

PRESENTATION OBJECTIVES:

Presentation Focus:

• Emissions profile of CHP integrated in a microgrid with renewable systems

Purpose:

• Quantify the environmental benefits of multiple clean energy projects in a microgrid

Approach Taken:

- Case study approach
 - Documented technology and operational characteristics based on project profiles for two microgrid applications
- Emissions estimator tool (CHPP's Emissions Calculator)
 - Entered documented microgrid project metrics into the CHP Emissions Calculator to determine the emissions profile + savings

Introduction: CHP and Microgrids

- Due to resiliency benefits and emerging incentive programs in Connecticut, New York, California, and other states, microgrids are starting to gain traction
- According to GTM Research, CHP is the most commonly deployed technology for microgrids
 - CHP is one of the most reliable and efficient sources of baseload power
 - CHP systems can be configured to operate in "island" mode during utility outages, with black start capability
 - There are currently over 4,000 U.S. CHP systems in operation
- Baseload CHP can serve as an "anchor" for microgrids, enabling other microgrid attributes
 - PV and other renewables
 - Energy storage
 - Demand management

BUILDING RESILIENT MICROGRIDS AROUND CHP ANCHORS

- An ideal microgrid anchor provides reliable baseload power, even when the electric grid is down
- Natural gas CHP systems are well-suited for this role
 - Natural gas supply lines are rarely affected by hurricanes, blizzards, or other natural disasters
 - With CHP, heat can be efficiently captured and utilized for hot water, chilled water, and steam production
 - Thousands of existing CHP installations could serve as foundations for future microgrids, with minimal capital investment
- CHP systems improve efficiency and reduce emissions compared to separate heat and grid-supplied electricity
 - When renewables like PV are added in a microgrid configuration, very significant emission reductions are possible

STUDY APPROACH

Microgrid Case Study

• City of Milford, CT- community microgrid under development (integrating PV + CHP)

Emissions Estimator Tool

- The CHP Emissions Calculator compares the anticipated CO_2 , methane (CH_4) , nitrous oxide (N_2O) , SO_2 , and NO_x emissions from a CHP system to those of a separate heat and power system with electricity supplied by the grid.
- The Calculator uses fuel specific CO₂, CH₄ and N₂O emissions factors from the EPA's GHG Reporting Program, region specific Transmission & Distribution (T&D) loss values, and data from eGRID 2012.

OVERVIEW OF EMISSIONS ESTIMATION METHODOLOGY

- Type of inputs required
 - CHP or solar electric capacity (kW)
 - Annual hours of operation
 - CHP fuel type
 - CHP thermal energy use: heating, cooling or both
 - Whether there is emissions control equipment (+ NOx emissions rate if there are controls)
- CHP/RE estimation approach
 - Conduct individual runs of the Emissions Calculator for each technology type (e.g., 1 run for CHP, 1 run for PV)
 - Add the emissions calculator results from the individual technology runs for each microgrid project together.
 - For the CHP system, consider the overall emissions results from the Calculator
 - For the PV system, count the displaced electricity production results (did not include the CHP system or the displaced thermal production results)

Case Study – City of Milford, CT

Proposal is an outcome of CT DEEP Round 2 Microgrid Program – currently going through approvals

- o 5 facilities will have the ability to operate independently of the UI grid
 - Parsons Center
 - Milford Senior Center
 - Harborside Middle School
 - City Hall
 - River Park Senior Apartments

Microgrid components

- Two 148 kW natural gas-fired reciprocating engine CHP systems will replace the existing outdated boilers in the Parsons Center.
- A 120 kW photovoltaic array accompanied by battery energy storage will help offset the daytime electric load.
- The PV system will be located in a parking lot adjacent to the Parsons Center and will provide supplemental power during the daylight periods.
- The necessary electrical and controls infrastructure will tie these buildings together as a microgrid that will operate in parallel with the utility grid.

CASE STUDY — CITY OF MILFORD, CT INPUTS

CHP System 1

Type of CHP System	NG-Fired Reciprocating Engine
CHP Electric Capacity (kW)	296 kW
Annual Hours of Operation	8,322 (95% availability)
CHP Fuel Type	Natural Gas
Thermal Energy: Heating, Cooling, or Both?	Heating
Hours in Cooling Mode?	NA
Emissions Control Equipment? (yes/no)	Yes
If Yes, what is NOx emission rate? (ppm, or lb/MWh)	0.15 lb/MWh
What type of thermal system was displaced?	Existing boilers
Fuel Type of Displaced Thermal System	Natural Gas

	Solar PV Array
Electric Capacity (kW)	$120~\mathrm{kW}$
Annual Hours of Operation, or Capacity Factor	1,555

CASE STUDY — CITY OF MILFORD, CT RESULTS

CHP System Results Annual E	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NO _x (tons/year)	0.18	0.38	1.01	1.21	87%
SO_2 (tons/year)	0.01	0.55	0.01	0.54	97%
CO ₂ (tons/year)	1,755	1,329	1,181	755	30%
CH ₄ (tons/year)	0.03	0.16	0.02	0.15	82%
N ₂ O (tons/year)	0.00	0.023	0.00	0.022	87%
Total GHGs (${\rm CO_2e}$ tons/year)	1,757	1,340	1,182	765	30%
Fuel Consumption (MMBtu/year)	30,026	22,951	20,204	13,129	30%
Equal to the annual GHG emissions from this many passenger vehicles:			145		
Equal to the annual GHG emissions from	n the generation of ele	ectricity for this	many homes:	72	

PV Results Annual Emissions Analysis					
	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NO _x (tons/year)	-	0.03	-	0.03	100%
SO_2 (tons/year)	-	0.04	-	0.04	100%
CO_2 (tons/year)	-	101	-	101	100%
CH ₄ (tons/year)	-	0.012	-	0.012	100%
$ m N_2O$ (tons/year)	-	0.002	-	0.002	100%
Total GHGs (${\rm CO_2e}$ tons/year)	-	101	-	101	100%
Fuel Consumption (MMBtu/year)	-		-	1,800	100%
Equal to the annual GHG emissions from t	this many passenger	vehicles:		19	
Equal to the annual GHG emissions from t	the generation of elec	etricity for this	s many homes:	10	

CASE STUDY – CITY OF MILFORD, CT COMBINED RESULTS (CHP + PV)

CHP + PV Results Annual Emissions Analysis					
	CHP System (CHP only)	Displaced Electricity Production (CHP + PV combined)	Displaced Thermal Production (CHP only)	Poduction (CHD +	Percent Reduction (CHP + PV combined)
$\mathrm{NO_{x}}$ (tons/year)	0.18	0.41	1.01	1.24	87%
SO ₂ (tons/year)	0.01	0.59	0.01	0.58	98%
CO_2 (tons/year)	1,755	1,430	1,181	856	33%
CH ₄ (tons/year)	0.03	0.172	0.02	0.162	84%
N ₂ O (tons/year)	0.00	0.025	0.00	0.024	96%
Total GHGs (${\rm CO_2e}$ tons/year)	1,757	1,441	1,182	866	33%
Fuel Consumption (MMBtu/year)	30,026	22,951	20,204	14,929	35%
Equal to the annual GHG emissions from this many passenger vehicles:					
Equal to the annual GHG emissions from the generation of electricity for this many homes: 82					

OTHER EXAMPLES OF CHP-PV MICROGRIDS

University of California, San Diego

- 92% of UC San Diego's annual 250 GWh is generated through its microgrid, which has grown over the years to include:
 - o 30 MW CHP plant, serving as the microgrid anchor
 - 2.8 MW biogas fuel cell, using ADG from wastewater treatment plant
 - 1.2 MW of solar PV panels distributed throughout the campus
- Plans to expand microgrid capabilities to cover all campus electricity requirements

South Oaks Hospital in Amityville, NY

- 1.25 MW CHP system (five 250 kW IntelliGen engines)
- 47 kW rooftop PV system
- The microgrid provided 100% of the facility's electricity, thermal, and hot water demands for 15 days after Hurricane Sandy

Military Complex at Twenty Nine Palms, CA

- Two gas turbine CHP systems
 - 7.2 MW unit with black start capability, installed in 2003
 - 9.2 MW unit used for peaking power, installed in 2013
- Two PV systems
 - 1.2 MW system installed in 2003
 - 4.5 MW system recently installed

CONCLUSIONS

- Microgrid projects that incorporate CHP with renewables are gaining traction in the U.S.
 - To date, CHP has been the most commonly deployed technology for U.S. microgrids, and deployments are expected to increase in coming years
 - At least six states have microgrid incentive programs either currently available or under development – more CHP-enabled microgrids can be expected in these states:
 - California
 - Massachuestts
- Connecticut New Jersey
- Maryland New York
- The CHPP Emissions Calculator can be used as an effective way to determine the emissions benefits of integrating CHP with renewables
- Microgrids that incorporate CHP and renewable technologies like PV can significantly reduce the production of greenhouse gases and other harmful emissions

QUESTIONS AND CONTACT INFORMATION

Contact:

Neeharika Naik-Dhungel Naik-Dhungel.Neeharika@epa.gov

