The Plan must contain a narrative consideration of the appropriateness of traditional stormwater management practices. Based on an assessment of the potential of various sources at the facility to contribute pollutants to stormwater discharges associated with industrial activity (see Part B.5.b.2 of this permit), the Plan must provide that measures, determined to be reasonable and appropriate, must be implemented and maintained.
- (8) Soil Erosion Prevention. The Plan must identify areas which; due to topography, activities, or other factors; have a high potential for significant soil erosion and identify measures to limit erosion.
- (9) Employee Training. Employee training programs must inform personnel responsible for implementing activities identified in the Plan, or otherwise responsible for stormwater management at all levels, of the components and goals of the Plan. Training should address topics such as spill response, good housekeeping, and material management practices. The Plan must identify periodic dates for such training.
- (10) Visual Inspections. Qualified plant personnel must be identified to inspect designated equipment and plant areas. Material handling areas must be inspected for evidence of, or the potential for, pollutants entering the drainage system. A tracking or follow up procedure must be used to ensure that the appropriate action has been taken in response to the inspection. Records of inspections must be maintained on site for at least five (5) years.
- (11) Recordkeeping and Internal Reporting Procedures. Incidents such as spills, or other discharges, along with other information describing the quality and quantity of stormwater discharges must be included in the records. All inspections and maintenance activities must be documented and maintained on site for at least five (5) years.
- c. <u>Site Inspection.</u> An annual site inspection must be conducted by appropriate personnel named in the SWPPP to verify that the description of potential pollutant sources required under Part B.5.a is accurate, that the drainage map has been updated or otherwise modified to reflect current conditions, and controls to reduce pollutants in stormwater discharges associated with industrial activity identified in the Plan are being implemented and are adequate. A tracking or follow up procedure must be used to ensure that the appropriate action has been taken in response to the inspection. Records documenting significant observations made during the site inspection must be retained as part of the SWPPP for a minimum of five (5) years.
- d. <u>Consistency with Other Plans.</u> Stormwater management controls may reflect requirements for Spill Prevention Control and Counter-measure (SPCC) plans under Section 311 of the CWA or Best Management Practices (BMP) Programs otherwise required by a RIPDES permit and may be incorporated by reference.

C. DETECTION LIMITS

The permittee shall assure that all wastewater testing required by this permit, is performed in conformance with the method detection limits listed below. In accordance with 40 CFR Part 136, EPA approved analysis techniques, quality assurance procedures and quality control procedures shall be followed for all reports required to be submitted under the RIPDES program. These procedures are described in "Methods for the Determination of Metals in Environmental Samples" (EPA/600/4-91/010) and "Methods for Chemical Analysis of Water and Wastes" (EPA/600/4-79/020).

The report entitled "Methods for the Determination of Metals in Environmental Samples" includes a test which must be performed in order to determine if matrix interferences are present, and a series of tests to enable reporting of sample results when interferences are identified. Each step of the series of tests becomes increasingly complex, concluding with the complete Method of Standard Additions analysis. The analysis need not continue once a result which meets the applicable quality control requirements has been obtained. Documentation of all steps conducted to identify and account for matrix interferences shall be documented and maintained onsite.

If, after conducting the complete Method of Standard Additions analysis, the laboratory is unable to determine a valid result, the laboratory shall report "could not be analyzed". Documentation supporting this claim shall be maintained onsite. If valid analytical results are repeatedly unobtainable, DEM may require that the permittee determine a method detection limit (MDL) for their effluent or sludge as outlined in 40 CFR Part 136, Appendix B.

When calculating sample averages for reporting on discharge monitoring reports (DMRs):

- 1. "could not be analyzed" data shall be excluded, and shall not be considered as failure to comply with the permit sampling requirements;
- 2. results reported as less than the MDL shall be reported as zero in accordance with the DEM's DMR Instructions, provided that all appropriate EPA approved methods were followed.

Therefore, all sample results shall be reported as: an actual value, "could not be analyzed", or zero. The effluent or sludge specific MDL must be calculated using the methods outlined in 40 CFR Part 136, Appendix B. Samples which have been diluted to ensure that the sample concentration will be within the linear dynamic range shall not be diluted to the extent that the analyte is not detected. If this should occur the analysis shall be repeated using a lower degree of dilution.

LIST OF TOXIC POLLUTANTS

The following list of toxic pollutants has been designated pursuant to Section 307(a)(1) of the Clean Water Act. The Method Detection Limits (MDLs) represent the required Rhode Island MDLs.

Volati	les - EPA Method 624	MDL ug/l (ppb)		22P	PCB-1248	0 283
1V	acrolein	10.0		23P	PCB-1260	0.222
2V [.]	acrylonitrile	5.0		24P	PCB-1016	0.494
3V	benzene	1.0		25P	toxaphene	1.670
5V	bromoform	1.0				
6V	carbon tetrachloride	1.0		Base/Ne	utral - EPA Method 625	MDL ug/l (ppb)
7V	chlorobenzene	10		1B	acenanhfhene *	10
81/	chlorodibromomethane	1.0		2B	acenaphthylene *	1.0
<u>av</u>	chloroethane	1.0		38	anthracene *	1.0
101/	2-chloroethylvinyl ether	50			benzidine	1.0
111/	chloroform	1.0		40 60	benzo(2)anthracena *	4.0
101/	dichlorobromomothono	1.0			benzo(a)nurono *	2.0
141	1 1 dieblemethane	1.0		70	2 4 harroftvarenthana t	2.0
14V	1,1-dichloroethane	1.0		10	3,4-benzonuoranthene *	1.0
10V		1.0		00	benzo(gni)perviene *	2.0
TOV	1,1-achioroethylene	1.0		98	benzo(k)nuorantnene	2.0
17V	1,2-dichloropropane	1.0	0.	108	bis(2-chloroethoxy)methane	2.0
18V	1,3-dichloropropylene	1.0		118	bis(2-chloroethyl)ether	1.0
19V	ethylbenzene	1.0		128	bis(2-chloroisopropyl)ether	1.0
20V	methyl bromide	1.0		13B	bis(2-ethylhexyl)phthalate	1.0
21V	methyl chloride	1.0		14B	4-bromophenyl phenyl ether	1.0
22V	methylene chloride	1.0		15B	butylbenzyl phthalate	1.0
23V	1,1,2,2-tetrachloroethane	1.0		16B	2-chloronaphthalene	1.0
24V	tetrachloroethylene	1.0		17B	4-chlorophenyl phenyl ether	1.0
25V	toluene	1.0	9 -	18B	chrysene *	1.0
26V	1,2-trans-dichloroethylene	1.0		19 B	dibenzo (a,h)anthracene *	2.0
27V	1,1,1-trichloroethane	1.0	2	20B	1,2-dichlorobenzene	1.0
28V	1,1,2-trichloroethane	1.0	2	21B	1.3-dichlorobenzene	1.0
29V	trichloroethylene	1.0	2	22B	1.4-dichlorobenzene	1.0
31V	vinvl chloride	1.0		320	2.2 ¹ diablanahan-idina	0.0
				200	3,3 -dichlorobenzicine	2.0
Acid C	ompounds - EPA Method 625	MDL ug/l (ppb)	4	24B	diethyl phthalate	1.0
1A	2-chloronhenol	10	2	25B	dimethyl phthalate	1.0
24	2 4-dichlorophenol	1.0	2	26B	di-n-butyl phthalate	1.0
30	2.4-dimethylphenol	1.0	2	27B	2,4-dinitrotoluene	2.0
10	A 6-dinitro-o-creeol	1.0	2	28B	2,6-dinitrotoluene	2.0
50	2 4 dinitronbanol	20	2	29B	di-n-octyl phthalate	1.0
6A	2,4-unitrophenol	2.0	3	30B	1,2-diphenylhydrazine	1.0
	2-nitrophenol	1.0			(as azobenzene)	
78	4-nitrophenoi	1.0	3	31B	fluoranthene *	1.0
8A	p-cnioro-m-cresoi	2.0	3	32B	fluorene *	1.0
9A	pentachiorophenoi	1.0	3	38	hexachlorobenzene	1.0
10A	phenol	1.0	3	4B	hexachlorobutadiene	10
11A	2,4,6-trichlorophenol	1.0	3	85B	hexachlorocyclopentadiene	20
			3	6B	hexachlomethane	1.0
Pestici	des - EPA Method 608	MDL ug/l (ppb)	3	7B	indeno(1.2.3-cd)pyrene *	20
1P	aldrin	0.059	9	ISB	isophorone	10
2P	alpha-BHC	0.058		IGR	nonhthaleze *	1.0
3P	beta-BHC	0.043		ine	nitrobanzana	1.0
4P	gamma-BHC	0.048	7		N pitrepedimethylemine	1.0
5P	delta-BHC	0.034	-	no an	N-nitrosodi n providencine	1.0
6P	chlordane	0.211	4		N-nicosodi-n-propylamine	1.0
70		0.261	4	35	N-nitrosociprienyiamine	1.0
	4,4 -001	0.201	4	48	pnenanthrene "	1.0
8P	4,4 ' -DDE	0.049	4	58	pyrene *	1.0
00		0.400	4	6B	1,2,4-trichlorobenzene	1.0
96	4,4 -000	0.139				
10P	dieldrin	0.082				
11P	alpha-endosulfan	0.031				
12P	beta-endosulfan	0.036				
13P	endosulfan sulfate	0.109				
14P	endrin	0.050				
15P	endrin aldehyde	0.062				
16P	heptachlor	0.029				
17P	heptachlor epoxide	0.040				
Pestici	des - EPA Method 608	MDL ug/l (ppb)				
18P	PCB-1242	0.289				
19P	PCB-1254	0 298				
20P	PCB-1221	0 723				
21P	PCB-1232	0.387				

OTHER TOXIC POLLUTANTS

	MDL ug/i (ppb)
Antimony, Total	3.0
Arsenic, Total	1.0
Beryllium, Total	0.2
Cadmium, Total	0.1
Chromium, Total	1.0
Chromium, Hexavalent	20.0
Copper, Total	1.0
Lead, Total	1.0
Mercury, Total	0.2
Nickel, Total	1.0
Selenium, Total	2.0
Silver, Total	0.5
Thallium, Total	1.0
Zinc, Total	5.0
Asbestos	**
Cyanide, Total	10.0
Phenois, Total***	50.0
TCDD	**
MTBE (Methyl Tert Butyl Ether)	1.0

** No Rhode Island Department of Environmental Management (RIDEM) MDL

NOTE:

The MDL for a given analyte may vary with the type of sample. MDLs which are determined in reagent water may be lower than those determined in wastewater due to fewer matrix interferences. Wastewater is variable in composition and may therefore contain substances (interferents) that could affect MDLs for some analytes of interest. Variability in instrument performance can also lead to inconsistencies in determinations of MDLs.

To help verify the absence of matrix or chemical interference the analyst is required to complete specific quality control procedures. For the metals analyses listed above the analyst must withdraw from the sample two equal aliquots; to one aliquot add a known amount of analyte, and then dilute both to the same volume and analyze. The unspiked aliquot multiplied by the dilution factor should be compared to the original. Agreement of the results within 10% indicates the absence of interference. Comparison of the actual signal from the spiked aliquot to the expected response from the analyte in an aqueous standard should help confirm the finding from the dilution analysis. (Methods for Chemical Analysis of Water and Wastes EPA-600/4-79/020).

For Methods 624 and 625 the laboratory must on an ongoing basis, spike at least 5% of the samples from each sample site being monitored. For laboratories analyzing 1 to 20 samples per month, at least one spiked sample per month is required. The spike should be at the discharge permit limit or 1 to 5 times higher than the background concentration determined in Section 8.3.2, whichever concentration would be larger. (40 CFR Part 136 Appendix B Method 624 and 625 subparts 8.3.1 and 8.3.11).

D. MONITORING AND REPORTING

1. Monitoring

All monitoring required by this permit shall be done in accordance with sampling and analytical testing procedures specified in Federal Regulations (40 CFR Part 136).

2. Reporting

Beginning on the effective date of this permit, monitoring results obtained during the previous quarter shall be summarized and reported on Discharge Monitoring Report (DMR) Forms, postmarked no later than the 15th day of the month following the completed quarter as follows:

Quarter Testing	Report Due	Results Submitted
to be Performed	<u>No Later Than</u>	on DMR for
January 1 - March 31	April 15	January 1 - March 31
April 1 - June 30	July 15	April 1 - June 30
July 1 - September 30	October 15	July 1 - September 30
October 1 - December 31	January 15	October 1 - December 31

A signed copy of these, and all other reports required herein, shall be submitted to:

Rhode Island Department of Environmental Management RIPDES Program 235 Promenade Street Providence, Rhode Island 02908

- 3. Submittal of DMRs Using NetDMR
 - a. Within six (6) months of the effective date of this permit the permittee shall submit its monitoring data to DEM electronically using NetDMR. When the permittee begins submitting DMRs using NetDMR, it is no longer required to submit hard copies of DMRs to DEM.
 - b. Submittal of Reports as NetDMR Attachments

Unless otherwise specified in this permit, the permittee must submit electronic copies of documents in NetDMR that are directly related to the DMR. These include the following:

- DMR Cover Letters
- Below Detection Limit summary tables

All other reports should be submitted to DEM in hard copy form via regular US mail.

c. Submittal of Requests and Reports to DEM

The following requests, reports, and information described in this permit shall be submitted to the DEM as a hard copy via regular US mail:

- A. Transfer of Permit notice
- B. Request for changes in sampling location
- C. Request for reduction in testing frequency
- D. Request for change in chemical additive products or significantly adjusting the concentration of these pollutants.

These reports, information, and requests shall be submitted to DEM by hard copy mail to the following address:

RIPDES Program 235 Promenade Street Providence, RI 02908

d. Submittal of Reports in Hard Copy Form.

The following notifications and reports shall be submitted as hard copy with a cover letter describing the submission. These reports shall be signed and dated with originals submitted to DEM.

- A. Written notifications required under Part II;
- B. Notice of unauthorized discharges;
- C. Amendments to the SWPPP;

This information shall be submitted to DEM at the following address:

Rhode Island Department of Environmental Management RIPDES Program 235 Promenade Street Providence, Rhode Island 02908

e. Verbal Reports and Verbal Notifications

Any verbal reports or verbal notifications, if required in Parts I and/or II of this permit, shall be made to the DEM. This includes verbal reports and notifications which require reporting within 24 hours. (See Part II.(I)(5) General Requirements for 24-hour reporting). Verbal reports and verbal notifications shall be made to DEM at (401) 222-4700 or (401) 222-3070 at night.

RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES 235 PROMENADE STREET PROVIDENCE, RHODE ISLAND 02908-5767

STATEMENT OF BASIS

RHODE ISLAND POLLUTANT DISCHARGE ELIMINATION SYSTEM (RIPDES) PERMIT TO DISCHARGE TO WATERS OF THE STATE

RIPDES PERMIT NO.

RI000035

NAME AND ADDRESS OF APPLICANT:

Arkwright Advanced Coating, Inc. 538 Main Street Fiskeville, RI 02823

NAME AND ADDRESS OF FACILITY WHERE DISCHARGE OCCURS:

Arkwright Advanced Coating, Inc. 538 Main Street Fiskeville, RI 02823

RECEIVING WATER:

Pawtuxet River – North Branch (Water Body ID #: RI0006016R-06C)

CLASSIFICATION:

В

I. Proposed Action, Type of Facility, and Discharge Location

The above named applicant has applied to the Rhode Island Department of Environmental Management (DEM) for reissuance of a RIPDES Permit to discharge into the designated receiving water. The facility is engaged in the converting of plastic films and papers for imaging purposes. The discharges from the site are varied and consist of non-contact cooling water, cooling tower blowdown, air conditioner condensate, and stormwater.

Discharge Location

Outfall 002 discharges to an unnamed wetland tributary to the North Branch of the Pawtuxet River. All other outfalls discharge directly to the North Branch of the Pawtuxet River. The segment of the Pawtuxet River where the discharges occur is defined as water body identification number RI0006016R-06C according to the RI Water Quality Regulations. This particular segment begins at the Arkwright Dam and extends to the confluence of the North and South Branches of the Pawtuxet River at Riverpoint. This segment is a Class B water body and is designated as a warm water fishery according to the RI Water Quality Regulations. Water use classification "B" designates these waters for fish and wildlife habitat and primary and secondary contact recreational activities. They shall be suitable for compatible industrial processes and cooling, hydropower, aquacultural uses, navigation, and irrigation and other agricultural uses. These waters shall have good aesthetic value. According to the 2014 303(d) List of Impaired Waters, there are no existing water quality impairments that have been identified for this water body.

II. Permit Limitations and Conditions

The effluent limitations, monitoring requirements, and any implementation schedule (if required) may be found in the draft permit. Historic effluent data may be found in **Attachment A**.

Permit Basis and Explanation of Effluent Limitation Derivation

The Facility

111.

On September 28, 1978, a NPDES permit was first issued to Arkwright Incorporated authorizing the discharge to the Pawtuxet River from outfall 001. Since that time the facility has undergone many changes. The previous permit was issued on May 18, 2011 which authorized the discharge of stormwater with the potential for industrial exposure, non-contact cooling water, boiler blowdown, cooling tower blowdown, and air conditioner condensate. On January 9, 2013 the permit was formally modified establishing two new internal outfalls (100 and 200) and eliminating outfall 003. Outfall 100 is an internal outfall associated with the large cooling tower blowdown discharge location. Outfall 200 is also an internal outfall associated with the small cooling tower blowdown discharge location. Outfall 003 which was associated with a discharge of boiler blowdown was eliminated and removed from the permit. A summary of the remaining outfalls for which Arkwright is seeking permit coverage and their descriptions are provided in **Table 1**. In addition, the physical location of each of the outfalls in relation to the Arkwright facility are shown in the Site Layout contained in **Attachment B**.

Table 1

Outfall Number	Description
002	Air Conditioner Condensate & Stormwater
100	Cooling Tower Blowdown (Large Tower)
200	Cooling Tower Blowdown (Small Tower)
013	Non-Contact Cooling Water
009, 010, 011, 012	Stormwater

General Requirements

Development of RIPDES permit limitations is a multi-step process consisting of the following steps: identifying applicable technology-based limits; calculating allowable water-quality based discharge levels based on instream criteria, background data and available dilution; establishing Best Professional Judgement (BPJ) limits in accordance with Section 402 of the CWA; and assigning the most stringent as the final discharge limitations.

Water quality criteria are comprised of numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal. A technology-based limit is a numeric limit, which is determined by examining the capability of a treatment process to reduce or eliminate pollutants.

Appendix B of the Water Quality Regulations describes the flows used to determine compliance with the aquatic life criteria, specifying that the design flow to be utilized for aquatic life criteria shall not be exceeded at or above the lowest average 7 consecutive day low flow with an average recurrence frequency of once in 10 years (7Q10). For determination of the 7Q10 flow, data was taken from the analysis completed by the DEM in Appendix B of the 1999 Dissolved Oxygen Waste Load Allocation Strategy where variations in flow with respect to distance along the Pawtuxet River were calculated. The 7Q10 flow of 19.77 CFS was specifically calculated at the location of the Arkwright Dam on the Pawtuxet River. Using the specific low flow calculated at the Arkwright Dam on the Pawtuxet River a dilution factor was then determined for each outfall, and later used to establish the allowable water quality based discharge concentrations for each outfall, using the following equation:

$$DF = \frac{Q_D + Q_{dis.}}{Q_{dis.}}$$

Where: DF= Dilution FactorQD= Design Flow (Receiving Water 7Q10 Flow)Qdis.= Discharge Flow

Outfalls 100 and 200

The dilution factor was determined to be 2130. This is based on the maximum total discharge allowable from both cooling towers of 6000 GPD and a 7Q10 design flow of 19.77 cfs.

Outfall 013

The dilution factor was determined to be 405. Based on a design flow of 19.77 cfs and a maximum discharge flow of 0.049 cfs (31,500 gpd).

Water Quality Based Permit Limitations

Aquatic life criteria have been established to ensure the protection and propagation of aquatic life while human health criteria represent the pollutant levels that would not result in a significant risk to public health from ingestion of aquatic organisms. The more stringent of the two criteria was then used in establishing allowable effluent limitations. The allowable effluent limitations were established based on the non-class A freshwater acute and chronic aquatic life criteria and human health criteria specified in Appendix B of the Rhode Island Water Quality Regulations, as amended, using 80% allocation when no background data was available and 90% allocation when background data is available. Since there is no background data available, the allowable water quality-based discharge levels are set equal to 80% of the water quality criteria for Class B waters as listed in Appendix B of the Rhode Island Water Quality Regulations.

Water quality-based limitations were calculated as follows:

Background concentration unknown or available data is impacted by sources that have not yet achieved water quality based limits.

Limit = (DF)* (Criteria)*(80%)

The DEM examined the permit application data and DMR data reported for the monitoring period covering July 2005 to July 2010 to determine if any pollutants have reasonable potential to exceed the applicable permit limitations using the dilution factor of 2,130. A summary of applicable water quality based permit limits calculated using water quality criteria and dilution can be found in **Attachment C**. No effluent limitations were established based on the non-class A freshwater acute and chronic aquatic life criteria and human health criteria specified in Appendix B of the Rhode Island Water Quality Regulations due to the fact that for outfalls 009, 010, 011, 012, and 013 the permittee listed all toxic and conventional pollutants in the April 2016 reapplication as not believed present. Therefore there is no reasonable potential to violate Water Quality criteria and, for that reason, no limits have been assigned.

Conventional Pollutants

The effluent limitations for pH have been established in accordance with the Rhode Island Water Quality Regulations Table 1.8.D.(2) Class Specific Criteria –Class B Fresh Waters.

An effluent limitation for temperature has not been established due to the fact that the discharges do not have reasonable potential to violate the Rhode Island Water Quality Regulations in accordance with Table 1.8.D.(2) Class Specific Criteria – Class B Fresh Waters. When calculating the allowable maximum discharge temperature for outfalls 100, 200 and 013, the total maximum discharge flows were selected for use in the mass balance equation in **Attachment D**. Based on the results of the mass balance calculation a maximum discharge temperature of 212 degree F (the boiling point of water) at outfalls 100, 200, and 013 would not violate the water quality regulations for temperature. Therefore, there is no reasonable potential for the discharges from outfalls 100, 200, and 013 to violate water quality standards and as a result a daily maximum temperature limit has not been assigned.

Monitoring for Total Suspended Solids will be required at internal outfalls 100 and 200 on a monthly basis in order to establish a database of loadings for typical contaminants associated with cooling tower blowdown discharges.

The use of cooling tower treatment chemicals at the facility were approved for use based on the estimated wastestream concentrations provided by the permittee and the ecological toxicity information provided in the Material Safety Data Sheets associated with each treatment chemical. DEM conducted the toxicity evaluations based on end of pipe concentrations rather than considering dilution in order to use the most conservative approach when evaluating whether or not to authorize the use of the maintenance and treatment chemicals used that the Fiskeville, RI facility. Parts I.A.6-9 of the permit include specific restrictions and requirements regarding the use and management of cooling system maintenance chemicals.

Non – Contact Cooling Water

The monitoring requirements established for pH for outfall 013 are consistent with the 2013 Rhode Island Pollutant Discharge Elimination System General Permit for Non-Contact Cooling Water Discharges for discharges to fresh water warm water habitats with a dilution factor equal to or greater than fifteen.

Stormwater

In accordance with the RIPDES Regulations those facilities which fall within SIC 3081 are required to develop a Stormwater Pollution Prevention Plan (SWPPP). Therefore, SWPPP requirements have been included in the permit that are consistent with the 2013 RIPDES Multi-Sector Industrial Stormwater General Permit associated with Industrial Activity (MSGP) including Subpart Y – Sector Y – Rubber, Miscellaneous Plastic Products, and Miscellaneous Manufacturing Industries. The 2013 MSGP does not assign monitoring requirements for stormwater discharges associated with those industries who fall under SIC 3081 – Unsupported Paper & Plastic Films. Only those SIC codes between 3011, 3021, 3052, 303, 3061, and 3069 within Sector Y are required to meet numeric effluent limitations or are assigned benchmark monitoring requirements. Consistent with Sector Y of the 2013 MSGP, Arkwright's SWPPP is required to address the minimization of the discharge of plastic resin pellets in stormwater discharges. The SWPPP must include control measures to be considered for implementation (or their equivalents) which address minimizing spills, cleaning up of spills promptly and thoroughly, sweeping thoroughly, pellet capturing, employee education, and disposal precautions. Although this permit authorizes the discharge of stormwater from outfalls 002, 009, 010, 011, and 012 monitoring requirements are not proposed.

Anitbacksliding/Antidegradation

The Anitbacksliding Provision of the Clean Water Act (found at Section 402(o) and repeated at 40 CFR 122.44(I)) prohibits reissuing a permit containing less stringent effluent limits than the comparable limits from the previous permit. Since none of the permit limits, both concentration and mass loadings, are less stringent than in the previous permit, antibacksliding regulations are being met. The draft permit is being reissued with limitations as stringent or more stringent than those in the existing permit with no change to the outfall locations.

Selection of Final Permit Limits

The effluent monitoring requirements have been specified in accordance with RIPDES regulations as well as 40 CFR 122.41(j), 122.44(l), and 122.48 to yield data representative of the discharge. The Office has determined that all permit limitations are consistent with the Rhode Island Antidegradation Policy.

The remaining general and specific conditions of the permit are based on the RIPDES regulations as well as 40 CFR Parts 122 through 125 and consisting primarily of management requirements common to all permits.

IV. Comment Period, Hearing Requests, and Procedures for Final Decisions

All persons, including applicants, who believe any condition of the draft permit is inappropriate must raise all issues and submit all available arguments and all supporting material for their arguments in full by the close of the public comment period, to the Rhode Island Department of Environmental Management, Office of Water Resources, 235 Promenade Street, Providence, Rhode Island, 02908-5767. Any person, prior to such date, may submit a request in writing for a public hearing to consider the draft permit to the Rhode Island Department of Environmental Management. Such

requests shall state the nature of the issues proposed to be raised in the hearing. A public hearing may be held after at least thirty (30) days public notice whenever the Director finds that response to this notice indicates significant public interest. In reaching a final decision on the draft permit the Director will respond to all significant comments and make these responses available to the public at DEM's Providence Office.

Following the close of the comment period, and after a public hearing, if such hearing is held, the Director will issue a final permit decision and forward a copy of the final decision to the applicant and each person who has submitted written comments or requested notice. Within thirty (30) days following the notice of the final permit decision any interested person may submit a request for a formal hearing to reconsider or contest the final decision. Requests for formal hearings must satisfy the requirements of Rule 49 of the Regulations for the Rhode Island Pollutant Discharge Elimination System.

V. DEM Contact

Additional information concerning the permit may be obtained between the hours of 8:30 a.m. and 4:00 p.m., Monday through Friday, excluding holidays from:

Brian D. Lafaille, PE Senior Sanitary Engineer RIPDES Program Department of Environmental Management 235 Promenade Street Providence, Rhode Island 02908 Telephone: (401) 222-4700, ext. 7731

22/16

Jøseph B. Håberek, PE Principal Sanitary Engineer Office of Water Resources Department of Environmental Management

ATTACHMENT A

Note: Discharge data presented below reflects monitoring data submitted following Arkwright's relocation of the cooling tower blowdown discharges to the Pawtuxet River which was completed on March 27, 2014.

DESCRIPTION OF DISCHARGE:	Large Cooling Tower Blowdown
DISCHARGE:	100A

AVERAGE EFFLUENT CHARACTERISTICS AT POINT OF DISCHARGE OF SELECTED POLLUTANTS:

PARAMETER	AVERAGE ¹
FLOW (gal/day) - Daily Maximum	2850
pH (s.u.) – Minimum	7.7
pH (s.u.) – Maximum	7.7
Total Suspended Solids (mg/l) – Monthly Average	3.4
Total Suspended Solids (mg/l) – Daily Maximum	3.4

¹ Flow data represents the mean of the daily maximum values reported on a quarterly basis from the reporting period ending June 30, 2014 to June 30, 2015. pH data represents the mean of the minimum and maximum pH values reported on a quarterly basis from the reporting period ending June 30, 2014 to June 30, 2015. TSS data represents the mean of the monthly average and daily maximum values reported on a quarterly basis from the reporting period ending June 30, 2015. TSS data represents the mean of the monthly average and daily maximum values reported on a quarterly basis from the reporting period ending June 30, 2014 to June 30, 2015. There was no discharge from outfall 100A from June 30, 2015 to March 31, 2016.

DESCRIPTION OF DISCHARGE:	Small Cooling Tower Blowdown
DISCHARGE:	200A

AVERAGE EFFLUENT CHARACTERISTICS AT POINT OF DISCHARGE OF SELECTED POLLUTANTS:

PARAMETER	AVERAGE ¹
FLOW (gal/day) - Daily Maximum	2867
pH (s.u.) – Minimum	7.1
pH (s.u.) – Maximum	7.5
Total Suspended Solids (mg/l) – Monthly Average	9.0
Total Suspended Solids (mg/l) – Daily Maximum	9.9

¹ Flow data represents the mean of the daily maximum values reported on a quarterly basis from the reporting period ending June 30, 2014 to March 31, 2015. pH data represents the mean of the minimum and maximum pH values reported on a quarterly basis from the reporting period ending June 30, 2014 to March 31, 2015. TSS data represents the mean of the monthly average and daily maximum values reported on a quarterly basis from the reporting June 30, 2014 to March 31, 2015. TSS data represents the mean of the monthly average and daily maximum values reported on a quarterly basis from the reporting period ending June 30, 2014 to March 31, 2015. There was no discharge from outfall 200A from the reporting period ending March 31, 2015 to March 31, 2016.

DESCRIPTION OF DISCHARGE: DISCHARGE:

Non-Contact Cooling Water 013A

No Discharge from the reporting period ending June 30, 2014 to March 31, 2016.

DESCRIPTION	OF	DISCHARGE:
DISCHARGE:		

Stormwater and Air Conditioner Condensate 002

Monitoring was not required for this outfall.

DESCRIPTION OF DISCHARGE: DISCHARGE: Stormwater 009, 010, 011, and 012

Monitoring not required for these outfalls.

ATTACHMENT B

Facility Site Layout

Arkwright Advanced Coating, INC, Coventry, RI Linch = 250 feet

Source: 1) USGS High Resolution Ortholmagery Providence, RI

Figure

1

04/08/2016

ATTACHMENT C

Water Quality Based Permit Limit Development

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS FACILITY SPECIFIC DATA INPUT SHEET NOTE: LIMITS BASED ON RI WATER QUALITY CRITERIA DATED JULY 2006

	DISSOLVED	ACUTE	CHRONIC
	BACKGROUND	METAL	METAL
	DATA (ug/L)	TRANSLATOR	TRANSLATOR
ALUMINUM	NA	NA	NA
ARSENIC	NA	1	1
CADMIUM	NA	1.002000673	0.967000673
CHROMIUM III	NA	0.316	0.86
CHROMIUM VI	NA	0.982	0.962
COPPER	NA	0.96	0.96
LEAD	NA	0.993001166	0.993001166
MERCURY	NA	0.85	0.85
NICKEL	NA	0.998	0.997
SELENIUM	NA	NA	NA
SILVER	NA	0.85	NA
ZINC	NA	0.978	0.986
AMMONIA (as N)	NA		

FACILITY NAME: Arkwright Advanced Coating

RIPDES PERMIT #: RI0000035

FLOW D	ATA
DESIGN FLOW =	0.006 MGD
	0.009 CFS
7Q10 FLOW =	19.770 CFS
7Q10 (JUNE-OCT) =	19.770 CFS
7Q10 (NOV-MAY) =	19.770 CFS
30Q5 FLOW =	19.770 CFS
HARMONIC FLOW =	19.770 CFS

DILUTION F	ACTORS
ACUTE =	2130.466
CHRONIC =	2130.466
(MAY-OCT) =	2130.466
(NOV-APR) =	2130.466
30Q5 FLOW =	2130.466
HARMONIC FLOW =	2130.466

USE NA WHEN NO DATA IS AVAILABLE NOTE 1: METAL TRANSLATORS FROM RI WATER QUALITY REGS.

pH =	7.5 S.U.
HARDNESS =	25.0 (mg/L as CaCO3)

Water Quality Based Effluent Limits - Freshwater

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT # RI0000035

FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI0000035 NOTE: METALS CRITERIA ARE EXPRESSED AS DISSOLVED, METALS LIMITS ARE EXPRESSED AS TOTAL

_		BACKGROUND	FRESHWATER		FRESHWATER	HUMAN HEALTH	
CHEMICAL NAME	CAS#	CONCENTRATION				NON-CLASS A	MONTHLY AVE
		(ua/L)				CRITERIA	
PRIORITY POLLUTANTS	Real Price	(-9, -)	(ugre)	(49/1)		(ug/L)	(ug/L)
TOXIC METALS AND CYANIDE	agent of the						
ANTIMONY	7440360		450	766067 8464	10	640	47042 70000
ARSENIC (limits are total recoverable)	7440382	NA	340	579486 8173	150	1 4	17043.72992
ASBESTOS	1332214			No Criteria	150	1.4	2300.122109
BERYLLIUM	7440417		7.5	12782 79744	0.17	1	
CADMIUM (limits are total recoverable)	7440439	NA	0 522206507	888 2575538	0.03606824		209.7434060
CHROMIUM III (limits are total recoverable)	16065831	NA	183 0659069	987381 6061	23 81311227		100.1439/08
CHROMIUM VI (limits are total recoverable)	18540299	NA	16	27769 82472	11		47 193.52009
COPPER (limits are total recoverable)	7440508	NA	3 640069619	6462 537863	2 730313654	*	19400.07247
CYANIDE	57125		22	37496 20582	5.2	140	4003.340031
LEAD (limits are total recoverable)	7439921	NA	13.88217279	23827 16274	0.540968344	140	0002.739000
MERCURY (limits are total recoverable)	7439976	NA	1.4	2807 202575	0.040300044	0.15	920.0103247 200 7717045
NICKEL (limits are total recoverable)	7440020	NA	144,9178377	247489 0267	16 09589771	4600	300.77.17043
SELENIUM (limits are total recoverable)	7782492	NA	20	34087 45984	5	4000	27515.90122 9521.96406
SILVER (limits are total recoverable)	7440224	NA	0.31788916	637,413763	NA	7200	No Criteria
THALLIUM	7440280		46	78401.15763	1	0.47	801 0553062
ZINC (limits are total recoverable)	7440666	. NA	36.20176511	63089,27475	36 49789406	26000	63089 27475
VOLATILE ORGANIC COMPOUNDS						20000	00008.21410
ACROLEIN	107028	an ann an tha	2.9	4942.681677	0.06	290	102 2623705
ACRYLONITRILE	107131		378	644252,991	84	25	4260 03248
BENZENE	71432		265	451658,8429	5.9	510	10055 80065
BROMOFORM	75252		1465	2496906,433	33	1400	56244 30874
CARBON TETRACHLORIDE	56235		1365	2326469.134	30	16	27269 96787
CHLOROBENZENE	108907		795	1354976.529	18	1600	30678 71386
CHLORODIBROMOMETHANE	124481		10 10000	No Criteria	10	130	221568 480
CHLOROFORM	67663		1445	2462818,973	32	4700	54530 03574
DICHLOROBROMOMETHANE	75274		N N Y	No Criteria		170	2807/3 /086
1,2DICHLOROETHANE	107062		5900	10055800.65	131	370	203740.4000
1,1DICHLOROETHYLENE	75354		580	988536.3354	13	7100	22156 8480
1,2DICHLOROPROPANE	78875		2625	4473979,104	58	150	08853 63354
1,3DICHLOROPROPYLENE	542756			No Criteria		21	35791 83283
ETHYLBENZENE	100414		1600	2726996,787	36	2100	61357 42771
BROMOMETHANE (methyl bromide)	74839			No Criteria		1500	2556550 /88
CHLOROMETHANE (methyl chloride)	74873	5 5		No Criteria		1000	No Criteria
METHYLENE CHLORIDE	75092		9650	16447199.37	214	5900	364735.8203

R10000035 Attachment C

Water Quality Based Effluent Limits - Freshwater

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS

FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI0000035 NOTE: METALS CRITERIA ARE EXPRESSED AS DISSOLVED, METALS LIMITS ARE EXPRESSED AS TOTAL

	26	2 23.	FRESHWATER		FRESHWATER	HUMAN HEALTH	
		BACKGROUND	CRITERIA	DAILY MAX	CRITERIA	NON-CLASS A	MONTHLY AVE
CHEMICAL NAME	CAS #	CONCENTRATION	ACUTE	LIMIT	CHRONIC	CRITERIA	LIMIT
	<u> </u>	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
1,1,2,2TETRACHLOROETHANE	79345		466	794237.8143	10	40	17043.72992
TETRACHLOROETHYLENE	127184		240	409049.5181	5.3	33	9033,176858
TOLUENE	108883		635	1082276.85	14	15000	23861.22189
1,2TRANSDICHLOROETHYLENE	156605			No Criteria		10000	17043729.92
1,1,1TRICHLOROETHANE	71556			No Criteria			No Criteria
1,1,2TRICHLOROETHANE	79005		900	1533935.693	20	160	34087.45984
TRICHLOROETHYLENE	79016		1950	3323527.334	43	300	73288.03866
VINYL CHLORIDE	75014			No Criteria		2.4	4090.495181
ACID ORGANIC COMPOUNDS	and a second						
2CHLOROPHENOL	95578		129	219864.116	2.9	150	4942.681677
2,4DICHLOROPHENOL	120832		101	172141.6722	2.2	290	3749.620582
2,4DIMETHYLPHENOL	105679		106	180663.5372	2.4	850	4090.495181
4,6DINITRO2METHYL PHENOL	534521	-		No Criteria		280	477224.4378
2,4DINITROPHENOL	51285		31	52835.56275	0.69	5300	1176.017364
4NITROPHENOL	88755			No Criteria			No Criteria
PENTACHLOROPHENOL	87865		0.058191123	99.17937815	0.044644576	30	76.09100903
PHENOL	108952		251	427797.621	5.6	1700000	9544.488755
2,4,6TRICHLOROPHENOL	88062		16	27269.96787	0.36	24	613.5742771
BASE NEUTRAL COMPUNDS							
ACENAPHTHENE	83329		85	144871.7043	1.9	990	3238.308685
ANTHRACENE	120127			No Criteria		40000	68174919.68
BENZIDINE	92875			No Criteria		0.002	3.408745984
POLYCYCLIC AROMATIC HYDROCARBONS				No Criteria		0.18	306.7871386
BIS(2CHLOROETHYL)ETHER	111444			No Criteria		5.3	9033.176858
BIS(2CHLOROISOPROPYL)ETHER	108601	10		No Criteria		65000	110784244.5
BIS(2ETHYLHEXYL)PHTHALATE	117817		555	945927.0106	12	22	20452.4759
BUTYL BENZYL PHTHALATE	85687		85	144871.7043	1.9	1900	3238.308685
2CHLORONAPHTHALENE	91587			No Criteria		1600	2726996.787
1,2DICHLOROBENZENE	95501		79	134645.4664	1.8	1300	3067.871386
1,3DICHLOROBENZENE	541731		390	664705.4669	8.7	960	14828.04503
1,4DICHLOROBENZENE	106467		56	95444.88755	1.2	190	2045,24759
3,3DICHLOROBENZIDENE	91941			No Criteria	And Accord	0.28	477.2244378
DIETHYL PHTHALATE	84662		2605	4439891.644	58	44000	98853.63354
DIMETHYL PHTHALATE	131113		1650	2812215.437	37	1100000	63061.8007
DI-n-BUTYL PHTHALATE	84742	2		No Criteria		4500	7669678.464
2,4DINITROTOLUENE	121142		1550	2641778.138	34	34	57948.68173

Water Quality Based Effluent Limits - Freshwater

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS

FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI0000035 NOTE: METALS CRITERIA ARE EXPRESSED AS DISSOLVED, METALS LIMITS ARE EXPRESSED AS TOTAL

			FRESHWATER		FRESHWATER	HUMAN HEALTH	
		BACKGROUND	CRITERIA	DAILY MAX	CRITERIA	NON-CLASS A	MONTHLY AVE
	CAS #	CONCENTRATION	ACUTE	LIMIT	CHRONIC	CRITERIA	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ua/L)
1,2DIPHENYLHYDRAZINE	122667		14	23861.22189	0.31	2	528 3556275
FLUORANTHENE	206440		199	339170.2254	4.4	140	7499 241165
	86737	0		No Criteria		5300	9033176 858
HEXACHLOROBENZENE	118741			No Criteria		0 0029	4 942681677
HEXACHLOROBUTADIENE	87683			No Criteria		180	306787 1386
HEXACHLOROCYCLOPENTADIENE	77474		0.35	596.5305472	0.008	1100	13 63498394
HEXACHLOROETHANE	67721		49	83514.27661	1.1	33	1874 810201
ISOPHORONE	78591		5850	9970582.003	130	00	221568 480
NAPHTHALENE	91203	87	115	196002.8941	26	3000	AA31 360770
NITROBENZENE	98953		1350	2300903,539	30	600	51121 19076
N-NITROSODIMETHYLAMINE	62759			No Criteria		30	51131.10970
N-NITROSODI-N-PROPYLAMINE	621647			No Criteria		51	8602 202250
N-NITROSODIPHENYLAMINE	86306		293	499381,2867	6.5	60	11079 42445
PYRENE	129000		5142 3. 57 J = 9	No Criteria	0.0	4000	6817401 069
1,2,4trichlorobenzene	120821		75	127827,9744	17		2807 424096
PESTICIDES/PCBs					Next All All All All	Photos and a state of the	2097.404000
ALDRIN	309002		3	5113,118976		0.0005	0.852186406
Alpha BHC	319846			No Criteria		0.0005	0.002100490
Beta BHC	319857			No Criteria		0.049	03.3142/001
Gamma BHC (Lindane)	58899		0.95	1619 154342		0.17	209.7434000
CHLORDANE	57749	1	24	4000 405181	0.0042	0.0004	3007.071300
4,4DDT	50293		11	1874 810201	0.0043	0.0081	7.328803866
4,4DDE	72559			No Criterio	0.001	0.0022	1.704372992
4,4DDD	72548			No Criteria		0.0022	3.749620582
DIELDRIN	60571	10	0.24	100 0105191	0.056	0.0031	5.283556275
ENDOSULFAN (alpha)	959988		0.24	374 0620592	0.050	0.00054	0.920361416
ENDOSULFAN (beta)	33213659		0.22	374.9020302	0.050	89	95.44488755
ENDOSULFAN (sulfate)	1031078		0.22	No Criterio	0.050	89	95.44488755
ENDRIN	72208		0.086	146 5760772	0.000	89	151689.1963
ENDRIN ALDEHYDE	7421934		0.000	140.5700773	0.036	0.06	61.35742771
HEPTACHLOR	76448		0.52	NO CITERIA	0.0000	0.3	511.3118976
HEPTACHLOR EPOXIDE	1024573		0.52	000.2739550	0.0038	0.00079	1.346454664
POLYCHLORINATED BIPHENYLS3	1336363		0.52	000.2739558	0.0038	0.00039	0.664705467
2,3,7,8TCDD (Dioxin)	1746016			No Criteria	0.014	0.00064	1.090798715
TOXAPHENE	8001352		0.72	No Criteria	0.0000	0.000000051	8.6923E-05
TRIBUTYLTIN	0001002		0.75	1244.192284	0.0002	0.0028	0.340874598
			0.40	/84.0115/63	0.072		122.7148554

. RI0000035 Attachment C

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI0000035 NOTE: METALS CRITERIA ARE EXPRESSED AS DISSOLVED, METALS LIMITS ARE EXPRESSED AS TOTAL FACILITY NAME:

			FRESHWATER		FRESHWATER	HUMAN HEALTH	- 10
		BACKGROUND	CRITERIA	DAILY MAX	CRITERIA	NON-CLASS A	MONTHLY AVE
CHEMICAL NAME	CAS #	CONCENTRATION	ACUTE	LIMIT	CHRONIC	CRITERIA	LIMIT
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	· (ug/L)	(ug/L)
NON PRIORITY POLLUTANTS:	ALC: NO.			Constanting			
OTHER SUBSTANCES	a start in the					and the second	
ALUMINUM (limits are total recoverable)	7429905	NA	750	1278279.744	87		148280 4503
AMMONIA as N(winter/summer)	7664417		10.1 10.1	2E+07 2E+07	1.46 1.46		2488385 2488385
4BROMOPHENYL PHENYL ETHER			18	30678,71386	0.4	-	681 7491968
CHLORIDE	16887006		860000	1465760773	230000		392005788.2
CHLORINE	7782505	9	19	40478.85856	11		23435 12864
4CHLORO2METHYLPHENOL			15	25565,59488	0.32		545 3993574
1CHLORONAPHTHALENE			80	136349.8394	1.8		3067 871386
4CHLOROPHENOL	106489		192	327239.6145	4.3		7328 803866
2,4DICHLORO6METHYLPHENOL	10		22	37496.20582	0.48		818 0990362
1,1DICHLOROPROPANE			1150	1960028.941	26		44313 69779
1,3DICHLOROPROPANE	142289		303	516425.0166	6.7		11419 29905
2,3DINITROTOLUENE		22	17	28974.34086	0.37		630 618007
2,4DINITRO6METHYL PHENOL			12	20452,4759	0.26		443 1369779
IRON	7439896		5453	No Criteria	1000		1704372 992
pentachlorobenzene	608935		13	22156,8489	0.28		477 2244378
PENTACHLOROETHANE			362	616983.0231	8		13634 98394
1,2,3,5tetrachlorobenzene			321	547103.7304	7.1		12101 04824
1,1,1,2TETRACHLOROETHANE	630206		980	1670285.532	22		37496 20582
2,3,4,6TETRACHLOROPHENOL	58902		7	11930 61094	0.16		272 6006787
2,3,5,6TETRACHLOROPHENOL			8.5	14487 17043	0.10	2	323 8308685
2,4,5TRICHLOROPHENOL	95954		23	39200.57882	0.51		869 2302250
2,4,6TRINITROPHENOL	88062		4235	7218019.621	94		160211 0612
XYLENE	1330207		133	226681.6079	3		5113.118976

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI8675309

		DAILY MAX	MONTHLY AVE			DAILY MAX	MONTHLY AVE
CHEMICAL NAME	CAS#	LIMIT	ĻIMIT	CHEMICAL NAME	CAS#	LIMIT	LIMIT
		(ug/L)	(ug/L)			(ug/L)	(ug/L)
PRIORITY POLLUTANTS	STREET, MAN		Charles in Second	TETRACHLOROETHYLENE	127184	409049.52	9033.18
TOXIC METALS AND CYANIDE		Party March J		TOLUENE	108883	1082276.85	23861.22
ANTIMONY	7440360	766967.85	17043.73	1,2TRANSDICHLOROETHYLENE	156605	No Criteria	17043729.92
ARSENIC, TOTAL	7440382	579486.82	2386.12	1,1,1TRICHLOROETHANE	71556	No Criteria	0.00000
ASBESTOS	1332214	No Criteria	0.00000	1,1,2TRICHLOROETHANE	79005	1533935.69	34087.46
BERYLLIUM	7440417	12782.80	289.74	TRICHLOROETHYLENE	79016	3323527.33	73288.04
CADMIUM, TOTAL	7440439	888.26	165.14398	VINYL CHLORIDE	75014	No Criteria	4090.50
CHROMIUM III, TOTAL	16065831	987381.61	47193.52	ACID ORGANIC COMPOUNDS			
CHROMIUM VI, TOTAL	18540299	27769.82	19488.67	2CHLOROPHENOL	95578	219864.12	4942.68
COPPER, TOTAL	7440508	6462.54	4863.35	2.4DICHLOROPHENOL	120832	172141.67	3749.62
CYANIDE	57125	37496.21	8862.74	2.4DIMETHYLPHENOL	105679	180663 54	4090.50
LEAD, TOTAL	7439921	23827.16	928.51	4.6DINITRO2METHYL PHENOL	534521	No Criteria	477224 44
MERCURY, TOTAL	7439976	2807.20	300.77	2.4DINITROPHENOL	51285	52835 56	1176.02
NICKEL, TOTAL	7440020	247489.03	27515.96	4NITROPHENOL	88755	No Criteria	
SELENIUM, TOTAL	7782492	34087.46	8521.86	PENTACHLOROPHENOL	87865	99 18	76 09101
SILVER, TOTAL	7440224	.637.41	No Criteria	PHENOL	108952	427797 62	9544 49
THALLIUM	7440280	78401.16	801.06	2.4.6TRICHLOROPHENOL	88062	27269 97	613 57
ZINC, TOTAL	7440666	63089.27	63089.27	BASE NEUTRAL COMPUNDS	and a second		
VOLATILE ORGANIC COMPOUNDS				ACENAPHTHENE	83329	144871.70	3238 31
ACROLEIN	107028	4942.68	102.26238	ANTHRACENE	120127	No Criteria	68174919 68
ACRYLONITRILE	107131	644252.99	4260.93	BENZIDINE	92875	No Criteria	3 40875
BENZENE	71432	451658.84	10055.80	PAHs		No Criteria	306 79
BROMOFORM	75252	2496906.43	56244.31	BIS(2CHLOROETHYL)ETHER	111444	No Criteria	9033-18
CARBON TETRACHLORIDE	56235	2326469.13	27269.97	BIS(2CHLOROISOPROPYL)FTHER	108601	No Criteria	110784244 48
CHLOROBENZENE	108907	1354976.53	30678.71	BIS(2ETHYLHEXYL)PHTHALATE	117817	945927 01	20452 48
CHLORODIBROMOMETHANE	124481	No Criteria	221568.49	BUTYL BENZYL PHTHALATE	85687	144871 70	3238 31
CHLOROFORM	67663	2462818.97	54539.94	2CHLORONAPHTHALENE	01587	No Criteria	2726006 70
DICHLOROBROMOMETHANE	75274	No Criteria	289743.41	1 2DICHLOROBENZENE	95501	134645 47	2120990.19
1,2DICHLOROETHANE	107062	10055800.65	223272.86	1 3DICHLOROBENZENE	541731	664705 47	14929.05
1,1DICHLOROETHYLENE	75354	988536.34	22156.85	1 4DICHLOROBENZENE	106467	004703.47	2045.25
1,2DICHLOROPROPANE	78875	4473979.10	98853.63	3 3DICHLOROBENZIDENE	01041	No Criteria	2040.20
1,3DICHLOROPROPYLENE	542756	No Criteria	35791.83	DIFTHYL PHTHALATE	84662	4430801 64	98853.63
ETHYLBENZENE	100414	2726996.79	61357.43	DIMETHYL PHTHALATE	131113	2812215 44	63061.80
BROMOMETHANE (methyl bromide)	74839	No Criteria	2556559,49	DI-n-BUTYL PHTHALATE	84742	No Criteria	7669678.46
CHLOROMETHANE (methyl chloride)	74873	No Criteria	0.00000	2 4DINITROTOLUENE	121142	26/1778 1/	570/8 68
METHYLENE CHLORIDE	75092	16447199.37	364735.82	1 2DIPHENYI HYDRAZINE	122667	2041770.14	529.26
1,1,2,2TETRACHLOROETHANE	79345	794237.81	17043.73	FLUORANTHENE	206440	23001.22	7400.24
					2007701	333110.231	(433.24)

. RI0000035 Attachment C

CALCULATION OF WATER QUALITY BASED NON-CLASS AA FRESHWATER DISCHARGE LIMITS FACILITY NAME: Arkwright Advanced Coating RIPDES PERMIT #: RI8675309

		DAILY MAX	MONTHLY AVE
CHEMICAL NAME	CAS#	LIMIT	LIMIT
		(ug/L)	(ug/L)
LUORENE	86737	No Criteria	9033176.86
EXACHLOROBENZENE	118741	No Criteria	4.94268
IEXACHLOROBUTADIENE	87683	No Criteria	306787.14
EXACHLOROCYCLOPENTADIENE	77474	596.53	13.63498
EXACHLOROETHANE	67721	83514.28	1874.81
SOPHORONE	78591	9970582.00	221568.49
APHTHALENE	91203	196002.89	4431.37
NITROBENZENE	98953	2300903.54	51131.19
I-NITROSODIMETHYLAMINE	62759	No Criteria	51131.19
I-NITROSODI-N-PROPYLAMINE	621647	No Criteria	8692.30
I-NITROSODIPHENYLAMINE	86306	499381.29	11078.42
YRENE	129000	No Criteria	6817491.97
,2,4trichlorobenzene	120821	127827.97	2897.43
ESTICIDES/PCBs			
LDRIN	309002	5113.12	0.85219
Npha BHC	319846	No Criteria	83.51
Beta BHC	319857	No Criteria	289.74
amma BHC (Lindane)	58899	1619.15	1619.15
HLORDANE	57749	4090.50	7.32880
,4DDT	50293	1874.81	1.70437
,4DDE	72559	No Criteria	3.74962
,4DDD	72548	No Criteria	5.28356
DIELDRIN	60571	409.05	0.92036
NDOSULFAN (alpha)	959988	374.96	95.44489
NDOSULFAN (beta)	33213659	374.96	95.44489
NDOSULFAN (sulfate)	1031078	No Criteria	151689.20
NDRIN	72208	146.58	61.36
NDRIN ALDEHYDE	7421934	No Criteria	511.31
IEPTACHLOR	76448	886.27	1.35
EPTACHLOR EPOXIDE	1024573	886.27	0.66
OLYCHLORINATED BIPHENYLS3	1336363	No Criteria	1.09
,3,7,8TCDD (Dioxin)	1746016	No Criteria	0.00
OXAPHENE	8001352	1244.19	0.34
RIBUTYLTIN		784.01	122.71

		DAILY MAX	MONTHLY AVE
CHEMICAL NAME	CAS#	LIMIT	LIMIT
		(ug/L)	(ug/L)
NON PRIORITY POLLUTANTS.			
OTHER SUBSTANCES			
ALUMINUM, TOTAL	7429905	1278279.74	148280.45
AMMONIA (as N), WINTER (NOV-AP	7664417	17214167.22	2488384.57
AMMONIA (as N), SUMMER (MAY-OC	7664417	17214167.22	2488384.57
4BROMOPHENYL PHENYL ETHER		30678.71	681.75
CHLORIDE	16887006	1465760773.12	392005788.16
CHLORINE	7782505	40478.86	23435.13
4CHLORO2METHYLPHENOL		25565.59	545.40
1CHLORONAPHTHALENE	_	136349.84	3067.87
4CHLOROPHENOL	106489	327239.61	7328.80
2,4DICHLORO6METHYLPHENOL		37496.21	818.10
1,1DICHLOROPROPANE		1960028.94	44313.70
1,3DICHLOROPROPANE	142289	516425.02	11419.30
2,3DINITROTOLUENE	20 20	28974.34	630.62
2,4DINITRO6METHYL PHENOL		20452.48	443.14
IRON	7439896	No Criteria	1704372.99
pentachlorobenzene	608935	22156.85	477.22
PENTACHLOROETHANE		616983.02	13634.98
1,2,3,5tetrachlorobenzene		547103.73	12101.05
1,1,1,2TETRACHLOROETHANE	630206	1670285.53	37496.21
2,3,4,6TETRACHLOROPHENOL	58902	11930.61	272.70
2,3,5,6TETRACHLOROPHENOL		14487.17	323.83
2,4,5TRICHLOROPHENOL	95954	39200.58	869.23
2,4,6TRINITROPHENOL	88062	7218019.62	160211.06
XYLENE	1330207	226681.61	5113.12

Flow:

Receiving Water – Pawtuxet River 7Q10 @ Arkwright Dam = 12.7 MGD Outfalls 100, 200, and 013 - Daily Maximum Limit = (3,000 GPD + 3,000 GPD + 31,500 GPD) or 0.0375 MGD.

Temperature:

Outfall 013 – Proposed Temperature Limit = 212 °F Instream Temperature - Summer = 72 °F Instream Temperature - Winter = 36 °F

Water Quality Limits:

Net Instream Temperature Change - Winter = 4.0 °F Net Instream Temperature Change - Summer = 4.0 °F

Mass Balance:

 $Q_{max}(T_{limit}) + Q_{7Q10}(T_{instream}) = (Q_{max} + Q_{7Q10})(T_{instream} + \Delta T)$

Where: Q_{max} = Daily Maximum Limit @ Outfall 001A Q_{7Q10} = Low Flow for Pawtuxet River @ Arkwright Dam T_{limit} = Proposed Permit Limit for Temperature $T_{instream}$ = Instream Ambient Temperature ΔT = Net Change in Temperature

Case 1 - Summer Months

 $(0.0375 \text{ MGD})(212^{\circ}\text{F}) + (12.7 \text{ MGD})(72^{\circ}\text{F}) = (0.0375 \text{ MGD} + 12.7 \text{ MGD})(72^{\circ}\text{F} + \Delta \text{T})$

 $\Delta T = 0.41 \text{ }^{\circ}\text{F} \le 4.0 \text{ }^{\circ}\text{F}$ - Proposed limit increase meets Water Quality Regulations.

Case 2 - Winter Months

 $(0.0375 \text{ MGD})(212 \text{ }^{\circ}\text{F}) + (12.7 \text{ MGD})(36 \text{ }^{\circ}\text{F}) = (0.0375 \text{ MGD} + 12.7 \text{ MGD})(36 \text{ }^{\circ}\text{F} + \Delta\text{T})$

 $\Delta T = 0.52 \text{ }^{\circ}\text{F} \le 4.0 \text{ }^{\circ}\text{F}$ - Proposed limit increase meets Water Quality Regulations.

RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES PERMITS SECTION 235 PROMENADE STREET PROVIDENCE, RHODE ISLAND 02908-5767

PUBLIC NOTICE OF PROPOSED PERMIT ACTIONS UNDER THE RHODE ISLAND POLLUTANT DISCHARGE ELIMINATION SYSTEM (RIPDES) PROGRAM WHICH REGULATES DISCHARGES INTO THE WATERS OF THE STATE UNDER CHAPTER 46-12 OF THE RHODE ISLAND GENERAL LAWS OF 1956, AS AMENDED.

DATE OF NOTICE: August 29, 2016

PUBLIC NOTICE NUMBER: PN16-04

DRAFT RIPDES PERMITS

RIPDES PERMIT NUMBER: RI0000035

NAME AND MAILING ADDRESS OF APPLICANT:

Arkwright Advanced Coating Incorporated 538 Main Street Fiskeville, RI 02823

NAME AND ADDRESS OF FACILITY WHERE DISCHARGE OCCURS:

Arkwright Advanced Coating Incorporated 538 Main Street Fiskeville, RI 02823

В

RECEIVING WATER: Pawtuxet River – North Branch

RECEIVING WATER CLASSIFICATION:

The facility which is the source of the wastewater discharge is engaged in the converting of plastic films and papers for imaging purposes. This facility has applied for the reissuance of its RIPDES permit to discharge into the designated waters of the state. The discharges from the site are varied and consist of non-contact cooling water, cooling tower blowdown, air conditioner condensate, and stormwater. The permit includes limits to ensure that the discharge will not cause water quality violations.

RIPDES PERMIT NUMBER: RI0023841

NAME AND MAILING ADDRESS OF APPLICANT:

Stone Bridge Fire District 1761 Main Road Tiverton, RI 02878

PN16-04

NAME AND ADDRESS OF FACILITY WHERE DISCHARGE OCCURS:

Stone Bridge Fire District Water Treatment Plant Quintal Drive Tiverton, RI 02878

RECEIVING WATER: Stafford Pond

RECEIVING WATER CLASSIFICATION: AA

The facility which is the source of the wastewater discharge, is engaged in the production of potable water for the Town of Tiverton. The facility also sells water to the Town of Portsmouth. This facility has applied for the reissuance of its RIPDES permit to discharge into the designated waters of the state. The proposed draft permit authorizes the Stone Bridge Fire District to discharge emergency overflows from the clearwell via outfall 001 only. Such discharges will only occur during emergency situations and are temporary in nature. Flow monitoring is required during emergency conditions and such discharges must only take place in accordance with the facility's approved Standard Operating Procedure. Since discharges will only occur during emergencies, no other limits have been included in the proposed permit.

FURTHER INFORMATION:

A statement of basis (describing the type of facility and significant factual, legal and policy questions considered in these permit actions) may be obtained at no cost by writing or calling DEM as noted below:

Brian Lafaille, PE Rhode Island Department of Environmental Management Office of Water Resources Permits Section 235 Promenade Street Providence, Rhode Island 02908-5767 (401) 222-4700 ext. 7731

The administrative record containing all documents relating to these permit actions is on file and may be inspected, by appointment, at the DEM's Providence office mentioned above between 8:30 a.m. and 4:00 p.m., Monday through Friday, except holidays.

PUBLIC COMMENT AND REQUEST FOR PUBLIC HEARING:

Pursuant to Chapter 42-17.4 of the Rhode Island General Laws a public hearing has been scheduled to consider these permits if requested. Requests for a Public Hearing must be submitted in writing to the attention of Brian Lafaille at the address indicated above. Notice should be taken that if DEM receives a request from twenty-five (25) people, a governmental agency or subdivision, or an association having no less than twenty-five (25) members on or before 4:00 PM, September 30, 2016, a public hearing will be held at the following time and place:

October 5, 2016 at 5:00 PM Room 280 235 Promenade Street Providence, Rhode Island 02908

Interested persons should contact DEM to confirm if a hearing will be held at the time and location noted above.

235 Promenade Street is accessible to the handicapped. Individuals requesting communication assistance (assistive listening devices/readers/interpreters/captions) must notify the D.E.M. at the telephone number listed above or at 831-5508 (T.D.D.) 48 hours in advance of the hearing date.

Interested parties may submit comments on the permit actions and the administrative record to the address above no later than 4:00 PM on October 6, 2016.

If, during the public comment period, significant new questions are raised concerning the permit, DEM may require a new draft permit or statement of basis or may reopen the public comment period. A public notice will be issued for any of these actions.

Any person, including the permittee/applicant, who believes these permit actions are inappropriate, must raise all reasonably ascertainable issues and submit all reasonably available arguments and factual grounds supporting their position, including all supporting material, by the close of the public comment period under Rule 41. The public comment period is from August 29, 2016 to October 6, 2016. Commenters may request a longer comment period if necessary to provide a reasonable opportunity to comply with these requirements. Comments should be directed to DEM as noted above.

FINAL DECISION AND APPEALS:

Following the close of the comment period, and after a public hearing, if such hearing is held, the Director will issue a final decision and forward a copy of the final decision to the permittee and each person who has submitted written comments or requested notice. Within 30 days following the notice of the final decision, any interested person may submit a request for a formal hearing in accordance with the requirements of Rule 49.

-22-2016

alla S

Eric A. Beck, P.E. Supervising Sanitary Engineer Permits Section, Office of Water Resources Department of Environmental Management