BOILER NUMBER ONE EPA SECTION 114 INFORMATION REQUEST EMISSIONS TEST REPORT

L'ANSE WARDEN ELECTRIC COMPANY, LLC.

157 South Main Street L'Anse, Michigan 49946

August, 2016

W.O. No. 14464.007.004

CERTIFICATION STATEMENT

I certify under penalty of law that I have examined and am familiar with the information in the enclosed documents, including all attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are, to the best of my knowledge and belief, true and complete. I am aware that there are significant penalties for knowingly submitting false statements and information, including the possibility of fines or imprisonment pursuant to Section 113(c)(2) of the Clean Air Act and 18 U.S.C. §§ 1001 and 1341.

Steve Walsh

Mr. Steve Walsh Chief Executive Officer

L'Anse Warden Electric Company, LLC. 157 South Main Street L'Anse, Michigan 49946 906-885-7910

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name L'Anse Warden Electric Company LLC	County Baraga
Source Address 157 S. Main Street	City L'Anse
AQD Source ID (SRN) B4260 RO Permit No. MI-ROP-B4260-2011	RO Permit Section No.
Please check the appropriate box(es):	
☐ Annual Compliance Certification (General Condition No. 28 and No. 29 of the RO	Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, this source was in compliance with ALL terms a each term and condition of which is identified and included by this reference. The is/are the method(s) specified in the RO Permit.	
2. During the entire reporting period this source was in compliance with all terms ar each term and condition of which is identified and included by this reference, EXC enclosed deviation report(s). The method used to determine compliance for each term the RO Permit, unless otherwise indicated and described on the enclosed deviation report	CEPT for the deviations identified on the n and condition is the method specified in
Semi-Annual (or More Frequent) Report Certification (General Condition No. 23	of the RO Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, ALL monitoring and associated recordkeeping and no deviations from these requirements or any other terms or conditions occurred.	requirements in the RO Permit were met
2. During the entire reporting period, all monitoring and associated recordkeeping req no deviations from these requirements or any other terms or conditions occurred, EX enclosed deviation report(s).	
Other Report Certification Reporting period (provide inclusive dates): From To	
Additional monitoring reports or other applicable documents required by the RO Permit an Emissions Test Report	e attached as described:
I certify that, based on information and belief formed after reasonable inquiry, the statements	and information in this report and

Steve Walsh Chief Executive Officer 906-885-7910 Name of Responsible Official (print or type) Title Phone Number Steve Walsh 4 Aug 2016 Signature of Responsible Official Date

TABLE OF CONTENTS

Section

1.	INTR	ODUCTION	1
	1.1	PLANT INFORMATION	1
	1.2	TESTING FIRM INFORMATION	2
	1.3	ANALYTICAL LABORATORIES	2
	1.4	SUMMARY OF TEST PARAMETERS	2
2.	SUM	MARY OF TEST RESULTS	4
	2.1	TEST RESULTS DISCUSSION	4
3.	DESC	CRIPTION OF PROCESS AND SAMPLING LOCATIONS	6
	3.1	PROCESS OVERVIEW	6
		3.1.1 Basic Operating Parameters	6
		3.1.2 Test Program Boiler Load	
		3.1.3 Test Program Fuel Mix and Firing Rates	
	3.2	AIR POLLUTION CONTROL EQUIPMENT	
		3.2.1 ESP Operating Parameters	
	3.3	REFERENCE METHOD TEST LOCATION	
		3.3.1 Flue Gas Parameters	8
4.	SAMI	PLING AND ANALYTICAL PROCEDURES	10
	4.1	PRE-TEST DETERMINATIONS	10
	4.2	FORMAL TESTING	10
		4.2.1 Gas Volumetric Flow Rate	10
	4.3	PARTICULATE AND METALS SAMPLING TRAIN	10
		FARTICULATE AND METALS SAMPLING TRAIN	12
		4.3.1 Particulate and Metals Sample Recovery	
		4.3.1 Particulate and Metals Sample Recovery4.3.2 Particulate Analysis	14 15
		 4.3.1 Particulate and Metals Sample Recovery	14 15
	4.4	 4.3.1 Particulate and Metals Sample Recovery	14 15 15
	4.4	 4.3.1 Particulate and Metals Sample Recovery 4.3.2 Particulate Analysis 4.3.3 Metals Analysis EPA METHOD 26A (MODIFIED) – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN 	14 15 15
	4.4	 4.3.1 Particulate and Metals Sample Recovery	14 15 15 16 16
	4.4 4.5	 4.3.1 Particulate and Metals Sample Recovery 4.3.2 Particulate Analysis 4.3.3 Metals Analysis EPA METHOD 26A (MODIFIED) – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN 4.4.1 Hydrogen Chloride/Chlorine Sample Recovery 4.4.2 Hydrogen Chloride Analysis EPA METHOD 23/EPA SW846 METHOD 0010 - PCDD/PCDF AND 	14 15 15 16 16 18
		 4.3.1 Particulate and Metals Sample Recovery 4.3.2 Particulate Analysis 4.3.3 Metals Analysis EPA METHOD 26A (MODIFIED) – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN 4.4.1 Hydrogen Chloride/Chlorine Sample Recovery 4.4.2 Hydrogen Chloride Analysis EPA METHOD 23/EPA SW846 METHOD 0010 - PCDD/PCDF AND CRESOL SAMPLING TRAIN 	14 15 15 16 16 18
		 4.3.1 Particulate and Metals Sample Recovery 4.3.2 Particulate Analysis 4.3.3 Metals Analysis EPA METHOD 26A (MODIFIED) – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN 4.4.1 Hydrogen Chloride/Chlorine Sample Recovery 4.4.2 Hydrogen Chloride Analysis EPA METHOD 23/EPA SW846 METHOD 0010 - PCDD/PCDF AND 	14 15 16 16 18 18

TABLE OF CONTENTS (CONTINUED)

Section

		4.5.3 EPA SW846 Method 0010 – Cresol Sample Analysis	
	4.6	PM10/PM2.5 SAMPLING TRAIN	
		4.6.1 PM ₁₀ /PM _{2.5} SAMPLE RECOVERY	
		4.6.2 Filterable $PM_{10}/PM_{2.5}$ (EPA 201A) Analysis	
		4.6.3 Condensable Particulate (EPA 202) Analysis	
	4.7	CONTINUOUS EMISSIONS MONITORING SYSTEM	
		4.7.1 VOC and O ₂ /CO ₂ Monitoring Procedures	
	4.8	OPACITY	
5.	FUE	L SAMPLING AND ANALYSIS	
6.	QUA	LITY ASSURANCE/QUALITY CONTROL	
	6.1	QUALITY CONTROL PROCEDURES	
	6.2	GAS STREAM SAMPLING QA PROCEDURES	
		6.2.1 Stack Gas Velocity/Volumetric Flow Rate QA Procedures	
		6.2.2 Moisture and Sample Gas Volume QA Procedures	
		6.2.3 Isokinetic Sampling Train QA Procedures	
		6.2.4 Sample Identification and Custody	35
		6.2.5 Data Reduction and Validation QC Checks	
	6.3	REFERENCE METHOD CEMS QA/QC CHECKS	
	6.4	LABORATORY AUDIT SAMPLES	

- APPENDIX A DETAILED TEST RESULTS
- APPENDIX B RAW TEST DATA
- APPENDIX C BOILER OPERATING DATA
- APPENDIX D LABORATORY REPORTS
- APPENDIX EFUEL SAMPLE RESULTS
- APPENDIX F QUALITY CONTROL RECORDS
- APPENDIX G SAMPLE CALCULATIONS
- APPENDIX H PROJECT PARTICIPANTS
- APPENDIX I PROJECT CORRESPONDENCE

LIST OF FIGURES

Title	Page
Figure 3-1 Sample Port and Traverse Point Locations	9
Figure 4-1 EPA Method 5/29 – Particulate/Metals Sampling Train	13
Figure 4-2 EPA Method 26A - Hydrogen Chloride/Chlorine Sampling Train	17
Figure 4-3 EPA Method 23/Method 0010 - PCDD/PCDF and Cresol Sampling Train	19
Figure 4-4 EPA Method 201A (PM ₁₀ /PM _{2.5})/202 Sampling Train	24
Figure 4-5 WESTON CEM Sampling System	28

LIST OF TABLES

Title	Page
Table 1-1 Summary of Test Parameters.	3
Table 2-1 Boiler No.1	5
Table 4-1 Summary of Sampling and Analytical Methods	11
Table 5-1 Fuel Sample Analytical Methods	

1. INTRODUCTION

Weston Solutions Inc. (WESTON) was retained by L'Anse Warden Electric Company LLC (LWEC) to perform an emissions testing program on the Boiler No. 1 exhaust duct at the LWEC facility located in L'Anse Baraga County, Michigan. Boiler No. 1 which is permitted to operate on several different biomass or renewable fuels was previously a coal oil and gas-fired steam generating unit. The objective of this test program was to satisfy the requirements of the U.S. Environmental Protection Agency (EPA) Region V Section 114 Information Request submitted on 1 April 2016. Boiler No. 1 is identified as EUBOILER No. 1 and the facility currently operates under the State of Michigan Renewable Operating Permit (ROP) No. MI-ROP-B4260 2011 and Permit to Install (PTI) 168-07D.

The EPA Region V 114 letter initially requested emissions testing under two operating conditions. Test condition one included a typical fuel mix under the existing permitting of wood tire derived fuel (TDF) wood from creosote treated railroad ties and pentachlorophenol (PCP) treated railroad ties. Test condition two was the same as test condition one but excluded the use of PCP ties. However LWEC has discontinued the use of PCP tie fuel and has submitted a permit application (PTI Application No. 67-16) to the Michigan Department of Environmental Quality (MDEQ) to remove PCP ties as an authorized fuel. As LWEC no longer had PCP ties available for combustion and submitted a permit application to remove PCP ties as a fuel EPA Region V modified its 1 April 2016 request to include only test condition two. The resulting Section 114 Test Program was conducted pursuant to the EPA Region V approved test protocol submitted May 17 2016 and the test protocol addendum submitted June 22 2016.

WESTON's Integrated Air Services (IAS) group completed all required testing during 6-7 July 2016. A representative of the MDEQ was present throughout the testing.

1.1 PLANT INFORMATION

L'Anse Warden Electric Company LLC 157 South Main Street L'Anse Michigan 49946 Mr. JR Richardson Technical Manager Phone: 906-885-7187

1.2 TESTING FIRM INFORMATION

Weston Solutions, Inc. 1400 Weston Way West Chester PA 19380 Mr. Ken Hill Senior Project Manager Phone: 610-701-3043

1.3 ANALYTICAL LABORATORIES

Maxxam Analytics 6740 Campobello Road Mississauga Ontario Canada Mr. Clayton Johnson, Project Manager – Air Toxics Phone: 905-817-5769

ALS Environmental 3860 S. Palo Verde Road Suite 302 Tucson AZ 85714 Ms. Wendy Hyatt Client Services Manager Phone: 520-623-3381

1.4 SUMMARY OF TEST PARAMETERS

All testing was performed pursuant to WESTON's Emissions Test Protocol (Revision 1) and the Addendum to Emissions Test Protocol (Revision 2) submitted in May and June 2016 respectively. These documents are included in Appendix I – Project Correspondence. Table 1-1 provides the test parameters associated test methods and reporting units for this test program.

Following this introduction Section 2 provides a summary of the test results. Section 3 provides a description of the process and sampling locations. Section 4 provides a description of the sampling and analytical procedures. Section 5 outlines the fuel processing fuel sampling and analytical procedures to be used during the test program. Section 6 provides quality assurance and quality control procedures (QA/QC). Appendix A provides detailed test results. Raw test data boiler operating data laboratory reports fuel sample results quality control records example calculations listing of project participants and related project correspondence are provided in Appendices B through I, respectively.

Table 1-1
Summary of Test Parameters

Test Parameter ⁽¹⁾	Test Method ⁽²⁾	Reporting Units ⁽³⁾
Total Particulate (filterable)	EPA M5	gr/dscf lb/MMBtu lb/hr
	(combined with EPA M29)	
PM ₁₀ /PM _{2.5} (filterable and condensable)	EPA M201A/202	gr/dscf lb/MMBtu lb/hr
Metals (nickel lead arsenic manganese)	EPA M29	ug/m ³ lb/hr
Polychlorinated Dibenzo-p-dioxins/ Polychlorinated Dibenzofurans (PCDD/PCDF)	EPA M23	ug/m ³ @ 7% O ₂ TEQ lb/hr TEQ
Cresol Isomers	EPA SW846 M0010 (combined with EPA 23)	ug/m ³ lb/hr
Hydrogen Chloride/Chlorine	EPA M26A (modified)	ppmvd lb/hr
Volatile Organic Compounds (VOCs) as methane	EPA M25A	ppmvd @ 7% O ₂ lb/hr
Opacity	EPA M9	%

1. Cresol isomers include m-cresol o-cresol and p-cresol.

2. EPA Method 26A was modified by collecting the sample non-isokinetically from a single traverse point (similar to EPA Method 26).

3. The exhaust gas O_2 concentration (diluent gas) and a facility provided F-factor (F_d 9561) were used to calculate emission rates in terms of lb/MMBtu.

2. SUMMARY OF TEST RESULTS

2.1 TEST RESULTS DISCUSSION

Table 2-1 of this section provide a summary of the compliance test results for each pollutant parameter [particulate matter (PM) particulate matter ≤ 10 microns and PM ≤ 2.5 microns (PM₁₀/PM_{2.5}) metals (includes Pb As Mn and Ni) hydrogen chloride (HCl) and chlorine (Cl) polychlorinated dibenzo-p-dioxins/polychlorinated dibenzo furans (PCDD/PCDF) as 2 3 7 8 \Box TCDD Toxic Equivalent, cresol isomers volatile organic compounds (VOC)] and opacity. Any differences in the test results summary tables and detailed test results shown in the appendices are due to rounding the results for presentation purposes.

As discussed in the Addendum to Emissions Test Protocol (Revision 2 June 2016) WESTON calculated the stack exit velocity and recorded the gas temperature at the stack inlet duct. The stack exit velocity (in terms of ft/s) and stack inlet duct temperature data can be found in the detailed results tables presented in Appendix A.

It should be noted WESTON experienced sampling difficulties during the first $PM_{10}/PM_{2.5}$ run conducted on 6 July. Due to a misaligned pitot tube/PM sampling head assembly the measured stack gas velocity head (ΔP) readings were lower than the preliminary traverse readings resulting in a low-biased calculation of volumetric flow rate and subsequent PM mass rate in terms of lb/hr. Since it was believed the results may not be representative and biased low WESTON elected not to analyze the sample and attempted a repeat of the run on 7 July. During the repeated run WESTON inadvertently broke the glass sample probe while changing test ports and after a discussion with Mr. Tom Gasloli of the MDEQ a decision was made to scrap the run and start over. WESTON successfully repeated the run later that morning and completed all $PM_{10}/PM_{2.5}$ testing on 7 July 2016. Please note the PM runs are numbered Runs 2-4 throughout the report vs.1-3 for all other sample trains.

There were no other sampling or operational issues that impacted the field testing and the results presented are believed to be representative of the emissions encountered during the test periods.

4

Table 2-1 Boiler No.1 Summary of Test Results

Pollutant						
	1	2	3	4	Average	Emissions Limit
Particulate Matter (PM) (lb/hr)	0.8	1.9	1.2		1.3	19.2 lb/hr
Particulate Matter (PM) (lb/MMBtu)	0.003	0.006	0.004	-	0.004	0.06 lb/MMBtu
Particulate Matter ≤ 10 microns (PM ₁₀) (lb/hr)	-	5.3	8.0	8.3	7.2	15.4 lb/hr
Particulate Matter ≤ 10 microns (PM ₁₀) (lb/MMBtu)	-	0.020	0.029	0.030	0.026	
Particulate Matter ≤ 2.5 microns (PM _{2.5}) (lb/hr)	-	4.7	7.3	7.1	6.3	
Particulate Matter < 2.5 microns (PM _{2.5}) (lb/MMBtu)	-	0.018	0.027	0.026	0.023	
Lead (Pb) (lb/hr)	1.19E-03	1.00E-03	1.13E-03		1.10E-03	0.02 lb/hr
Arsenic (As) (lb/hr) <	< 1.24E-04	1.41E-04	1.43E-04	-	$\leq 1.36E-04$	
Manganese (Mn) (lb/hr)	1.51E-03	2.88E-03	2.87E-03		2.42E-03	
	1.20E-03	4.70E-04	6.04E-04		7.60E-04	
Hydrogen Chloride (HCI) (lb/hr)	1.73	1.91	1.61	-	1.75	2.17 lb/hr
Chlorine (Cl_2) (lb/hr)	< 0.25	< 0.26	< 0.26	-	< 0.26	
2 3 7 8-TCDD Toxic Equivalent (μg/dscm @ 7% O ₂)	7.72E-06	6.35E-06	5.70E-06		6.59E-06	-
ent (lb/hr)	2.06E-09	1.66E-09	1.54E-09	-	1.75E-09	
Volatile Organic Compounds (ppmvd $@7\%$ O ₂) as methane	< 0.12	< 0.12	< 0.12		< 0.12	50 ppmvd @ 7% O_2
Volatile Organic Compounds (lb/hr) as methane	< 0.02	< 0.02	< 0.02	-	< 0.02	9.1 lb/hr
Cresol Isomers (lb/hr) <	< 7.77E-04	< 8.44E-04	< 8.15E-04		< 8.12E-04	
Opacity	0	0	0		0	
Average Stack Exit Velocity 6 July (ft/s) ¹			57.6			
Average Stack Exit Velocity 7 July (ft/s) ¹			56.1			
Average Stack Inlet Duct Temp 6 July (°F) ¹			442.3			
Average Stack Inlet Duct Temp 7 July (°F) ¹			439.4			

1. See Appendix A for detailed exit velocity and temperature data.

IASDATA\LWEC\14464.007.004\EPA 114 LETTER REPORT-LW

Ś

3. DESCRIPTION OF PROCESS AND SAMPLING LOCATIONS

3.1 PROCESS OVERVIEW

LWEC is a cogeneration facility consisting of a single boiler generating process steam and electric power to the grid firing primarily biomass materials. The boiler typically produces steam at 180 000 lbs/hr and maximum gross power generation from 15.9 to 16.4 megawatts (MW).

3.1.1 Basic Operating Parameters

The fuel feed to the boiler is regulated to meet process steam and electrical generation requirements. The fuel blend and excess air may be modified to improve combustion characteristics. Adjustments to air fuel blend or load will be made as necessary to conform to emissions monitoring limits.

3.1.2 Test Program Boiler Load

The hourly boiler operating limit is 324 million British thermal units (MMBtu). The maximum annual heat input is 2 656 800 MMBtu based on 8 200 hours of operation per year.

As noted in the Addendum to Emissions Test Protocol (Revision 2 June 2016) the boiler "maximum rate of electricity production" for the stack test was determined by calculating an average gross annualized MW range for the years 2012 to 2015 (ranging from 15.92 to 16.37 MW). The boiler load was maintained within this range during the Section 114 Information Request Test Program.

3.1.3 Test Program Fuel Mix and Firing Rates

The fuel mix during the Section 114 Test Program consisted of wood creosote treated railroad ties, and TDF at a target feed rate of 15 tons per hour for creosote treated railroad ties and 7.5 tons per hour for wood (i.e. at a 2:1 ratio of creosote treated railroad ties to wood). As required by the 114 Request fuel samples were collected during the test program during each test run in accordance with 40 CFR 63 Subpart 7521(c and d). However as noted in the Addendum to Emissions Test Protocol (Revision 2 June 2016) due to safety and operational necessity the belt

was not stopped to collect fuel samples; LWEC designated personnel collected fuel samples from a point where each fuel drops onto the conveyor belt feeding the boiler.

To calculate the feed rates during the Section 114 Test Program, LWEC:

- 1. Established a fixed indicator line across where the three cables that raise and lower the fuel feed rakes are located on the south side of the Fuel Storage Building.
- 2. At the start of testing, a mark was put on each cable at the indicator line, signifying the elevation of each fuel feed rake at that time.
- 3. Individual bins were filled with the separate fuel types (one bin with wood, the other two bins with creosote treated railroad ties) and the tonnage of fuel added to each bin was recorded. As the fuel was added, the rakes were raised up toward the top of each pile. The fuel weights as received at the fuel bins were determined based upon the fuel weights determined at the Fuel Aggregation Facility before delivery to the power plant and boiler.
- 4. Stack testing proceeded for the specified run times.
- 5. When the rakes once again reached the elevation where they started, signified by the mark on each cable re-aligning with the indicator, the respective times were recorded.
- 6. The known tonnage added to each bin was then divided by the difference in times to yield a tons per hour value for each bin over the course of the testing day.
- 7. The above procedure was repeated for the second day of testing.

The fuel feed rates were calculated and the creosote treated railroad tie to wood ratio was determined on a dry basis using average moisture contents by fuel per day supplied by the laboratory from analysis of the collected fuel samples. The fuel feed rate ratios were 2.14 and 2.48 tons of creosote treated railroad ties to tons of wood for 6 July 2016 and 7 July 2016, respectively. LWEC utilized a professional engineer (Mr. Jed Chrestensen from Mannik Smith Group) to assist with the fuel accounting method and perform quality control of the calculations.

Data and the calculation methodology are provided in Appendix E.

3.2 AIR POLLUTION CONTROL EQUIPMENT

Particulate emissions are controlled by a multi-cyclone followed by a single chamber, three-field electrostatic precipitator (ESP).

3.2.1 ESP Operating Parameters

The precipitator electrical controls and rapping sequence, intensity and frequency are set for optimum performance and are not generally modified after this optimization exercise unless emissions issues are observed.

3.3 REFERENCE METHOD TEST LOCATION

The reference method sample ports (two sets) are located on a section of rectangular ductwork that runs horizontally from the exit of the ESP prior to the exhaust stack. The rectangular ductwork is six feet by six feet six inches (6' x $6\frac{1}{2}$ ') and has a straight run of fifty-seven feet (57'). All dimensions and port locations were verified prior to testing.

A second set of four sample ports are installed approximately 2 feet downstream from the primary sample ports and allows for additional sample trains to be operated simultaneously. Air flow disturbances in the secondary sample ports were minimized by port selection and placement of the upstream sampling equipment. Additionally, a third set of sample ports located on top of the ESP outlet ductwork was used for single point sampling (continuous emissions monitoring). All dimensions and port locations were verified prior to testing.

Figure 3-1 presents a diagram of the sample port and traverse point location.

3.3.1 Flue Gas Parameters

The expected flue gas parameters at this location are as follows:

Temperature: approximately 370-450 °F, load dependent Moisture: approximately 15% v/v, fuel moisture dependent Volumetric Flow Rate: Up to about 150,000 ACFM, load dependent

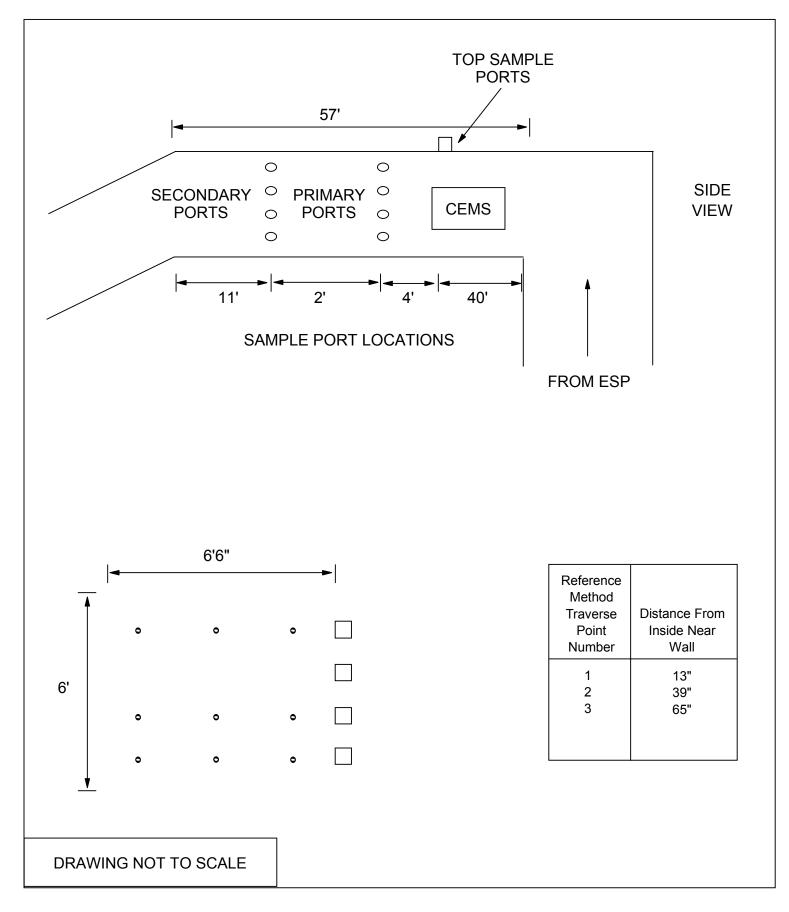


FIGURE 3-1 SAMPLE PORT AND TRAVERSE POINT LOCATIONS

4. SAMPLING AND ANALYTICAL PROCEDURES

The purpose of this section is to detail the stack sampling and analytical procedures utilized during the test program. Table 4-1 summarizes the sampling and analytical methods.

4.1 **PRE-TEST DETERMINATIONS**

Preliminary test data was obtained at the sampling location. Geometry measurements were measured and recorded and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated "S" type pitot tube and a Dwyer inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple. Water vapor content was based on previous test data (preliminary only).

A check for the presence or absence of cyclonic flow was conducted at the test location. The results demonstrated the location was suitable for testing with no significant turbulent flow (20 average flow angle) noted. Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Pre-test calibration of probe nozzles pitot tubes metering systems and temperature measurement devices were performed as specified in Section 5 of EPA Method 5 test procedures.

4.2 FORMAL TESTING

4.2.1 Gas Volumetric Flow Rate

A series of three test runs was performed for each parameter. The gas velocity was measured using EPA Methods 1 and 2. Velocity measurements were performed using an "S-type" pitot tube fastened alongside the EPA Methods 5/29 23/0010 and 201A/202 sample probes. The stack gas pressure differential was measured with inclined manometers. Flue gas temperatures were measured with calibrated digital temperature readouts equipped with chromel-alumel (type-K) thermocouples.

Size $30-50$ ft ³ $30-50$ ft ³ $30-50$ ft ³ 2 $30-50$ ft ³ 10 <		Sample	Analytical	Preparation	Analytical
1-hr compositeModified30-50 ft³sample per runM26A30-50 ft³1 to 1.5-hr compositeM 5/2930-50 ft³sample per runM 5/2930-50 ft³33-hr compositeM201A/20230-50 ft³33-hr compositeM201A/20230-50 ft³33-hr compositeM23/M0010>90 ft³03ContinuousM3ANA0ContinuousM3ANANA01-hour observationM9NANA	Method	Size	Parameters	Method	Method
sample per run M26A 1 to 1.5-hr composite M 5/29 30-50 ft ³ 1 to 1.5-hr composite M 5/29 30-50 ft ³ 3 3-hr composite M201A/202 30-50 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 Continuous M3A NA Continuous M3A NA 1-hour observation M9 NA	Modified	$0-50 \text{ ft}^3$	HCI/Cl ₂	NA	Ion Chromatography
1 to 1.5-hr composite M 5/29 30-50 ft ³ sample per run M 201A/202 30-50 ft ³ 1 to 1.5-hr composite M201A/202 30-50 ft ³ 3 -hr composite M201A/202 30-50 ft ³ 3 -hr composite M23/M0010 > 90 ft ³ 3 -hr composite M23/M0010 > 90 ft ³ Continuous M3A NA Continuous M3A NA Continuous M25A NA I-hour observation M9 NA					(SW846-9057)
sample per run M201A/202 30-50 ft ³ 3 3-hr composite M201A/202 30-50 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 Continuous M3A NA Continuous M3A NA Continuous M25A NA I-hour observation M9 NA	M 5/29	$0-50 \text{ ft}^3$	Particulate	Desiccation	Gravimetric
3 1 to 1.5-hr composite M201A/202 30-50 ft ³ 3 3-hr composite M201A/202 30-50 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 3-hr composite M23/M0010 > 90 ft ³ 3 Continuous M3A NA Continuous M25A NA Continuous M25A NA 1-hour observation M9 NA	ole per run		Metals	Acid digestion	(EPA Method 5)
3 1 to 1.5-hr composite M201A/202 30-50 ft ³ 3 sample per run M23/M0010 >90 ft ³ 0 3 3-hr composite M23/M0010 >90 ft ³ 0 3 Continuous M3A NA 0 Continuous M3A NA 0 Continuous M25A NA 0 1-hour observation M9 NA NA				(SW-846□	ICP and AAS
1 to 1.5-hr composite M201A/202 30-50 ft ³ sample per run M23/M0010 >90 ft ³ 0 3 3-hr composite M23/M0010 >90 ft ³ 0 continuous M3A NA 0 Continuous M3A NA 0 Continuous M25A NA 0 I-hour observation M9 NA 0				3050A)	(SW-846-6010A)
3 sample per run 3 3-hr composite 3-hr composite M23/M0010 sample per run M3A Continuous M3A NA NA Continuous M25A NA NA I-hour observation M9	M201A/202	$0-50 \text{ ft}^3$	PM10/PM2.5	Desiccation	Gravimetric
3 3-hr composite M23/M0010 >90 ft ³ sample per run M3A NA Continuous M25A NA I-hour observation M9 NA	ole per run				(EPA Method 5)
M3A NA NA NA NA NA NA MA M1-4 NA M9 NA NA	te M23/M0010		PCDD-PCDF/	Extraction	M23/SW 846-8270
M3A NA M25A NA M1-4 NA M9 NA	le per run	C	Cresol Isomers		
M25A NA M1-4 NA M9 NA		NA	CO_2/O_2	NA	CEM
M9 NA MA		NA	VOC	NA	CEM
M1-4 NA M9 NA			Moisture	NA	Gravimetric
M9 NA			Temperature	NA	Temperature
M9 NA			Velocity	NA	Pitot Tube
		NA	Opacity	NA	NA
per run	er run				

Table 4-1	Summary of Sampling and Analytical Methods
-----------	--

Combined Method 5 and Method 29 sampling train.	Inductively coupled plasma emission spectroscopy.	Atomic absorption spectroscopy.	Pb Ni As Mn	Combined Method 23 and Method 0010 sampling train.
II	Ш			Ш
M5/M29	ICP	AAS	Metals	M23/M0010

Notes:

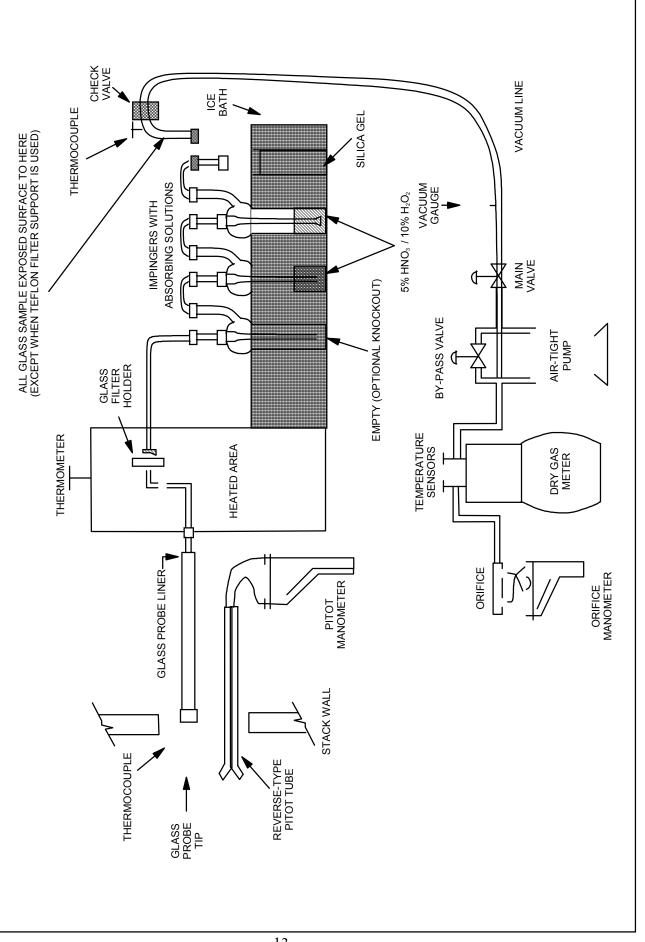
IASDATA\LWEC\14464.007.004\EPA 114 LETTER REPORT-LW

11

5/17/2016

Velocity measurements and stack gas temperatures were incorporated in the isokinetic sampling trains which traverse across the stack diameter. Velocity and volumetric flow rate were used for determining the parameter mass rate calculations. Likewise moisture content was determined concurrently with each test. The moisture content of the gas stream was determined by the volume increase of the impinger water rand weight increase of the silica gel in comparison to the volume of gas sampled.

The gas stream composition [oxygen (O_2) and carbon dioxide content (CO_2)] of the flue gas was measured according to EPA Method 3A or 3/3A procedures using a Reference Method Continuous Emission Monitoring (CEM) system.


4.3 PARTICULATE AND METALS SAMPLING TRAIN

The sampling train utilized to perform the particulate and metals sampling was an EPA Reference Method 5/29 train (see Figure 4-1).

A calibrated glass nozzle was attached to a heated (~250°F) borosilicate probe. The probe was connected to a heated (~250°F) borosilicate filter holder containing a 9-centimeter (cm) quartz filter (preweighed to a constant 0.1 milligram (mg) weight). The filter holder was connected to the first of four impingers by means of rigid glass connectors. The first moisture knockout impinger (if used) was dry. The second and third impingers each contained 100 ml of nitric acid (HNO₃)/hydrogen peroxide (H₂O₂) solution and the fourth impinger contained 300 grams (g) of dry silica gel. The third impinger was a standard Greensburg-Smith type while all other impingers were of a modified design. All impingers were maintained in an ice bath. A control console with a leakless vacuum pump a calibrated dry gas meter a calibrated orifice and inclined manometers were connected to the final impinger via an umbilical cord to complete the train.

During particulate/metals sampling gas stream velocities were measured by inserting a calibrated "S"-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point and the sampling rate was adjusted to maintain isokineticity \pm 10 percent. Flue gas temperature was monitored at each point with a calibrated pyrometer and thermocouple.

FIGURE 4-1 EPA METHOD 5/29 PARTICULATE AND METALS SAMPLING TRAIN

Probe filter box and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples positioned in the heated filter chamber and in the sample gas stream after the last impinger.

Isokinetic test data was recorded at each traverse point during all test periods. Leak checks were performed on the sampling apparatus according to reference method instructions prior to and following each run and/or component change.

4.3.1 Particulate and Metals Sample Recovery

At the conclusion of each test the sampling train was dismantled the openings sealed and the components transported to the field laboratory.

A consistent procedure was employed for sample recovery as follows:

- 1. The quartz fiber filter(s) was removed from its holder with tweezers and placed in its original container (petri dish) along with any loose particulate and filter fragments (Sample type 1).
- 2. The probe and nozzle were separated and the particulate rinsed with acetone into a borosilicate container with a Teflon-lined closure while brushing with a non-metallic (Teflon) brush a minimum of three times. Particulate adhering to the brush was rinsed with acetone into the same container. The front-half of the filter holder and connecting glassware were rinsed with acetone while brushing a minimum of three times. The acetone rinses were combined in a borosilicate container and sealed with a Teflon-lined closure (Sample type 2). A separate 0.1N HNO₃ acid rinse of the probe nozzle front-half of the filter holder and connecting glassware was performed after the acetone rinse. The 0.1N HNO₃ rinses were combined and sealed with a Teflon-lined closure (Sample type 3).
- 3. The total volume of HNO_3/H_2O_2 and condensate in impingers 1 2 and 3 was measured to the nearest ml and the value recorded. The liquid was then placed in a borosilicate container along with a 100-ml HNO_3 rinse of the impingers connectors and back half of the filter holder. The container was sealed with a Teflon-lined closure (sample type 4).
- 4. The silica gel was removed from the last impinger and immediately weighed to the nearest 0.1 g.
- 5. Samples of acetone and 0.1 N HNO₃ acid and HNO₃/H₂O₂ were retained for blank analysis.

Each sample bottle was labeled to clearly identify its contents. The height of the fluid level was marked on each bottle. Sample integrity was assured by maintaining chain-of-custody records.

4.3.2 Particulate Analysis

The particulate analysis proceeded as follows:

- 1. The filters (Sample type 1) and any loose fragments were desiccated for 24-hours and weighed to the nearest 0.1 mg to a constant (\pm 0.5 mg) weight.
- 2. The front-half acetone wash samples (Sample type 2) and an acetone blank were evaporated at ambient temperature and pressure in tared beakers then desiccated and weighed to constant 0.5-mg weight.

The total weight of material measured in the acetone-rinse fraction plus the weight of material collected on the quartz filter represents the total particulate catch. Blank corrections were made where appropriate for all sample weights.

Following the gravimetric particulate analysis of the filter the sample was analyzed for metals. Likewise upon completion of the gravimetric analysis of the front-half acetone samples the residue was resolubilized with 0.1 N HNO₃ and combined with the front half nitric sample for metals analysis.

4.3.3 Metals Analysis

Samples collected for metals analysis were contained in three different media:

- Front Half Nitric Acid (including resolubilized particulate residue for front-half acetone samples)
- Filter (following particulate analysis)
- Back Half Nitric Acid

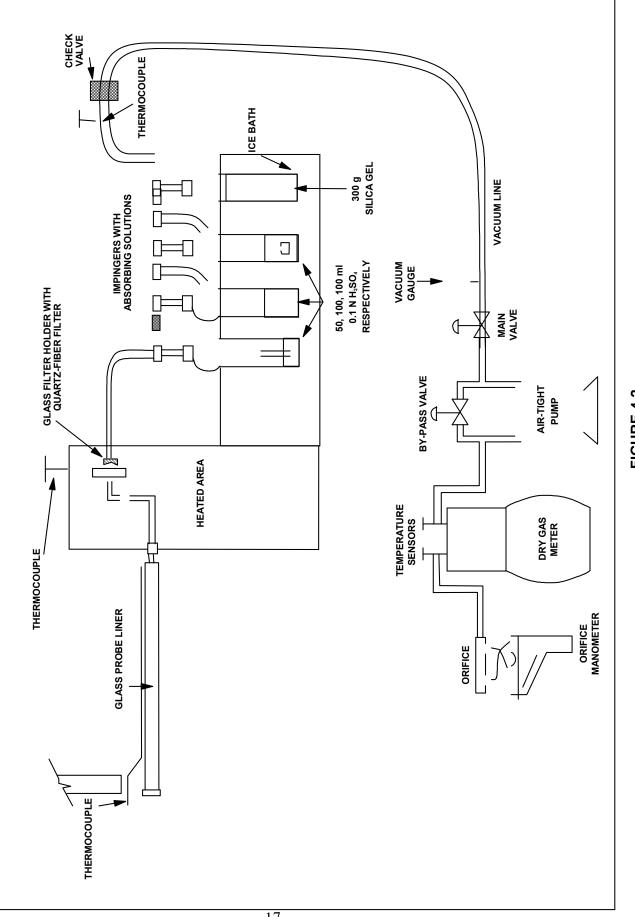
The front half nitric acid and particulate filter samples were combined with the back half nitric acid impingers and condensate in the laboratory for analysis. The metals were solubilized by the addition of nitric acid and 30% H₂O₂. Sample volume was reduced to 50 ml on a hot plate. The sample was brought to 300 ml final volume and analyzed for Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Argon Plasma (ICP) metals.

Following digestion the metals samples were ready for analysis by ICP-AAS.

4.4 EPA METHOD 26A (MODIFIED) – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN

The sampling train utilized to perform the hydrogen chloride sampling was configured as an EPA Reference Method 26A full-size sampling train except there was no borosilicate nozzle attached to the sample probe (see Figure 4-2). This modification was implemented to allow non \Box isokinetic sampling from a single traverse point similar to EPA Method 26. A heated (\geq 248 F) borosilicate probe was attached to a heated (≥ 248 F) borosilicate filter holder containing a 9-cm quartz filter. The filter folder was connected to the first of six impingers by means of rigid glass connectors. The first moisture knockout impinger contained 50 ml of 0.1 normal sulfuric acid. The second and third impingers each contained 100 ml of 0.1 N sulfuric acid. The fourth and fifth impingers each contained 100 ml of 0.1 N sodium hydroxide and the sixth impinger contained 300 grams of dry silica gel. The second and third impingers were a standard Greenburg-Smith type and all other impingers were of a modified design. All impingers were maintained in an ice bath. A control console with a leakless vacuum pump a calibrated dry gas meter a calibrated orifice and inclined manometers was connected to the final impinger via an umbilical cord to complete the train. Probe filter box and impinger exit gas temperatures were monitored with a calibrated direct read-out pyrometer equipped with a chromel-alumel thermocouples.

Sampling was conducted in conjunction with the isokinetic sample trains and continuous monitoring parameters and these stack gas velocities and stack gas composition (O_2/CO_2 content) were used to determine hydrogen chloride/chlorine mass rates.


4.4.1 Hydrogen Chloride/Chlorine Sample Recovery

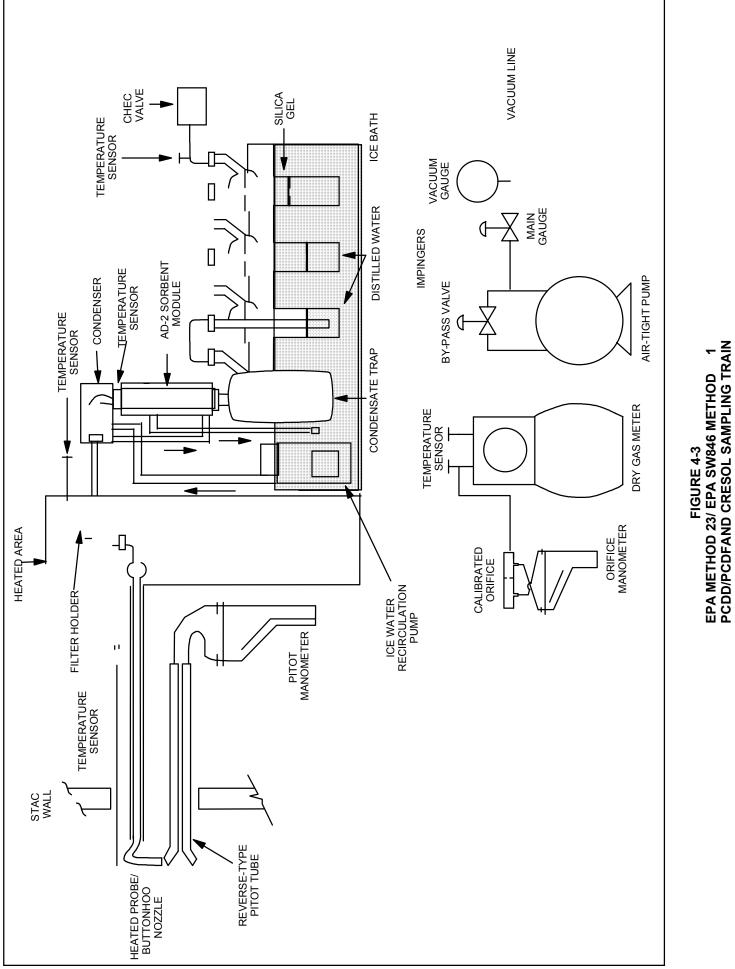
At the conclusion of each test the sampling train is dismantled the openings sealed and the components are transported to the field laboratory.

A consistent procedure was employed for sample recovery as follows:

1. The quartz fiber filter or thimble was removed from its holder with tweezers and discarded.

- 2. The total liquid content of impingers one two and three (0.1 N H₂SO₄) was measured and the sample placed in a polyethylene container fitted with a Teflonlined closure (Sample type 1). Also included in this sample was distilled water rinse of the impingers and connectors. The sample was labeled for chloride analysis.
- 3. The total liquid content of impingers four and five (0.1 N NaOH) were measured and the sample placed in a polyethylene container fitted with a Teflon-lined closure (Sample type 2). Also included in this sample was a distilled water rinse of the impingers and connectors. The sample was labeled for chlorine analysis. Sodium thiosulfate was added to the NaOH samples as a preservative per Method 26A procedures.
- 4. The silica gel impinger was immediately weighed to the nearest 0.5 g.
- 5. Samples of sulfuric acid sodium hydroxide and distilled water used for this program were retained for blank analysis.

Each sample bottle was labeled to clearly identify its contents. The height of the fluid level was marked on each bottle. The samples were then transported to the subcontract laboratories. Sample integrity was assured by maintaining chain-of-custody records.


4.4.2 Hydrogen Chloride Analysis

The samples from the H_2SO_4 impingers were analyzed for chloride (Cl⁻) by the procedures outlined in EPA SW-846 Method 9057 (ion chromatography) and reported as HCl. The samples from the NaOH impingers were analyzed for chlorine (Cl₂) by the procedures outlined in EPA SW846 Method 9057 (ion chromatography) and reported as chlorine.

4.5 EPA METHOD 23/EPA SW846 METHOD 1 - PCDD/PCDF AND CRESOL SAMPLING TRAIN

The test train utilized to perform the polychlorinated dibenzo-p-dioxins/polychlorinated dibenzo furans (PCDD/PCDF) and the cresol isomers sampling was conducted using a combined EPA Method 23 and EPA SW846 Method 0010 sample train (see Figure 4-3).

A borosilicate nozzle was attached to a heated (~250°F) borosilicate probe. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted

IASDATA/LWEC/14464.007.004/FIGURE 4-3 EPA METHOD 23

glass fiber filter. A section of borosilicate tubing joined the filter holder exit to a spiral type ice water-cooled condenser an ice water-jacketed sorbent module containing approximately 40 g of 30/60 mesh XAD-2 resin. A thermowell is located on the outlet of the condenser so the XAD module inlet temperature is monitored. The XAD module was connected to a condensate trap followed by a series of three impingers. The first two impingers each contained 100-ml of high purity distilled water. The final impinger contained 300 g of dry pre-weighed silica gel. All impingers and the condensate trap were maintained in an ice bath. A control console with a leakless vacuum pump a calibrated orifice and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

During PCDD/PCDF and cresol sampling gas stream velocities were measured by inserting a calibrated "S"-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point and the sampling rate was adjusted to maintain isokineticity \pm 10 percent. Flue gas temperature was monitored at each point with a calibrated pyrometer and thermocouple. Probe filter box XAD module and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples. The thermocouples were positioned in the heated filter chamber and between the condenser and XAD module and after the last impinger.

Isokinetic test data was recorded at each traverse point during all test periods. Leak checks were performed on the sampling apparatus according to reference method instructions prior to and following each run, and/or component change.

4.5.1 EPA Method 23/EPA SW846 Method 1 - PCDD/PCDF and Cresol Sample Recovery

At the conclusion of each test the sampling train was dismantled the openings sealed and the components transported to the field laboratory.

A consistent procedure was employed for sample recovery:

1. The foil covered XAD-2 module was sealed, labeled and placed in an ice-cooled chest (sample type 1).

- 2. The glass fiber filter was removed from its holder with tweezers and placed in a borosilicate container with a Teflon-lined closure along with any loose particulate and filter fragments (sample type 2).
- 3. The particulate adhering to the internal surfaces of the nozzle probe and front half of the filter holder were rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon®-lined closure (sample type 3).
- 4. The components from the aforementioned step were rinsed with methylene chloride while brushing. The solvent was added to Sample Type 3.
- 5. The volume of liquid collected in the condensate trap was measured the value recorded and the contents poured into a glass sample bottle along with deionized water rinse of the back-half of the filter holder connectors condenser coil and condensate trap. The borosilicate sample container was capped with a Teflon-lined closure (sample type 4). The train components in the aforementioned step were washed with acetone followed by methylene chloride and the solvent rinses placed in a separate borosilicate container with a Teflon-lined closure (sample type 5).
- 6. The volume of liquid in impingers one and two was measured the values recorded.
- 7. All Method 23 test train components up to the exit of the condenser were rinsed with toluene. The toluene rinse was placed in a borosilicate sample container capped with a Teflon lined closure (sample type 6).
- 8. The silica gel in the third and final impinger was weighed and the weight gain value recorded.
- 9. Site blank samples of the solvents XAD-2 module filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check after transport.

4.5.2 EPA Method 23 - PCDD/PCDF Sample Analysis

The front-half solvent wash filter XAD-2 resin back-half solvent and toluene rinse contents were extracted. The extracts were combined into a train total composite extract and analyzed as per the procedures outlined in EPA Method 23 utilizing high resolution capillary column GC/high resolution mass spectrometry (MS) procedures.

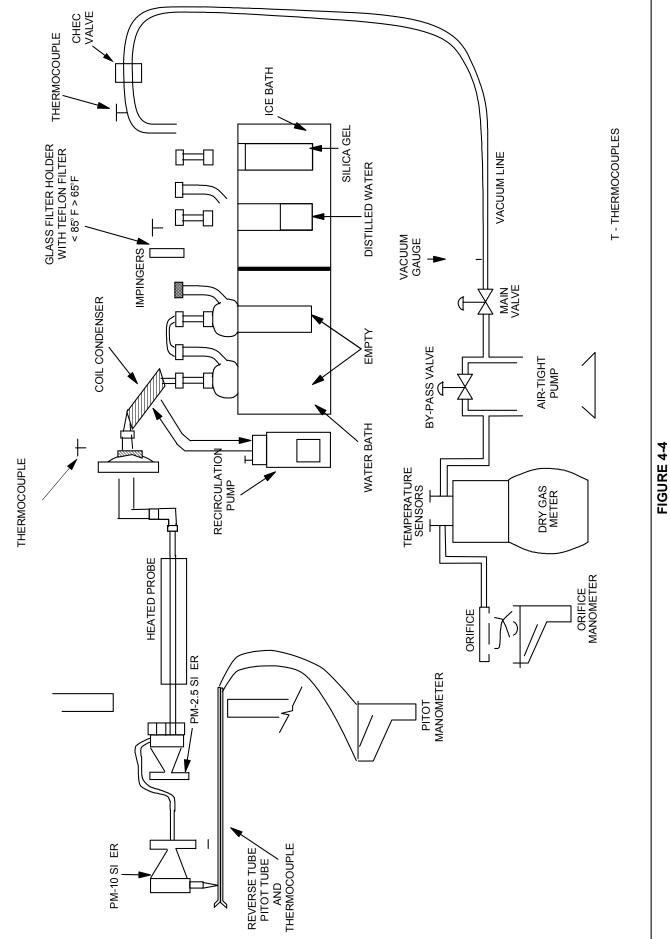
4.5.3 EPA SW846 Method 1 – Cresol Sample Analysis

General analysis for cresol isomers followed the analytical procedures summarized below. Refer to SW 846 Method 8270 for detailed specifications of this analysis procedure. Analysis was limited to three target cresol isomers; m-cresol o-cresol and p-cresol.

First each front-half wash sample is concentrated to 1-5 ml using a rotary evaporator apparatus. The sample container is rinsed three times with methylene chloride added to the concentrated solution and concentrated further to near dryness.

The above concentrate is added to the filter and XAD-2 resin in a soxhlet apparatus that contained a precleaned glass extraction thimble and silica gel. Internal standards are added covered with a plug of precleaned glass wool and refluxed with toluene for 16 hours. The extract is transferred using three 10-ml rinses of toluene to a rotary evaporator concentrated to approximately 8 ml and reduced to 1 ml under nitrogen stream. The sample is split in half one split is analyzed and the second archived.

The back-half impinger solvent rinse is concentrated to 2 ml using a rotary evaporator then added to the impinger water/condensate sample. Following solvent addition the sample is spiked with the appropriate internal standards. A liquid extraction is then conducted using methylene chloride. The extract is combined with the front-half soxhlet extract for cleanup and analysis. The remaining extract is analyzed for the targeted cresol isomers utilizing GC with low-resolution MS.


Site blanks and laboratory blanks are analyzed with each group of source samples using the above procedure as QC contamination or performance checks as appropriate. All GC/MS analyses include analysis of method blank a method blank spike a matrix spike and a laboratory control standard. In addition appropriate surrogate compounds for the cresols are spiked into each XAD-2 module. Recoveries from method spikes and surrogate compounds are calculated and recorded on control charts to maintain a history of system performance.

4.6 PM₁ /PM_{2.5} SAMPLING TRAIN

Particle size $(PM_{10}/PM_{2.5})$ was collected using EPA Method 201A. The sampling train also incorporated the revision to EPA 202 procedures for determination of condensible particulate also referred to as the dry impinger method (see Figure 4-4).

The sampling train consisted of the following components:

- A stainless steel nozzle with an inside diameter sized to sample isokinetically connected to a cyclonic separator.
- A PM₁₀/PM_{2.5} dual stage sampling cyclone.
- A borosilicate probe equipped with a calibrated thermocouple to measure flue gas temperature and a calibrated S-type Pitot tube to measure flue gas velocity pressure.
- A heated (at stack temperature) borosilicate filter holder containing a tared quartz fiber filter.
- The pitot tube tip mounted slightly beyond the combined cyclone head assembly and at least one inch off the gas flow path to the cyclone nozzle.
- A section of borosilicate connections from the outlet of the filter holder to the water cooled coil condenser. The outlet of the condenser is connected to the first impinger.
- An impinger train consisting of four impingers. The first two impingers were empty and have a short stem and modified stem respectively. The third impinger was of a standard design and contained 100 ml of distilled water. The fourth impinger contained 300 grams of dry preweighed silica gel.
- An untared Teflon filter and glass filter holder was located between the second (dry) impinger and the third impinger. The filter exit temperature was monitored and maintained between 65°F and 85°F.
- A vacuum hose with adapter to connect the outlet of the impinger train to a control module.
- A control module containing a 3-cfm carbon vane vacuum pump (sample gas mover) a calibrated dry gas meter (sample gas volume measurement device) a calibrated orifice (sample gas flow rate monitor) and inclined manometers (orifice and gas stream pressure indicators).
- A switchable calibrated digital pyrometer to monitor flue and sample gas temperatures.

IASDATA\LWEC\14464.007.004\FIGURE 4-4 METHOD 201A-202

EPA METHOD 2 1A (PM, /PM2,) / 2 2 SAMPLING TRAIN

Leak checks of the entire sampling train were performed prior to sampling. At test completion a final leak check was performed at the sample probe inlet. Per EPA 201A procedures no leak check of the $PM_{10}/PM_{2.5}$ cyclone and filter housing was performed at test completion. This is to minimize particle bypass through the cyclone during the leak check.

During PM₁₀/PM_{2.5} flue gas velocity was measured with a calibrated S-type pitot tube (provided with extensions) fastened slightly beyond the combined cyclone head and at least one inch from nozzle. Flue gas temperature was monitored with a calibrated direct readout pyrometer equipped with a chromel-alumel (Type K) thermocouple positioned near the sampling nozzle. The probe filter box CPM filter exit and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with Type K thermocouples. The PM₁₀/PM_{2.5} sample was collected at a constant rate based on stack gas conditions. The sampling time at each traverse point was adjusted based on the stack velocity measured at each point to ensure the sample is collected isokinetically.

4.6.1 PM₁ /PM_{2.5} SAMPLE RECOVERY

At the conclusion of each $PM_{10}/PM_{2.5}$ test the sampling train was dismantled. The openings sealed and the components transported to the field laboratory.

Following test completion and prior to the start of sample recovery the impinger portion of the EPA 201A/202 train was purged with nitrogen at a minimum of 14 liters per minute for 60 minutes. The CPM filter was maintained between 65°F and 85°F during the purge. This purge is to expel any dissolved sulfur dioxide.

A consistent procedure was employed for sample recovery:

- 1. The pre-weighed quartz fiber filter was removed from the borosilicate filter housing with tweezers and placed in its original container (petri dish) along with any loose particulate and filter fragments (sample type 1).
- 2. The particulate adhering to the internal surfaces of the nozzle and PM_{10} cyclone were rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon lined closure (sample type 2-PM greater than 10 m).

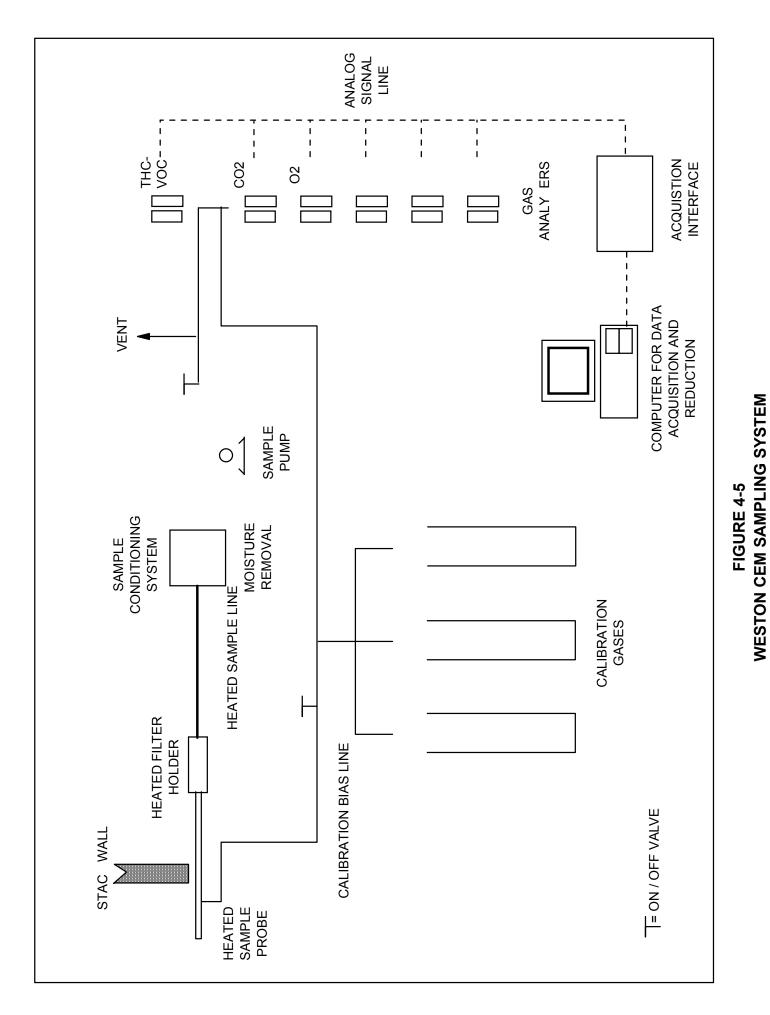
- 3. The particulate adhering to the internal surfaces of the PM_{10} cyclone exit connecting tube and the internal surfaces of the $PM_{2.5}$ cylcone was rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon lined closure (sample type 3-PM less than 10 m but greater than 2.5 m).
- 4. The particulate adhering to the internal surfaces of the $PM_{2.5}$ cyclone to filter holder connecting tube ($PM_{2.5}$ cyclone exit) and filter holder was rinsed with acetone into a borosilicate container while brushing a minimum of three times with no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon-lined closure (sample type 4-PM less than 2.5 m).
- 5. Following completion of the nitrogen purge the total liquid content of impingers one and two were measured volumetrically or gravimetrically and the sample placed in a borosilicate container (sample type 5).
- 6. The coil condenser the first two impingers the back half of the filterable particulate filter holder the front half of the condensable filter housing and the connectors were rinsed twice with distilled water. The rinsate was added to sample type 5.
- 7. The coil condenser the first two impingers the back half of the filterable particulate filter holder the front half of the condensable filter housing and the connectors were rinsed twice with acetone and hexane. The rinses were placed in a borosilicate container with Teflon-lined closure (sample type 6).
- 8. The Teflon filter (CPM filter) located between impingers 2 and 3 was removed from its filter holder and placed into a petri dish or borosilicate container (sample type 7).
- 9. The total liquid content of impinger three was measured volumetrically and discarded.
- 10. The silica gel was removed from the last impinger and immediately weighed to the nearest one-tenth gram. The weight gain was recorded.
- 11. Acetone PM_{2.5} filter distilled water and hexane blank samples were placed into a borosilicate/Teflon container or petri dish and sealed for gravimetric analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to determine whether or not leakage occurred during transport.

4.6.2 Filterable PM₁ /PM_{2.5} (EPA 2 1A) Analysis

- The filters and any loose fragments were desiccated for 24 hours and weighed to the nearest 0.1 mg to a constant weight of no more than 0.5 mg between 2 consecutive weighings with no less than six hours of desiccation time between weighings.
- The front-half acetone wash samples (nozzle/PM₁₀ cyclone rinse PM₁₀ cyclone exit/PM_{2.5} cyclone rinse and PM_{2.5} exit/filter holder rinse) were evaporated at ambient temperature and pressure in tared beakers and then desiccated to constant weight to the nearest 0.1 mg.
- A blank sample of acetone and a filter was analyzed along with the PM₁₀/PM_{2.5} source samples.

The residue weight of the nozzle PM_{10} /cyclone rinse sample represents the particulate catch greater than 10 microns (PM_{10}). The PM cyclone exit $PM_{2.5}$ cyclone rinses represent the particulate catch less than 2.5 microns (PM_{10}) The $PM_{2.5}$ filter holder rinse sample plus the filter residue represents the filterable particulate catch less than and equal to 2.5 microns ($PM_{2.5}$).


4.6.3 Condensable Particulate (EPA 2 2) Analysis

- The total volume of sample type 5 was measured.
- The Teflon filter was extracted (rinsed).
- The remaining contents of sample type 5 and the acetone/hexane rinse (sample type 6) were combined in a separatory funnel. After mixing the organic phase was removed and retained in a tared beaker. Two separate additions of 75 ml of hexane were added to the separatory funnel and removed (following mixing and separation) to the tared beaker. The organic fraction was evaporated at room temperature and desiccated to the nearest 0.1 mg to a constant weight.
- The resulting water (inorganic fraction) was placed in a tared beaker and taken to near dryness (~ 50 ml) on a hot plate and then evaporated to dryness in an oven at 105°C.

The total of the organic and inorganic fractions represent the condensible particulate catch. The total $PM_{10}/PM_{2.5}$ includes the filterable $PM_{10}/PM_{2.5}$ catch plus the organic and inorganic condensables.

4.7 CONTINUOUS EMISSIONS MONITORING SYSTEM

A diagram of the reference method sampling system used to measure VOC and O_2/CO_2 is presented in Figure 4-5. The system conformed to the requirements of EPA Reference Methods 25A and 3A. A flame ionization analyzer was used to measure VOC concentrations. A non

IASDATA\LWEC\14464.007.004\FIGURE 4-5 WESTON SAMPLING SYSTEM

dispersive infrared (NDIR) analyzer was used to measure CO_2 and a paramagnetic analyzer was used to measure O_2 concentrations.

Stack gas was withdrawn from the stack through a heated stainless steel probe and heated filter via a heated sample line maintaining a temperature of 250°F. The probe was inserted into a dedicated sample port at a single point in the gas stream. The outlet of the heated sample line was connected to a sample conditioning system for moisture removal. The clean dried sample was then transported to the O_2 and CO_2 analyzers via a Teflon_® sample line. The VOC sample was drawn directly to the flame ionization analyzer from a "T" located before the sample conditioners. The flame ionization analyzers measures VOC on a wet basis. A separate Teflon_® line was used for introduction of VOC and O_2/CO_2 bias gases to the probe outlet.

4.7.1 VOC and O₂/CO₂ Monitoring Procedures

The VOC and O_2/CO_2 analyzers were calibrated daily by introduction of EPA Protocol calibration gases to the analyzers. After the analyzer calibration a system bias check was conducted by introducing a zero gas (zero air or nitrogen) and one selected VOC and O_2/CO_2 calibration gas to the sample probe outlet. The bias check was repeated at the end of each test run to determine sampling system bias and instrument drift for each analyzer.

The interference checks on WESTON's O_2/CO_2 instrumental analyzers were previously performed (December 2014) in accordance with EPA Method 7E and were not repeated for this test program.

Additionally an O_2 stratification check was performed prior to the test effort in accordance with EPA Method 7E – Section 8.1.2. Sampling during formal testing was performed at a single point based on the results of the stratification test (5% difference for each traverse point compared to the average result).

Three formal test runs of one hour or longer duration coincided with the isokinetic sample runs in order to correct wet concentrations to a dry basis and calculate mass rates in terms of lb/hr.

The output from the analyzers was directed to a data acquisition system and recorded by a computer equipped with data reduction software designed by WESTON. The software calculated

the average one-minute measured concentrations which were used to compute an average concentration for the test run.

4.8 OPACITY

Opacity was determined by a certified visible emissions (VE) evaluator pursuant to EPA Reference Method 9. A 60-minute opacity observation (3 total) was conducted in conjunction with each EPA 5/29 and 201A/202 test train pairing. General procedures related to EPA 9 are presented below:

- A qualified observer stood at a distance to provide a clear view of the emissions with the sun oriented in the 140° sector to his/her back.
- The observers' line of vision was perpendicular to the plume direction.
- The observer recorded all pertinent atmospheric conditions and pertinent site information.
- Opacity observations were made at the point of greatest opacity of the plume and at a point without condensed water vapor.
- The exhaust plume was observed in 15 second intervals to make a reading for a minimum of 240 readings per 60-minute period. The reported % opacity was calculated as the average of the 240 consecutive observations.

5. FUEL SAMPLING AND ANALYSIS

LWEC fuel is supplied by M.A. Energy Resources LLC (MAER). MAER operates a fuel aggregation facility where raw materials are processed then conveyed to the facility.

As required by the 114 Request fuel samples were collected during the test program during each test run in accordance with 40 CFR 63 Subpart 7521(c and d). LWEC designated personnel to collect fuel samples at least twice per run (approximately beginning and mid-point) from a point where each fuel drops onto the conveyor belt feeding the boiler. A composite sample of each fuel type per test run was submitted for analysis.

Prior to the stack test program LWEC personnel collected samples of each fuel fired in the boiler on fifteen separate occasions (19 May - 2 June 2016).

The stack test composites and all fuel samples collected prior to formal testing were submitted for analysis as listed in Table 5-1.

Fuel Type	Required Analysis	Analytical Methods	Minimum Detection Level
TDF	Moisture Content	<u>ASTM D3173</u> "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"	Not Applicable
	Chlorine Concentration	<u>EPA 5050/9056</u> "Determination of Inorganic Anions by Ion Chromatography"	~50 ppm
	Sulfur Concentration	<u>ASTM D4239</u> "Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion"	0.02 weight %
Wood	Moisture Content	<u>ASTM D3173</u> "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"	Not Applicable
	Chlorine Concentration	<u>EPA 5050/9056</u> "Determination of Inorganic Anions by Ion Chromatography"	~50 ppm
	Sulfur Concentration	ASTM D4239 "Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion"	0.02 weight %
Creosote Ties	Moisture Content	<u>ASTM D3173</u> "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"	Not Applicable
	Chlorine Concentration	<u>EPA 5050/9056</u> "Determination of Inorganic Anions by Ion Chromatography"	~50 ppm
	Sulfur Concentration	<u>ASTM D4239</u> "Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion"	0.02 weight %

Table 5-1Fuel Sample Analytical Methods

6. QUALITY ASSURANCE/QUALITY CONTROL

6.1 QUALITY CONTROL PROCEDURES

As part of the compliance test WESTON implemented a QA/QC program. QA and QC are defined as follows:

- <u>Quality Control</u>: The overall system of activities whose purpose is to provide a quality product or service: for example the routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process.
- <u>Quality Assurance</u>: A system of activities whose purpose is to provide assurance that the overall quality control is being done effectively. Further

The field team manager for stack sampling was responsible for implementation of field QA/QC procedures. Individual laboratory managers were responsible for implementation of analytical QA/QC procedures. The overall project manager oversaw all QA/QC procedures to ensure that sampling and analyses met the QA/QC requirements and that accurate data resulted from the test program.

6.2 GAS STREAM SAMPLING QA PROCEDURES

General QA checks were conducted during testing and apply to all methods including the following:

- Performance of leak checks.
- Use of standardized forms labels and checklists.
- Maintenance of sample traceability.
- Collection of appropriate blanks.
- Use of calibrated instrumentation.
- Review of data sheets in the field to verify completeness.
- Use of validated spreadsheets for calculation of results.

The following section details specific QA procedures applied to the isokinetic methods.

6.2.1 Stack Gas Velocity/Volumetric Flow Rate QA Procedures

The QA procedures followed for velocity/volumetric flow rate determinations followed guidelines set forth by EPA Method 2. Incorporated into this method were sample point determinations by EPA Method 1 and gas moisture content determination by EPA Method 4. QA procedures for Methods 1 and 2 are discussed below.

Volumetric flow rates were determined during the isokinetic flue gas tests. The following QC steps were followed during these tests:

- The S-type pitot tube was visually inspected before sampling.
- Both legs of the pitot tube were leak checked before sampling.
- Proper orientation of the S-type tube was maintained while making measurements. The yaw and pitch axes of the S-type pitot tube were maintained at 90° to the flow.
- The manometer oil was leveled and zeroed before each run.
- Pitot tube coefficients were determined based on physical measurement techniques as delineated in Method 2.

6.2.2 Moisture and Sample Gas Volume QA Procedures

Gas stream moisture was determined as part of the isokinetic test trains. The following QA procedures were followed in determining the volume of moisture collected:

- Preliminary impinger train tare weights were weighed or measured volumetrically to the nearest 0.1 g or 1.0 ml.
- The balance was leveled and placed in a clean motionless environment for weighing.
- The indicating silica gel was fresh for each run and periodically inspected and replaced during runs if needed.
- The silica gel impinger gas temperature was maintained below 68°F.

The QA procedures that were followed in regards to accurate sample gas volume determination were:

• The dry gas meter was fully calibrated annually using an EPA approved intermediate standard device.

- Pre-test port-change and post-test leak-checks were completed (must be less than 0.02 cfm or 4 percent of the average sample rate).
- The gas meter was read to the thousandth of a cubic foot for all initial and final readings.
- Readings of the dry gas meter meter orifice pressure (Delta H) and meter temperatures were taken at every sampling point.
- Accurate barometric pressures were recorded at least once per day.
- Pre- and Post-test dry gas meter checks were completed to verify the accuracy of the meter calibration constant (Y).

6.2.3 Isokinetic Sampling Train QA Procedures

The Quality Assurance procedures outlined in this section were designed to ensure collection of representative, high quality test parameter (HCl/HF) concentrations and mass emissions data. The sampling QA procedures followed to ensure representative measurements were:

- All glassware was prepared per reference method procedures.
- The sample rates were within ± 10 percent of the true isokinetic (100 percent) rate.
- All sampling nozzles were manufactured and calibrated according to EPA standards.
- Recovery procedures were completed in a clean environment.
- Sample containers for liquids and filters were constructed of borosilicate or polyethylene with Teflon®-lined lids.
- At least one reagent blank of each type of solution or filter was retained and analyzed.
- All test train components from the nozzle through the last impinger were constructed of glass (with the exception of the filter support pad which is Teflon®).
- All recovery equipment (i.e. brushes graduated cylinders etc.) were non-metallic.

6.2.4 Sample Identification and Custody

Sample custody procedures for this program were based on EPA recommended procedures. Since samples were analyzed at remote laboratories the custody procedures emphasized careful documentation of sample collection and field analytical data and the use of chain-of-custody records for samples being transferred. These procedures are discussed below. The Field Team Manager was responsible for ensuring that all stack samples taken were accounted for and that all proper custody and documentation procedures were followed for the field sampling and field analytical efforts. The Field Team Manager was assisted in this effort by key sampling personnel involved in sample recovery.

Following sample collection all stack samples were given a unique sample identification code. Stack sample labels were completed and affixed to the sample container. The sample volumes were determined and recorded and the liquid levels on each bottle were marked. Sample bottle lids were sealed on the outside with Teflon® tape to prevent leakage. Additionally the samples were stored in a secure area until they are shipped.

As the samples were packed for travel chain-of-custody forms were completed for each shipment. The chain-of-custody forms specifying the treatment of each sample were also enclosed in the sample shipment container.

6.2.5 Data Reduction and Validation QC Checks

All data and/or calculations for flow rates moisture contents and isokinetic rates were made using a computer software program validated by an independent check. In addition all calculations were spot checked for accuracy and completeness by the Field Team Leader.

In general all measurement data was validated based on the following criteria:

- Process conditions during sampling or testing.
- Acceptable sample collection procedures.
- Consistency with expected or other results.
- Adherence to prescribed QC procedures.

Any suspect data was flagged and identified with respect to the nature of the problem and potential effect on the data quality.

6.3 REFERENCE METHOD CEMS QA/QC CHEC S

• Continuous emissions monitoring system (probe to sample conditioner) were checked for leaks prior to the testing.

- Pre and post-test calibration bias tests were performed as required by the reference methods.
- Prior to formal testing a three point stratification check using O₂/CO₂ was performed pursuant to Section 8.1.2 of EPA Method 7E. The three points (16.7 50 and 83.3 percent of the stack diameter) were each sampled for a minimum of two times the system response. Based on the stratification test results (each point compared to the mean difference was no more than ± 5.0 %) all sampling was performed at a single point at the stack midpoint.
- A permanent data record of analyzer response was made using computer software designed by WESTON.
- All calibration gases used met EPA Protocol standards.

6.4 LABORATORY AUDIT SAMPLES

Laboratory audit samples for metals (Pb Ni As Mn) and HCl were obtained from a Stationary Source Audit Sample (SSAS) provider in accordance with the EPA SSAS program. The audit samples were analyzed in conjunction with the stack samples and the laboratory report indicates passing results for all audit samples submitted.

APPENDIX A DETAILED TEST RESULTS

- A.1 Emissions Test Results
- A.2 Stack Inlet Temperature Data

A.1 EMISSIONS TEST RESULTS

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary o Particulate and Metals Test Data and Test Results

Test Data

Test Data				
Test run number	1	2	3	
Location		Boiler No.1		
Date	7/6/16	7/7/16	7/7/16	
Time period	1314-1521	0840-1055	1515-1704	
F-Factor	9561	9561	9561	
SAMPLING DATA:				
Sampling duration, min.	96	96	96	
Nozzle diameter, in.	0.250	0.250	0.250	
Cross sectional nozzle area, sq.ft.	0.000341	0.000341	0.000341	
Barometric pressure, in. Hg	29.27	29.38	29.38	
Avg. orifice press. diff., in H ₂ O	1.64	1.71	1.81	
Avg. dry gas meter temp., deg F	92	77	71	
Avg. abs. dry gas meter temp., deg. R	552	537	531	
Total liquid collected by train, ml	274.9	268.3	257.8	
Std. vol. of H ₂ O vapor coll., cu.ft.	12.9	12.6	12.1	
Dry gas meter calibration factor	1.0017	1.0017	1.0017	
Sample vol. at meter cond., dcf	63.332	63.749	65.414	
Sample vol. at std. cond., $dscf^{(1)}$	59.552	61.850	64.228	
Percent of isokinetic sampling	59.552 101.7	103.5	64.228 103.9	
r creem or isokmetic sampning	101./	105.5	103.9	
GAS STREAM COMPOSITION DATA:	12.0	12.2	12.1	
CO_2 , % by volume, dry basis	13.8	13.3	13.1	
O2, % by volume, dry basis	6.6	7.1	7.3	
N2, % by volume, dry basis	79.6	79.6	79.6	
Molecular wt. of dry gas, lb/lb mole	30.5	30.4	30.4	
H ₂ 0 vapor in gas stream, prop. by vol.	0.179	0.170	0.159	
Mole fraction of dry gas	0.821	0.830	0.841	
Molecular wt. of wet gas, lb/lb mole	28.2	28.3	28.4	
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DAT	ſ A:			
Static pressure, in. H ₂ O	-12.6	-12.4	-12.4	
Absolute pressure, in. Hg	28.34	28.47	28.47	
Avg. temperature, deg. F	437	430	434	
Avg. absolute temperature, deg.R	897	890	894	
Pitot tube coefficient	0.84	0.84	0.84	
Total number of traverse points	12	12	12	
Duct Avg. gas stream velocity, ft./sec.	65.2	65.0	66.6	
Duct cross sectional area, sq.ft.	39.000	39.000	39.000	
Stack exit avg. gas stream velocity, ft./sec.	57.5	57.4	58.8	
Stack cross sectional area, sq.ft.	44.179	44.179	44.179	
Avg. gas stream volumetric flow, wacf/min.	152549	152064	155914	
Avg. gas stream volumetric flow, dscf/min.	69828	71231	73689	
PARTICULATE LABORATORY REPORT DATA				
Front half acetone rinse, g	0.0035	0.0056	0.0033	
Front half acetone rinse, g Filter, g	0.0035 0.0020	0.0056 0.0070	0.0033 0.0049	
Filter, g Total catch, g	0.0020	0.0070	0.0049	Average
Filter, g Total catch, g	0.0020	0.0070	0.0049	Average 0.0022
Filter, g Total catch, g PARTICULATE EMISSIONS Conc., gr/dscf	0.0020 0.0055 0.0014	0.0070 0.0126 0.0031	0.0049 0.0082 0.0020	0.0022
Filter, g Total catch, g PARTICULATE EMISSIONS	0.0020 0.0055	0.0070 0.0126	0.0049 0.0082	
Filter, g Total catch, g PARTICULATE EMISSIONS Conc., gr/dscf Mass rate, lb/hr Mass rate, lb/MMBtu ⁽²⁾	0.0020 0.0055 0.0014 0.85	0.0070 0.0126 0.0031 1.92	0.0049 0.0082 0.0020 1.24	0.0022 1.34
Filter, g Total catch, g PARTICULATE EMISSIONS Conc., gr/dscf Mass rate, lb/hr Mass rate, lb/MMBtu ⁽²⁾ METALS MASS EMISSION RATES, lb/hr	0.0020 0.0055 0.0014 0.85 0.003	0.0070 0.0126 0.0031 1.92 0.007	0.0049 0.0082 0.0020 1.24 0.004	0.0022 1.34 0.004
Filter, g Total catch, g PARTICULATE EMISSIONS Conc., gr/dscf Mass rate, lb/hr Mass rate, lb/MMBtu ⁽²⁾ METALS MASS EMISSION RATES, lb/hr Arsenic (As)	0.0020 0.0055 0.0014 0.85 0.003 < 1.24E-04	0.0070 0.0126 0.0031 1.92 0.007 1.42E-04	0.0049 0.0082 0.0020 1.24 0.004 1.44E-04	0.0022 1.34 0.004 1.37E-04
Filter, g Total catch, g PARTICULATE EMISSIONS Conc., gr/dscf Mass rate, lb/hr Mass rate, lb/MMBtu ⁽²⁾ METALS MASS EMISSION RATES, lb/hr	0.0020 0.0055 0.0014 0.85 0.003	0.0070 0.0126 0.0031 1.92 0.007	0.0049 0.0082 0.0020 1.24 0.004	0.0022 1.34 0.004

(1) - Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg).
 (2) - Calculated using facility provided F-factor of 9561.

Limit -- 🗆 19.20 0.06

-- 🗆 0.02 -- 🗌 -- 🗌

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary of PM10 and PM2.5 Test Data and Results

TEST DATA:					
Test run number	2	3	4		
Location Test date	7/7/16	Boiler No. 1 7/7/16	7/7/16		
Test time period	1057-1251	1513-1704	1742-1926		
SAMPLING DATA:					
Avg Sqrt Delta P, sqrt(inches H2O)	0.84955	0.87248	0.87529		
Sampling duration, min.	105.50	103.50	97.5		
Nozzle-1 diameter, in.	0.190	0.190	0.190		
Barometric pressure, in. Hg	29.38	29.38	29.38		
Avg. orifice press. diff., in H ₂ O Avg. dry gas meter temp., deg F	0.39 81.11	0.39 76.37	0.37 79.0		
Avg. abs. dry gas meter temp., deg. R	541	536	539		
Total liquid collected by train, ml	164.4	154.6	141.4		
Std. vol. of H ₂ O vapor coll., cu.ft.	7.74	7.28	6.66		
Dry gas meter calibration factor	0.9915	0.9915	0.9915		
Sample vol. at meter cond., dcf	36.455	36.261	33.193		
Sample vol. at std. cond., dscf ⁽¹⁾ Percent of isokinetic sampling	34.653 100.9	34.773 99.62	31.676 96.1		
Particle Diam. with 50% penetration, um (PM_{10} cyclone)	10.053	9.988	10.216		
Cyclone flow rate (actual), cfm	0.713	0.722	0.699		
Particle Diam. with 50% penetration, um (PM2.5 cyclone D50)	2.429	2.399	2.492		
Particle Diam. with 50% penetration, um (PM2.5 cyclone D50-1)	2.425	2.394	2.491		
Ratio of Cyclone IV D50 values	1.001	1.002	1.000		
Delta P minimum, in H2O (Nozzle -1)	0.344	0.355	0.328		
Delta P maximum, in H2O (Nozzle-1)	1.190	1.222	1.150		
GAS STREAM COMPOSITION DATA:					
CO ₂ , % by volume, dry basis	13.1	13.2	13.3		
O2, % by volume, dry basis	7.3	7.3	7.2		
N ₂ , % by volume, dry basis	79.6	79.5	79.5		
Molecular wt. of dry gas, lb/lb mole	30.39 0.183	30.40 0.173	30.42 0.174		
H_20 vapor in gas stream, prop. by vol. Mole fraction of dry gas	0.183	0.827	0.826		
Molecular wt. of wet gas, lb/lb mole	28.13	28.26	28.26		
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:					
Static pressure, in. H ₂ O	-12.40	-12.40	-12.80		
Absolute pressure, in. Hg	28.47	28.47	28.44		
Avg. temperature, deg. F	431.5	432.1	432.2		
Avg. absolute temperature, deg.R	892	892	892		
Pitot tube coefficient Total number of traverse points	0.781 12	0.781 12	0.781		
DuctAvg. gas stream velocity, ft./sec.	59.9	61.3	61.6		
Duct cross sectional area, sq.ft.	39.00	39.00	39.00		
Stack exit avg. gas stream velocity, ft./sec.	52.8	54.2	54.4		
Stack cross sectional area, sq.ft. Avg. gas stream volumetric flow, wacf/min.	44.179 140056	44.179 143549	44.179 144091		
Avg. gas stream volumetric flow, dscf/min. ⁽¹⁾	64488	66820	66946		
Avg. gas stream volumetric now, user min.	01100	00820	00740		
LABORATORY REPORT DATA ⁽²⁾					
Acetone rinse greater than $PM_{2.5}$ and less than PM_{10} , g	0.0024	0.0027	0.0044		
Acetone rinse less than PM _{2.5} , g	0.0065	0.0030	0.0036		
Filter, g	0.0010	< 0.0003	< 0.0003		
H ₂ O Impinger (inorganic) residue, g Solvent Impinger (organic) residue, g	0.0088 0.0028	0.0220 0.0036	0.0200 0.0017		
solvent implinger (organie) residue, g	0.0028	0.0050	0.0017		
Filterable PM _{2.5} catch, g	0.0075	0.0030	0.0036		
Filterable PM ₁₀ catch, g	0.0099	0.0057	0.0080		
Total PM _{2.5} catch, g	0.0191	0.0286	0.0253		
Total PM ₁₀ catch, g	0.0215	0.0313	0.0297	A	T :
Total PM _{2.5} Emission rate, lb/hr	4.7	7.3	7.1	Average 6.3	Limit 🗆
Total $PM_{2.5}$ Emission rate, Ib/MMBtu ⁽³⁾	0.0179	0.0266	0.0257	0.0234	🗆
TOTAL PM ₁₀ EMISSIONS	0 00057	0.01290	0.01447	0.01264	_
Total PM ₁₀ Conc., gr/dscf	0.00957	0.01389	0.01447	0.01264	🗆 15 4
Total PM_{10} Emission rate, lb/hr	5.3	8.0	8.3	7.2	15.4
Total PM ₁₀ Emission rate, lb/MMBtu ⁽³⁾	0.0201	0.0292	0.0301	0.0265	🗆

Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).
 Nondetect values are labeled as "<" and are not included in emission calculations..
 Calculated using facility provided F-factor of 9561.

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary o Dioxin / Furan Test Data and Test Results

TEST DATA			
Run number	1	2	3
Location		Boiler No. 1	
Date	7/6/2016	7/6/2016	7/7/016
Time period	0914-1231	1552-1907	1135-1450
SAMPLING DATA			
Sampling duration, min.	180.0	180.0	180.0
Nozzle diameter, in.	0.252 0.000346	0.250 0.000341	0.250 0.000341
Cross sectional nozzle area, sq.ft. Barometric pressure, in. Hg	29.27	29.27	29.38
Avg. orifice press. diff., in H_2O	1.88	1.63	1.80
Avg. dry gas meter temp., deg F	87	97	77
Avg. abs. dry gas meter temp., deg. R	547	557	537
Total liquid collected by train, ml	543.4	477.6	466.3
Std. vol. of H ₂ O vapor coll., cu.ft.	25.58	22.48	21.95
Dry gas meter calibration factor	1.0017	1.0017	1.0017
Sample vol. at meter cond., dcf Sample vol. at std. cond., dscf ⁽¹⁾	126.625	118.288	122.983
Percent of isokinetic sampling	120.370 106.5	110.269 99.6	119.330 103.1
GAS STREAM COMPOSITION DATA			
CO ₂ , % by volume, dry basis	13.4	13.2	13.2
O2, % by volume, dry basis	6.9	7.1	7.3
N2, % by volume, dry basis	79.7	79.7	79.5
Molecular wt. of dry gas, lb/lb mole	30.42	30.40	30.40
H ₂ 0 vapor in gas stream, prop. by vol.	0.175	0.169	0.155
Mole fraction of dry gas	0.825	0.831	0.845
Molecular wt. of wet gas, lb/lb mole	28.24	28.30	28.48
GAS STREAM VELOCITY AND VOLUMETRIC FLOW I Static pressure, in. H ₂ O	-12.60	-12.60	-12.80
Absolute pressure, in. Hg	28.34	28.34	28.44
Avg. temperature, deg. F	437	434	436
Avg. absolute temperature, deg.R	897	894	896
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12 65.7	12 64.8	12 66.5
Duct Avg. gas stream velocity, ft./sec. Duct cross sectional area, sq.ft.	39.00	39.00	39.00
Stack exit avg. gas stream velocity, ft./sec.	58.0	57.2	58.7
Stack cross sectional area, sq.ft.	44.179	44.179	44.179
Avg. gas stream volumetric flow, wacf/min. Avg. gas stream volumetric flow, dscf/min.	153756 70699	151548 70374	155498 73550
DIOXIN LABORATORY REPORT DATA, µg.			
Total TCDD	1.50E-04	5.66E-05	6.97E-05
2,3,7,8-TCDD	6.90E-06	4.70E-06	5.90E-06
Total PeCDD	2.08E-04	9.66E-05	9.02E-05
1,2,3,7,8-PeCDD Total HxCDD	1.43E-05 1.10E-04	9.30E-06 9.18E-05	8.80E-06 5.15E-05
1,2,3,4,7,8-HxCDD	5.80E-06	5.60E-06	4.00E-06
1,2,3,6,7,8-HxCDD	1.06E-05	1.26E-05	5.60E-06
1,2,3,7,8,9-HxCDD	1.42E-05	1.29E-05	6.80E-06
Total HpCDD	8.07E-05	1.62E-04	4.07E-05
1,2,3,4,6,7,8-HpCDD Total OCDD	3.06E-05 9.59E-05	8.15E-05 2.38E-04	1.72E-05 5.31E-05
FURAN LABORATORY REPORT DATA, µg.			
Total TCDF	7.86E-05	3.02E-05	3.05E-05
2,3,7,8-TCDF ⁽²⁾	2.30E-05	1.07E-05	1.20E-05
Total PeCDF	1.70E-05	3.90E-06	7.50E-06
1,2,3,7,8-PeCDF	3.80E-06	3.90E-06	3.50E-06
2,3,4,7,8-PeCDF Total HxCDF	4.00E-06 1.02E-05	3.90E-06 5.40E-06	3.70E-06 3.80E-06
1,2,3,4,7,8-HxCDF	5.20E-06	5.40E-06	3.80E-06
1,2,3,6,7,8-HxCDF	3.50E-06	3.70E-06	3.30E-06
2,3,4,6,7,8-HxCDF	3.90E-06	4.00E-06	3.60E-06
1,2,3,7,8,9-HxCDF	4.20E-06	4.40E-06	4.00E-06
Total HpCDF	1.04E-05	1.71E-05 7.70E.06	3.40E-06
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	6.00E-06 4.10E-06	7.70E-06 3.80E-06	3.40E-06 3.30E-06
Total OCDF	4.10E-00 7.90E-06	1.50E-05	3.80E-06
	,	1.002.00	5.001 00

Not detected (1) Standard conditions 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary of Dioxin / Furan Test Data and Test Results

TEST DATA			
TEST DATA Run number	1	2	3
Location	1	Boiler No. 1	5
Date	7/6/2016	7/6/2016	7/7/016
Time period	0914-1231	1552-1907	1135-1450
. F			
DIOXIN LABORATORY REPORT DATA, µg.			
Total TCDD	1.50E-04	5.66E-05	6.97E-05
2,3,7,8-TCDD	6.90E-06	4.70E-06	5.90E-06
Total PeCDD	2.08E-04	9.66E-05	9.02E-05
1,2,3,7,8-PeCDD	1.43E-05	9.30E-06	8.80E-06
Total HxCDD	1.10E-04	9.18E-05	5.15E-05
1,2,3,4,7,8-HxCDD	5.80E-06	5.60E-06	4.00E-06
1,2,3,6,7,8-HxCDD	1.06E-05	1.26E-05	5.60E-06
1,2,3,7,8,9-HxCDD	1.42E-05 8.07E-05	1.29E-05 1.62E-04	6.80E-06 4.07E-05
Total HpCDD 1,2,3,4,6,7,8-HpCDD	3.06E-05	8.15E-05	4.07E-03 1.72E-05
Total OCDD	9.59E-05	2.38E-04	5.31E-05
DIOVIN CONCENTRATION IN /4			
DIOXIN CONCENTRATION, lb/dsc Total TCDD	2.75E-15	1.13E-15	1.29E-15
2,3,7,8-TCDD	1.26E-16	9.40E-17	1.29E-13 1.09E-16
Total PeCDD	3.81E-15	1.93E-15	1.67E-15
1,2,3,7,8-PeCDD	2.62E-16	1.86E-16	1.63E-16
Total HxCDD	2.01E-15	1.84E-15	9.51E-16
1,2,3,4,7,8-HxCDD	1.06E-16	1.12E-16	7.39E-17
1,2,3,6,7,8-HxCDD	1.94E-16	2.52E-16	1.03E-16
1,2,3,7,8,9-HxCDD	2.60E-16	2.58E-16	1.26E-16
Total HpCDD	1.48E-15	3.24E-15	7.52E-16
1,2,3,4,6,7,8-HpCDD	5.60E-16	1.63E-15	3.18E-16
Total OCDD	1.76E-15	4.76E-15	9.81E-16
DIOXIN CONCENTRATION, µg/dscm.	1 105 05	1.015.05	2 0 (E) 0 5
Total TCDD	4.40E-05	1.81E-05	2.06E-05
2,3,7,8-TCDD Total PeCDD	2.02E-06 6.10E-05	1.51E-06 3.09E-05	1.75E-06 2.67E-05
1,2,3,7,8-PeCDD	4.20E-06	2.98E-06	2.60E-06
Total HxCDD	3.23E-05	2.94E-05	1.52E-05
1,2,3,4,7,8-HxCDD	1.70E-06	1.79E-06	1.18E-06
1,2,3,6,7,8-HxCDD	3.11E-06	4.04E-06	1.66E-06
1,2,3,7,8,9-HxCDD	4.17E-06	4.13E-06	2.01E-06
Total HpCDD	2.37E-05	5.19E-05	1.20E-05
1,2,3,4,6,7,8-HpCDD	8.98E-06	2.61E-05	5.09E-06
Total OCDD	2.81E-05	7.62E-05	1.57E-05
DIOXIN CONCENTRATION, µg/dscm. @ % O ₂	4.37E-05	1 925 05	2.11E.05
Total TCDD 2,3,7,8-TCDD	4.37E-05 2.01E-06	1.83E-05 1.52E-06	2.11E-05 1.78E-06
Total PeCDD	6.06E-05	3.12E-05	2.73E-05
1,2,3,7,8-PeCDD	4.17E-06	3.00E-06	2.66E-06
Total HxCDD	3.20E-05	2.96E-05	1.56E-05
1,2,3,4,7,8-HxCDD	1.69E-06	1.81E-06	1.21E-06
1,2,3,6,7,8-HxCDD	3.09E-06	4.06E-06	1.69E-06
1,2,3,7,8,9-HxCDD	4.14E-06	4.16E-06	2.06E-06
Total HpCDD	2.35E-05	5.23E-05	1.23E-05
1,2,3,4,6,7,8-HpCDD	8.91E-06	2.63E-05	5.20E-06
Total OCDD	2.79E-05	7.68E-05	1.61E-05
DIOXIN EMISSIONS, lb/hr.			
Total TCDD	1.17E-08	4.78E-09	5.68E-09
2,3,7,8-TCDD	5.36E-10	3.97E-10	4.81E-10
Total PeCDD	1.62E-08	8.15E-09 7.85E 10	7.35E-09 7.17E-10
1,2,3,7,8-PeCDD Total HxCDD	1.11E-09 8.55E-09	7.85E-10 7.75E-09	7.17E-10 4.20E-09
1,2,3,4,7,8-HxCDD	4.51E-10	4.73E-10	4.20E-09 3.26E-10
1,2,3,6,7,8-HxCDD	8.24E-10	1.06E-09	4.57E-10
1,2,3,7,8,9-HxCDD	1.10E-09	1.09E-09	5.54E-10
Total HpCDD	6.27E-09	1.37E-08	3.32E-09
1,2,3,4,6,7,8-HpCDD	2.38E-09	6.88E-09	1.40E-09
Total OCDD	7.45E-09	2.01E-08	4.33E-09

Non detect value

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary o Dioxin / Furan Test Data and Test Results

TEST DATA			
Run number	1	2	3
Location		Boiler No. 1	
Date Time period	7/6/2016 0914-1231	7/6/2016 1552-1907	7/7/016 1135-1450
This period	0914-1231	1552-1907	1155-1450
FURAN LABORATORY REPORT DATA, ug.			
Total TCDF	7.86E-05	3.02E-05	3.05E-05
2,3,7,8-TCDF	2.30E-05	1.07E-05	1.20E-05
Total PeCDF	1.70E-05	3.90E-06	7.50E-06
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	3.80E-06 4.00E-06	3.90E-06 3.90E-06	3.50E-06 3.70E-06
Total HxCDF	1.02E-05	5.40E-06	3.80E-06
1,2,3,4,7,8-HxCDF	5.20E-06	5.40E-06	3.80E-06
1,2,3,6,7,8-HxCDF	3.50E-06	3.70E-06	3.30E-06
2,3,4,6,7,8-HxCDF	3.90E-06	4.00E-06	3.60E-06
1,2,3,7,8,9-HxCDF	4.20E-06	4.40E-06	4.00E-06
Total HpCDF 1,2,3,4,6,7,8-HpCDF	1.04E-05 6.00E-06	1.71E-05 7.70E-06	3.40E-06 3.40E-06
1,2,3,4,7,8,9-HpCDF	4.10E-06	3.80E-06	3.30E-06
Total OCDF	7.90E-06	1.50E-05	3.80E-06
FURAN CONCENTRATION, lb/dsc Total TCDF	1.44E-15	6.04E-16	5.63E-16
	4.21E-16		2.22E-16
2,3,7,8-TCDF Total PeCDF	3.11E-16	2.14E-16 7.80E-17	1.39E-16
1,2,3,7,8-PeCDF	6.96E-17	7.80E-17	6.47E-17
2,3,4,7,8-PeCDF	7.33E-17	7.80E-17	6.84E-17
Total HxCDF	1.87E-16	1.08E-16	7.02E-17
1,2,3,4,7,8-HxCDF	9.52E-17	1.08E-16	7.02E-17
1,2,3,6,7,8-HxCDF	6.41E-17	7.40E-17	6.10E-17
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	7.14E-17 7.69E-17	8.00E-17 8.80E-17	6.65E-17 7.39E-17
Total HpCDF	1.90E-16	3.42E-16	6.28E-17
1,2,3,4,6,7,8-HpCDF	1.10E-16	1.54E-16	6.28E-17
1,2,3,4,7,8,9-HpCDF	7.51E-17	7.60E-17	6.10E-17
Total OCDF	1.45E-16	3.00E-16	7.02E-17
FURAN CONCENTRATION, µg./dscm.			
Total TCDF	2.31E-05	9.67E-06	9.03E-06
2,3,7,8-TCDF	6.75E-06	3.43E-06	3.55E-06
Total PeCDF	4.99E-06	1.25E-06	2.22E-06
1,2,3,7,8-PeCDF	1.11E-06	1.25E-06	1.04E-06
2,3,4,7,8-PeCDF	1.17E-06	1.25E-06	1.10E-06
Total HxCDF	2.99E-06	1.73E-06	1.12E-06
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.53E-06 1.03E-06	1.73E-06 1.19E-06	1.12E-06 9.77E-07
2,3,4,6,7,8-HxCDF	1.14E-06	1.28E-06	1.07E-06
1,2,3,7,8,9-HxCDF	1.23E-06	1.41E-06	1.18E-06
Total HpCDF	3.05E-06	5.48E-06	1.01E-06
1,2,3,4,6,7,8-HpCDF	1.76E-06	2.47E-06	1.01E-06
1,2,3,4,7,8,9-HpCDF Total OCDF	1.20E-06 2.32E-06	1.22E-06	9.77E-07
Total OCDr	2.52E-00	4.80E-06	1.12E-06
FURAN CONCENTRATION, µg./dscm @ % O2			
Total TCDF	2.29E-05	9.74E-06	9.22E-06
2,3,7,8-TCDF	6.70E-06	3.45E-06	3.63E-06
Total PeCDF	4.95E-06	1.26E-06	2.27E-06
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.11E-06 1.17E-06	1.26E-06 1.26E-06	1.06E-06 1.12E-06
Total HxCDF	2.97E-06	1.74E-06	1.15E-06
1,2,3,4,7,8-HxCDF	1.51E-06	1.74E-06	1.15E-06
1,2,3,6,7,8-HxCDF	1.02E-06	1.19E-06	9.98E-07
2,3,4,6,7,8-HxCDF	1.14E-06	1.29E-06	1.09E-06
1,2,3,7,8,9-HxCDF Total HpCDF	1.22E-06	1.42E-06	1.21E-06
1,2,3,4,6,7,8-HpCDF	3.03E-06 1.75E-06	5.52E-06 2.48E-06	1.03E-06 1.03E-06
1,2,3,4,7,8,9-HpCDF	1.19E-06	1.23E-06	9.98E-07
Total OCDF	2.30E-06	4.84E-06	1.15E-06
FURAN EMISSIONS, lb/hr. Total TCDF	6.11E-09	2.55E-09	2.49E-09
2,3,7,8-TCDF ⁽¹⁾	1.79E-09	9.03E-10	9.78E-10
Total PeCDF	1.32E-09	3.29E-10	6.11E-10
1,2,3,7,8-PeCDF	2.95E-10	3.29E-10	2.85E-10
2,3,4,7,8-PeCDF	3.11E-10	3.29E-10	3.02E-10
Total HxCDF	7.92E-10	4.56E-10	3.10E-10
1,2,3,4,7,8-HxCDF	4.04E-10 2.72E-10	4.56E-10 3.12E-10	3.10E-10 2.69E-10
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.72E-10 3.03E-10	3.12E-10 3.38E-10	2.69E-10 2.94E-10
1,2,3,7,8,9-HxCDF	3.26E-10	3.71E-10	3.26E-10
Total HpCDF	8.08E-10	1.44E-09	2.77E-10
1,2,3,4,6,7,8-HpCDF	4.66E-10	6.50E-10	2.77E-10
1,2,3,4,7,8,9-HpCDF	3.19E-10	3.21E-10	2.69E-10
Total OCDF	6.14E-10	1.27E-09	3.10E-10

ND Non detect value

L'Anse Warden Electric Company L'Anse, MI

Boiler No. 1

Summary o Dioxin / Furan Test Data and Test Results

TEST	DATA

TEST DATA						
Run number		1	2	3		
Location			Boiler No. 1			
Date		7/6/2016	7/6/2016	7/7/016		
Time period		0914-1231	1552-1907	1135-1450		
TOXIC EQUIVALENCY EMISSIONS (WHO/2005), ug/dscm @ 7% O2	(WHO/2005)					
Total TCDD	0	0.00E+00	0.00E+00	0.00E+00		
2,3,7,8-TCDD	1	2.01E-06	1.52E-06	1.78E-06		
Total PeCDD	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,7,8-PeCDD	1	4.17E-06	3.00E-06	2.66E-06		
Total HxCDD	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,4,7,8-HxCDD	0.1	1.69E-07	1.81E-07	1.21E-07		
1,2,3,6,7,8-HxCDD	0.1	3.09E-07	4.06E-07	1.69E-07		
1,2,3,7,8,9-HxCDD	0.1	4.14E-07	4.16E-07	2.06E-07		
Total HpCDD	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,4,6,7,8-HpCDD	0.01	8.91E-08	2.63E-07	5.20E-08		
Total OCDD	0.0003	8.38E-09	2.30E-08	4.82E-09		
	0	0.005 - 00	0.005+00			
Total TCDF	0	0.00E+00	0.00E+00	0.00E+00		
2,3,7,8-TCDF	0.1	6.70E-07	3.45E-07	3.63E-07		
Total PeCDF	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,7,8-PeCDF	0.03	3.32E-08	3.77E-08	3.18E-08		
2,3,4,7,8-PeCDF	0.3	3.50E-07	3.77E-07	3.36E-07		
Total HxCDF	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,4,7,8-HxCDF	0.1	1.51E-07	1.74E-07	1.15E-07		
1,2,3,6,7,8-HxCDF	0.1	1.02E-07	1.19E-07	9.98E-08		
2,3,4,6,7,8-HxCDF	0.1	1.14E-07	1.29E-07	1.09E-07		
1,2,3,7,8,9-HxCDF	0.1	1.22E-07	1.42E-07	1.21E-07		
Total HpCDF	0	0.00E+00	0.00E+00	0.00E+00		
1,2,3,4,6,7,8-HpCDF	0.01	1.75E-08	2.48E-08	1.03E-08		
1,2,3,4,7,8,9-HpCDF	0.01	1.19E-08	1.23E-08	9.98E-09		
Total OCDF	0.0003	6.90E-10	1.45E-09	3.45E-10		Previous
Town OODT	0.0005	0.001 10	1.102.05	5.102.10	Average	Limit
TOTAL TOXIC EQUIVALENCY EMISSIONS (WHO/2005), ug/dscm @	7% O. ⁽¹⁾	7.72E-06	6.35E-06	5.70E-06	6.59E-06	1.33E-02
To THE TOALE EQUIVALENCE EMISSIONS (WHO/2005), ugusen (<i>g</i> / /0 O ₂	1.121 00	0.5512 00	5.701 00	0.571 00	1.551 02
TOXIC FOULVALENCY EMISSIONS (WHO/2005) h/br	(WHO/2005)					
TOXIC EQUIVALENCY EMISSIONS (WHO/2005), lb/hr.	(WHO/2005)	0.00E+00	0.00F+00	0.00E+00		
Total TCDD	0	0.00E+00 5.36E-10	0.00E+00 3.97E-10	0.00E+00		
Total TCDD 2,3,7,8-TCDD	0 1	5.36E-10	3.97E-10	4.81E-10		
Total TCDD 2,3,7,8-TCDD Total PeCDD	0 1 0	5.36E-10 0.00E+00	3.97E-10 0.00E+00	4.81E-10 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD	0 1 0 1	5.36E-10 0.00E+00 1.11E-09	3.97E-10 0.00E+00 7.85E-10	4.81E-10 0.00E+00 7.17E-10		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD	0 1 0 1 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD	0 1 0 1 0 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD	0 1 0 1 0 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD	0 1 0 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD Total HpCDD	0 1 0 1. 0.1 0.1 0.1 0.1 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	0 1 0 0.1 0.1 0.1 0 0.01	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD Total HpCDD	0 1 0 1. 0.1 0.1 0.1 0.1 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD	0 1 0 0.1 0.1 0.1 0.01 0.0003	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF	0 1 0 0 0.1 0.1 0.1 0.01 0.0003 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF	0 1 0 0.1 0.1 0.1 0 0.01 0.0003 0 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF	0 1 0 0.1 0.1 0.1 0.001 0.0003 0 0.1 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF	0 1 0 0.1 0.1 0.1 0 0.01 0.0003 0 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PCDF	0 1 0 0.1 0.1 0.1 0.001 0.0003 0 0.1 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HXCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PCDF 1,2,3,7,8-PeCDF	0 1 0 0.1 0.1 0.1 0.01 0.001 0.0003 0 0.1 0 0.1 0 0.3	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+10 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-PCDF Total PeCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF	0 1 0 0 0.1 0.1 0.01 0.0003 0 0 0.1 0 0.03 0.3	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 9.03E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PeCDF 1,2,3,7,8-PeCDF Total PeCDF 1,2,3,7,8-PeCDF Total HxCDF Total HxCDF	0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF	0 1 0 0.1 0.1 0.1 0.001 0.0003 0 0.1 0 0.03 0.3 0 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00 4.04E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF Total HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0 1 0 0.1 0.1 0.1 0.01 0.0003 0 0.1 0 0.3 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00 4.04E-11 2.72E-11 3.03E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 9.03E-11 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+10 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 2.94E-11		
Total TCDD 2,3,7,8-TCDD Total PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HpCDD 1,2,3,4,6,7,8-HpCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total TCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF Total HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	0 1 0 0.1 0.1 0.1 0.01 0.0003 0 0.01 0.03 0.3 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+01 4.04E-11 2.72E-11 3.03E-11 3.26E-11	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 9.03E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 2.94E-11 3.26E-11		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,7,8-PHXCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PeCDF 1,2,3,7,8-PeCDF Total HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF Total HpCDF	0 1 0 0.1 0.1 0.1 0.1 0.0003 0 0.1 0 0.03 0 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0 0.03 0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00 4.04E-11 2.72E-11 3.26E-11 0.00E+00	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 3.26E-11 0.00E+00		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HXCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PeCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-PeCDF Total HXCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF	0 1 0 0.1 0.1 0.1 0.001 0.0003 0 0.1 0 0.03 0.3 0 0.1 0.1 0.1 0.1 0 0.03 0.3 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00 4.04E-11 2.72E-11 3.03E-11 0.00E+00 4.66E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00 6.50E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 2.94E-11 0.00E+00 2.77E-12		
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HXCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total TCDF 2,3,7,8-TCDF Total OCDD Total PCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	0 1 0 0.1 0.1 0.1 0.0003 0 0.1 0.0003 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 4.04E-11 2.72E-11 3.03E-11 3.26E-11 0.00E+00 4.66E-12 3.19E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00 6.50E-12 3.21E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+10 3.10E-11 2.94E-11 3.26E-11 0.00E+00 2.77E-12 2.69E-12		Previous
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HXCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total OCDD Total TCDF 2,3,7,8-TCDF Total PeCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-PeCDF Total HXCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF	0 1 0 0.1 0.1 0.1 0.001 0.0003 0 0.1 0 0.03 0.3 0 0.1 0.1 0.1 0.1 0 0.03 0.3 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 8.86E-12 9.32E-11 0.00E+00 4.04E-11 2.72E-11 3.03E-11 0.00E+00 4.66E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00 6.50E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 2.94E-11 0.00E+00 2.77E-12	Averace	Previous
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,7,8-PeCDD Total HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total TCDF 2,3,7,8-TCDF Total PCDF 2,3,7,8-PeCDF Total HxCDF 1,2,3,4,7,8-PeCDF Total HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	0 1 0 0.1 0.1 0.1 0.0003 0 0.1 0.0003 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 4.00E+00 4.04E-11 2.72E-11 3.03E-11 3.26E-11 0.00E+00 4.66E-12 3.19E-12 1.84E-13	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 9.03E-11 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00 6.50E-12 3.21E-12 3.80E-13	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+10 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+00 3.10E-11 2.69E-11 2.94E-11 3.26E-11 0.00E+00 2.77E-12 2.69E-12 9.29E-14	Average	Limit
Total TCDD 2,3,7,8-TCDD Total PCDD 1,2,3,7,8-PeCDD Total HXCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total HpCDD 1,2,3,4,6,7,8-HxCDD Total TCDF 2,3,7,8-TCDF Total OCDD Total PCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	0 1 0 0.1 0.1 0.1 0.0003 0 0.1 0.0003 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	5.36E-10 0.00E+00 1.11E-09 0.00E+00 4.51E-11 8.24E-11 1.10E-10 0.00E+00 2.38E-11 2.24E-12 0.00E+00 1.79E-10 0.00E+00 4.04E-11 2.72E-11 3.03E-11 3.26E-11 0.00E+00 4.66E-12 3.19E-12	3.97E-10 0.00E+00 7.85E-10 0.00E+00 4.73E-11 1.06E-10 1.09E-10 0.00E+00 6.88E-11 6.03E-12 0.00E+00 9.03E-11 0.00E+00 9.88E-12 9.88E-11 0.00E+00 4.56E-11 3.12E-11 3.38E-11 3.71E-11 0.00E+00 6.50E-12 3.21E-12	4.81E-10 0.00E+00 7.17E-10 0.00E+00 3.26E-11 4.57E-11 5.54E-11 0.00E+00 1.40E-11 1.30E-12 0.00E+00 9.78E-11 0.00E+00 8.56E-12 9.05E-11 0.00E+10 3.10E-11 2.94E-11 3.26E-11 0.00E+00 2.77E-12 2.69E-12	Average 1.75E-09	

(1) Toxic equivalency does not include detection limit values. Non detect value

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary of Cresol Isomer Test Data and Test Results

TEST DATA					
Run number	1	2	3		
Location		Boiler No. 1			
Date	7/6/2016	7/6/2016	7/7/016		
Time period	0914-1231	1552-1907	1135-1450		
SAMPLING DATA:					
Sampling duration, min.	180.0	180.0	180.0		
Nozzle diameter, in.	0.252	0.250	0.250		
Cross sectional nozzle area, sq.ft.	0.000346	0.000341	0.000341		
Barometric pressure, in. Hg	29.27	29.27	29.38		
Avg. orifice press. diff., in H ₂ O	1.88	1.63	1.80		
Avg. dry gas meter temp., deg F	86.6	97.1	77.4		
Avg. abs. dry gas meter temp., deg. R	547	557	537		
Total liquid collected by train, ml	543.4	477.6	466.3		
Std. vol. of H_2O vapor coll., cu.ft.	25.6	22.5	22.0		
Dry gas meter calibration factor	1.0017	1.0017	1.0017		
Sample vol. at meter cond., dcf	126.625	118.288	122.983		
Sample vol. at std. cond., dscf ⁽¹⁾	120.370	110.269	119.330		
Percent of isokinetic sampling	106.5	99.6	103.1		
recent of isoknotic sumpling	100.5	77.0	100.1		
GAS STREAM COMPOSITION DATA					
CO_2 , % by volume, dry basis	13.4	13.2	13.2		
O ₂ , % by volume, dry basis	6.9	7.1	7.3		
N_2 , % by volume, dry basis	79.7	79.7	79.5		
Molecular wt. of dry gas, lb/lb mole	30.42	30.40	30.40		
H_20 vapor in gas stream, prop. by vol.	0.175	0.169	0.155		
Mole fraction of dry gas	0.825	0.831	0.845		
Molecular wt. of wet gas, lb/lb mole	28.24	28.30	28.48		
GAS STREAM VELOCITY AND VOLUMETRIC FLOW I	NATA				
		12 (0	12.00		
Static pressure, in. H_2O	-12.60	-12.60	-12.80		
Absolute pressure, in. Hg	28.34	28.34	28.44		
Avg. temperature, deg. F	437	434	436		
Avg. absolute temperature, deg.R	897	894	896		
Pitot tube coefficient	0.84	0.84	0.84		
Total number of traverse points	12	12	12		
Duct Avg. gas stream velocity, ft./sec.	65.7 39.00	64.8 39.00	66.5 39.00		
Duct cross sectional area, sq.ft. Stack exit avg. gas stream velocity, ft./sec.	58.0	57.2	58.7		
Stack cross sectional area, sq.ft.	44.179	44.179	44.179		
Avg. gas stream volumetric flow, wacf/min.	153756	151548	155498		
Avg. gas stream volumetric flow, dscf/min.	70699	70374	73550		
CREGOLIGOMER LABORATORY REPORT RATE					
CRESOL ISOMER LABORATORY REPORT DATA, ug.	5.0	5.0	5.0		
2-Methylphenol 3-Methylphenol & 4-Methylphenol	5.0 5.0	5.0 5.0	5.0 5.0		
5-wearyphenor & +wearyphenor	5.0	5.0	5.0		
CRESOL ISOMER CONCENTRATIONS, lb/dsc .		1 00- 10			
2-Methylphenol	9.16E-11	1.00E-10	9.24E-11		
3-Methylphenol & 4-Methylphenol	9.16E-11	1.00E-10	9.24E-11		Previo
CRESOL ISOMER EMISSION RESULTS, lb/hr				Average	Limit
2-Methylphenol	3.88E-04	4.22E-04	4.08E-04	4.06E-04	
3-Methylphenol & 4-Methylphenol	3.88E-04	4.22E-04	4.08E-04	4.06E-04	🗆
2-Methylphenol, 3-Methylphenol, & 4-Methylphenol	7.77E-04	8.44E-04	8.15E-04	8.12E-04	0.34

L'Anse Warden Electric Company L'Anse., MI Boiler No. 1 Summary o Hydrogen Chloride and Chlorine Test Data and Test Results

TEST DATA Test run number	1	2	3		
Location	1	Boiler No. 1	5		
Test date	07/06/2016	07/06/2016	07/07/2015		
Test time period	0935-1040	1621-1726	1334-1439		
F-Factor	9561	9561	9561		
1-1 4000	5501	7501	7501		
SAMPLING DATA					
Sampling duration, min.	65	65	65		
Barometric pressure, in. Hg	29.27	29.27	29.38		
Avg. orifice press. diff., in H2O	1.80	1.80	1.80		
Avg. dry gas meter temp., deg F	84.2	103.8	75.6		
Avg. abs. dry gas meter temp., deg. R	544	564	536		
Total liquid collected by train, ml	212.1	186.0	184.4		
Std. vol. of H2O vapor coll., cu.ft.	9.985	8.756	8.681		
Dry gas meter calibration factor	0.9915	0.9915	0.9915		
Sample vol. at meter cond., dcf	46.886	46.930	46.500		
Sample vol. at std. cond., dscf ⁽¹⁾	44.309	42.802	44.812		
GAS STREAM COMPOSITION DATA					
CO2, % by volume, dry basis	13.6	13.0	13.0		
O2, % by volume, dry basis	6.7	7.4	7.5		
N2, % by volume, dry basis	79.7	79.6	79.5		
Molecular wt. of dry gas, lb/lb mole	30.44	30.38	30.38		
H2O vapor in gas stream, prop. by vol.	0.184	0.170	0.162		
Mole fraction of dry gas	0.816	0.830	0.838		
Molecular wt. of wet gas, lb/lb mole	28.16	28.27	28.37		
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA	12 (0	12 (0	12.00		
Static pressure, in. H2O	-12.60	-12.60 -0.926	-12.80 -0.941		
Static pressure, in. Hg	-0.926				
Absolute pressure, in. Hg	28.34 450	28.34 444	28.44 443		
Avg. temperature, deg. F Avg. absolute temperature, deg.R	430 910	444 904	443 903		
Pitot tube coefficient	0.84	0.84	0.84		
	0.84 65.7	0.84 64.8	0.84 66.5		
Duct Avg. gas stream velocity, ft./sec.	65.7 39.000	39.000	39.000		
Duct cross sectional area, sq.ft. Stack exit avg. gas stream velocity, ft./sec.	58.0	57.2	58.7		
Stack cross sectional area, sq.ft.	44.179	44.179	44.179		
Avg. gas stream volumetric flow, wacf/min.	153756	151548	155498		
Avg. gas stream volumetric flow, dscf/min. ⁽²⁾	70699	70374	73550		
HCl and Cl ₂ LABORATORY REPORT DATA					
Total HCl, mg	8.20	8.80	7.40		
Total Cl ₂ , mg	1.2	1.2	1.2		
HCI EMISSIONS	4 005 07	4.525.07	2 (45 07	Average	Limit
Concentration, lb/dscf	4.08E-07	4.53E-07	3.64E-07	4.08E-07	[]
Concentration, ppm/v	4.31	4.79	3.85	4.32	🗆
Mass rate, lb/hr	1.73	1.91	1.61	1.75	2.17
Cl ₂ EMISSIONS					
Concentration, lb/dscf	5.97E-08	6.18E-08	5.90E-08	6.02E-08	🗆
Concentration, ppm/v	0.32	0.34	0.32	0.33	🗆
Mass rate, lb/hr	0.25	0.26	0.26	0.26	🗆

(1) Standard conditions 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)
 (2) Volumetric flow rate from EPA Method 23 sanpling train data.

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Summary of VOC Test Results

Run	Date	Time	Volumetric	Stack	Concentrations and Emission Rates					
No.			Flow	Moisture	O ₂	CO ₂		V	OC as methane	
			(dsc m) ¹	(%) ¹	(%)	(%)	VOC (ppmvw)	VOC (ppmvd)	VOC (ppmvd @ 7% O ₂)	VOC (lb/hr)
1	6-Jul-16	1315-1415	69828	17.9	6.7	13.7	0.10	0.12	0.12	0.02
2	7-Jun-16	0930-1030	71231	17.0	7.2	13.2	0.10	0.12	0.12	0.02
3	7-Jun-07	1545-1645	73689	15.9	7.6	12.9	0.10	0.12	0.12	0.02
	Average		1583	16.9	7.2	13.3	< 0.1	< 0.12	< 0.12	< 0.02
							Liı	mit	50	9.1

¹ Mass rates are calculated using the volumetric flow and moisture content from corresponding EPA Reference Method 5/29 test.

A.2 STAC INLET TEMPERATURE DATA

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

	Date/Time	T1	Т2
1	7/6/2016 9:38	443	80.7
2	7/6/2016 9:39	442.9	79.7
3	7/6/2016 9:40	442.9	86
4	7/6/2016 9:41	443	79.6
5	7/6/2016 9:42	442.7	77.2
6	7/6/2016 9:43	443.1	76.4
7	7/6/2016 9:44	443.2	76.3
8	7/6/2016 9:45	443.3	76.8
9	7/6/2016 9:46	443.4	77.9
10	7/6/2016 9:47	443.4	79.7
11	7/6/2016 9:48	443.3	79.8
12	7/6/2016 9:49	443.2	77.9
13	7/6/2016 9:50	443	76.1
14	7/6/2016 9:51	442.7	76.6
15	7/6/2016 9:52	442.4	78.4
16	7/6/2016 9:53	442	83
17	7/6/2016 9:54	441.6	78.4
18	7/6/2016 9:55	441.3	83.6
19	7/6/2016 9:56	441.2	81.2
20	7/6/2016 9:57	441.5	77
21	7/6/2016 9:58	441.7	75.9
22	7/6/2016 9:59	442.1	75.1
23	7/6/2016 10:00	441.5	72.3
24	7/6/2016 10:01	442.6	75
25	7/6/2016 10:02	442.9	76.9
26	7/6/2016 10:03	441.3	74.3
27	7/6/2016 10:04	442.8	80.4
28	7/6/2016 10:05	443	81.8
29	7/6/2016 10:06	442.8	77.4
30	7/6/2016 10:07	442.8	77.6
31	7/6/2016 10:08	442.8	85.5
32	7/6/2016 10:09	443	78.9
33	7/6/2016 10:10	443.3	79.9
34	7/6/2016 10:11	443.4	84.7
35	7/6/2016 10:12	443.7	75.1

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

[Date/Time	T1	Т2
36	7/6/2016 10:13	443.9	78.8
37	7/6/2016 10:14	444.1	78.5
38	7/6/2016 10:15	444.3	80.3
39	7/6/2016 10:16	444.4	74.2
40	7/6/2016 10:17	444.5	74.5
41	7/6/2016 10:18	444.9	76.8
42	7/6/2016 10:19	444.9	76.6
43	7/6/2016 10:20	445.1	72.9
44	7/6/2016 10:21	445.2	78.9
45	7/6/2016 10:22	445.4	77.5
46	7/6/2016 10:23	445.5	76.5
47	7/6/2016 10:24	445.5	78.5
48	7/6/2016 10:25	445.6	75.4
49	7/6/2016 10:26	445.5	83.8
50	7/6/2016 10:27	445.5	78.6
51	7/6/2016 10:28	445.7	71.7
52	7/6/2016 10:29	445.8	74.8
53	7/6/2016 10:30	445.8	78
54	7/6/2016 10:31	445.9	75
55	7/6/2016 10:32	445.3	78.2
56	7/6/2016 10:33	446	81.5
57	7/6/2016 10:34	446.1	77.9
58	7/6/2016 10:35	446.2	83.2
59	7/6/2016 10:36	446.3	79.3
60	7/6/2016 10:37	446.4	75.8
61	7/6/2016 10:38	446.5	80.4
62	7/6/2016 10:39	446.5	80.2
63	7/6/2016 10:40	446.5	80.3
64	7/6/2016 10:41	444.5	76.7
65	7/6/2016 10:42	441.4	79.9
66	7/6/2016 10:43	445.5	79.3
67	7/6/2016 10:44	446.1	81.8
68	7/6/2016 10:45	446.3	81.5
69	7/6/2016 10:46	446.1	76.9
70	7/6/2016 10:47	445.8	82.4

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

[Date/Time	T1	Т2
71	7/6/2016 10:48	445.7	80.1
72	7/6/2016 10:49	445.8	81.2
73	7/6/2016 10:50	444.7	80.8
74	7/6/2016 10:51	444.3	81.2
75	7/6/2016 10:52	445.6	76.4
76	7/6/2016 10:53	444.6	77.9
77	7/6/2016 10:54	445.1	79.8
78	7/6/2016 10:55	445.4	79.8
79	7/6/2016 10:56	445.7	85.5
80	7/6/2016 10:57	446.1	79.3
81	7/6/2016 10:58	446.1	76.5
82	7/6/2016 10:59	446.1	78
83	7/6/2016 11:00	446	82.6
84	7/6/2016 11:01	446.3	80.9
85	7/6/2016 11:02	446.5	80.3
86	7/6/2016 11:03	446.6	81.4
87	7/6/2016 11:04	447.1	81.2
88	7/6/2016 11:05	447.2	82.8
89	7/6/2016 11:06	447.4	83
90	7/6/2016 11:07	447.7	81.1
91	7/6/2016 11:08	447.8	79.3
92	7/6/2016 11:09	447.9	85.1
93	7/6/2016 11:10	447.9	86.8
94	7/6/2016 11:11	448.1	83.8
95	7/6/2016 11:12	448.3	86.8
96	7/6/2016 11:13	448.4	85.6
97	7/6/2016 11:14	448.5	84.4
98	7/6/2016 11:15	448.6	85
99	7/6/2016 11:16	448.6	85.5
100	7/6/2016 11:17	448.7	80.3
101	7/6/2016 11:18	448.8	80.7
102	7/6/2016 11:19	448.5	84.9
103	7/6/2016 11:20	448.3	85.6
104	7/6/2016 11:21	448.4	81.1
105	7/6/2016 11:22	448.6	83.9

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

0	Date/Time	T1	Т2
106	7/6/2016 11:23	448.6	82
107	7/6/2016 11:24	448.9	82.3
108	7/6/2016 11:25	449	82.8
109	7/6/2016 11:26	449	82.2
110	7/6/2016 11:27	449.1	81.3
111	7/6/2016 11:28	449.1	78.8
112	7/6/2016 11:29	449.2	84.5
113	7/6/2016 11:30	449.1	91.6
114	7/6/2016 11:31	449.1	87
115	7/6/2016 11:32	449	86.9
116	7/6/2016 11:33	449	82.9
117	7/6/2016 11:34	449.2	86.8
118	7/6/2016 11:35	449.4	76.7
119	7/6/2016 11:36	449.4	81.5
120	7/6/2016 11:37	449.5	78.6
121	7/6/2016 11:38	449.6	80.9
122	7/6/2016 11:39	449.7	79.5
123	7/6/2016 11:40	449.5	83.9
124	7/6/2016 11:41	449.9	84.9
125	7/6/2016 11:42	449.8	84.6
126	7/6/2016 11:43	449.6	84.2
127	7/6/2016 11:44	447.8	85.2
128	7/6/2016 11:45	448.7	83.8
129	7/6/2016 11:46	448.7	86.5
130	7/6/2016 11:47	448.3	86.1
131	7/6/2016 11:48	447.7	81.2
132	7/6/2016 11:49	447.6	86.9
133	7/6/2016 11:50	447.6	87
134	7/6/2016 11:51	447.8	76.4
135	7/6/2016 11:52	448	86.6
136	7/6/2016 11:53	448.1	87.1
137	7/6/2016 11:54		79.5
138	7/6/2016 11:55	447.9	82.7
139	7/6/2016 11:56		79.3
140	7/6/2016 11:57	447.4	85.8

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

C	Date/Time	T1	Т2
141	7/6/2016 11:58	447.2	90.3
142	7/6/2016 11:59	446.8	86.9
143	7/6/2016 12:00	447.1	81.4
144	7/6/2016 12:01	446.9	82.3
145	7/6/2016 12:02	446.8	81.5
146	7/6/2016 12:03	446.4	87.9
147	7/6/2016 12:04	446.1	87
148	7/6/2016 12:05	446	84.7
149	7/6/2016 12:06	446.1	85.9
150	7/6/2016 12:07	446.1	80.3
151	7/6/2016 12:08	445.9	84.7
152	7/6/2016 12:09	445.7	84.8
153	7/6/2016 12:10	445.5	88.5
154	7/6/2016 12:11	445.4	79.9
155	7/6/2016 12:12	445.5	83.8
156	7/6/2016 12:13	445.6	78.7
157	7/6/2016 12:14	445.2	83.8
158	7/6/2016 12:15	446	83
159	7/6/2016 12:16	446.4	83.3
160	7/6/2016 12:17	446.4	87.9
161	7/6/2016 12:18	446.2	86.4
162	7/6/2016 12:19	446.1	88.6
163	7/6/2016 12:20	446.1	88
164	7/6/2016 12:21	446	84.6
165	7/6/2016 12:22	445.9	83.2
166	7/6/2016 12:23	445.8	81
167	7/6/2016 12:24	445.7	81.1
168	7/6/2016 12:25	445.6	83.2
169	7/6/2016 12:26	445.5	84.8
170	7/6/2016 12:27	445.3	84.5
171	7/6/2016 12:28	445.2	87.3
172	7/6/2016 12:29		85.4
173	7/6/2016 12:30	445.1	89.2
174	7/6/2016 12:31	444.8	80.2
175	7/6/2016 12:32	444.4	86.4

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

C	ate/Time	T1	Т2
176	7/6/2016 12:33	443.9	83.3
177	7/6/2016 12:34	444.7	82.2
178	7/6/2016 12:35	444.8	79.6
179	7/6/2016 12:36	444.9	80.9
180	7/6/2016 12:37	444.9	84
181	7/6/2016 12:38	444.8	82.1
182	7/6/2016 12:39	444.6	83.7
183	7/6/2016 12:40	444.3	81.1
184	7/6/2016 12:41	444.4	85.5
185	7/6/2016 12:42	444.5	82.8
186	7/6/2016 12:43	444.1	82.2
187	7/6/2016 12:44	443.1	83.8
188	7/6/2016 12:45	442.6	89.3
189	7/6/2016 12:46		85.5
190	7/6/2016 12:47	443.5	85.9
191	7/6/2016 12:48	444	83.3
192	7/6/2016 12:49	443.9	83
193	7/6/2016 12:50	443.4	85.7
194	7/6/2016 12:51	443.5	84
195	7/6/2016 12:52	444	
196	7/6/2016 12:53		80.6
197	7/6/2016 12:54	444.4	79.9
198	7/6/2016 12:55	443.8	81.4
199	7/6/2016 12:56		79.8
200	7/6/2016 12:57	443.5	82.9
201	7/6/2016 12:58	443.5	81.7
202	7/6/2016 12:59	443.6	85.6
203	7/6/2016 13:00		
204	7/6/2016 13:01	443.9	82.1
205	7/6/2016 13:02		85.1
206	7/6/2016 13:03		82.9
207	7/6/2016 13:04		
208	7/6/2016 13:05		
209	7/6/2016 13:06		
210	7/6/2016 13:07	440	86.1

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

	Date/Time	T1	Т2
211	7/6/2016 13:08	440.9	83.6
212	7/6/2016 13:09	440.9	85.1
213	7/6/2016 13:10	441.1	82.4
214	7/6/2016 13:11	441.7	83
215	7/6/2016 13:12	441.9	88.3
216	7/6/2016 13:13	442	85.7
217	7/6/2016 13:14	442	85.8
218	7/6/2016 13:15	442	82.7
219	7/6/2016 13:16	441.9	87.9
220	7/6/2016 13:17	441.7	87.2
221	7/6/2016 13:18	441.8	85.4
222	7/6/2016 13:19	442	85.2
223	7/6/2016 13:20	441.8	86.6
224	7/6/2016 13:21	440.4	88
225	7/6/2016 13:22	441.5	88
226	7/6/2016 13:23	441.4	87.8
227	7/6/2016 13:24	441.6	83.7
228	7/6/2016 13:25	441.8	82.5
229	7/6/2016 13:26	442	77.6
230	7/6/2016 13:27	442.1	82
231	7/6/2016 13:28	442.1	80.5
232	7/6/2016 13:29	442.1	80.6
233	7/6/2016 13:30	442	81.2
234	7/6/2016 13:31	441.9	84
235	7/6/2016 13:32	442	80.2
236	7/6/2016 13:33	442	87.1
237	7/6/2016 13:34	442.1	85.4
238	7/6/2016 13:35	442.3	77.4
239	7/6/2016 13:36	442.6	85.2
240	7/6/2016 13:37	442.7	80.1
241	7/6/2016 13:38	441.7	89.1
242	7/6/2016 13:39	437.1	85.9
243	7/6/2016 13:40	436.1	81.5
244	7/6/2016 13:41	435.7	80.6
245	7/6/2016 13:42	439.7	88

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

C	Date/Time	T1	Т2
246	7/6/2016 13:43	440.6	84.9
247	7/6/2016 13:44	441.2	78.5
248	7/6/2016 13:45	6 441.5	84.7
249	7/6/2016 13:46	6 441.9	83.4
250	7/6/2016 13:47	441.9	80.6
251	7/6/2016 13:48	3 441.7	77.4
252	7/6/2016 13:49	9 441.6	80.1
253	7/6/2016 13:50) 441.8	90.7
254	7/6/2016 13:51	441.9	90.5
255	7/6/2016 13:52	2 442.2	81.3
256	7/6/2016 13:53		81.8
257	7/6/2016 13:54	442	80.7
258	7/6/2016 13:55	6 441.9	86.1
259	7/6/2016 13:56	6 441.5	83.5
260	7/6/2016 13:57	441.4	84.7
261	7/6/2016 13:58	3 440	81.4
262	7/6/2016 13:59	9 440.5	87.5
263	7/6/2016 14:00) 437.1	87
264	7/6/2016 14:01	434.1	86.6
265	7/6/2016 14:02	440.7	86.9
266	7/6/2016 14:03	8 441	81.9
267	7/6/2016 14:04	440.9	84.7
268	7/6/2016 14:05	5 440.9	86.6
269	7/6/2016 14:06	6 441	80.9
270	7/6/2016 14:07	441	84.6
271	7/6/2016 14:08	3 441.6	84.5
272	7/6/2016 14:09	9 442	80.6
273	7/6/2016 14:10) 442.2	89.2
274	7/6/2016 14:11	441.9	93.9
275	7/6/2016 14:12	441.5	84.1
276	7/6/2016 14:13		84.2
277	7/6/2016 14:14	440.6	80.9
278	7/6/2016 14:15		82.8
279	7/6/2016 14:16	6 441.2	86.5
280	7/6/2016 14:17	441.1	82.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

C	Date/Time	T1	Т2
281	7/6/2016 14:18	441.2	86.3
282	7/6/2016 14:19	441.3	81.3
283	7/6/2016 14:20	441.5	80.2
284	7/6/2016 14:21	434.3	83.1
285	7/6/2016 14:22	437.6	86.6
286	7/6/2016 14:23	441.3	86.7
287	7/6/2016 14:24	441	78.3
288	7/6/2016 14:25	440.2	89.2
289	7/6/2016 14:26	438.1	87.3
290	7/6/2016 14:27	437.6	89.1
291	7/6/2016 14:28	438.8	86.9
292	7/6/2016 14:29	439.5	83.9
293	7/6/2016 14:30	439.5	87.7
294	7/6/2016 14:31	439.4	86
295	7/6/2016 14:32	439.5	86.4
296	7/6/2016 14:33	439.6	79.1
297	7/6/2016 14:34	438.4	79.2
298	7/6/2016 14:35	439.5	82.4
299	7/6/2016 14:36	440	87.7
300	7/6/2016 14:37	439.9	84.8
301	7/6/2016 14:38	439.8	79.6
302	7/6/2016 14:39	439.7	80.1
303	7/6/2016 14:40	439.8	85.6
304	7/6/2016 14:41	439.8	81.1
305	7/6/2016 14:42	437.5	89.1
306	7/6/2016 14:43	429.6	77.7
307	7/6/2016 14:44	435	77.7
308	7/6/2016 14:45		80.2
309	7/6/2016 14:46	440	85.3
310	7/6/2016 14:47	440.2	83
311	7/6/2016 14:48		84.3
312	7/6/2016 14:49	439.4	87
313	7/6/2016 14:50	435.1	81.4
314	7/6/2016 14:51		86
315	7/6/2016 14:52	439.2	87.7

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 9:38
Stop Time	7/6/2016 15:20
Elasped Time	00000Day05:42:01
Interval Time	0:01:00
Data Number	343

NO.

	Date/Time	T1	Т2
316	7/6/2016 14:5	3 439.5	87.8
317	7/6/2016 14:5	437.9	89.9
318	7/6/2016 14:5	5 437.6	88.4
319	7/6/2016 14:5	6 437.5	90.1
320	7/6/2016 14:5	439.4	82.3
321	7/6/2016 14:5	8 439.9	84.6
322	7/6/2016 14:5	9 440.3	85
323	7/6/2016 15:0	0 440.5	85.4
324	7/6/2016 15:0	439.4	86.1
325	7/6/2016 15:0	2 441	. 84.7
326	7/6/2016 15:0	3 441.4	84.2
327	7/6/2016 15:0	441.5	80
328	7/6/2016 15:0	95 441.7	79.3
329	7/6/2016 15:0	6 441.9	78
330	7/6/2016 15:0	442.2	83.2
331	7/6/2016 15:0	8 441.9	83
332	7/6/2016 15:0	9 441.3	83.2
333	7/6/2016 15:1	.0 440.8	82.7
334	7/6/2016 15:1	.1 440.8	82.9
335	7/6/2016 15:1	.2 441.2	83.6
336	7/6/2016 15:1	.3 441.5	89.4
337	7/6/2016 15:1	.4 441.8	78.7
338	7/6/2016 15:1	.5 441.8	85.2
339	7/6/2016 15:1	.6 441.5	84
340	7/6/2016 15:1	.7 441.4	85.5
341	7/6/2016 15:1	.8 441.5	87.9
342	7/6/2016 15:1	.9 441.6	81.9
343	7/6/2016 15:2	.0 441.7	83.3
		443.6	82.7

Average

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 16:16
Stop Time	7/6/2016 19:10
Elasped Time	00000Day02:54:01
Interval Time	0:01:00
Data Number	175

	Date/Time	T1	Т2
1	7/6/2016 16:16	437.5	78.1
2	7/6/2016 16:17	437.4	77.9
3	7/6/2016 16:18	437.2	77.5
4	7/6/2016 16:19	437.1	77.9
5	7/6/2016 16:20	437	78.3
6	7/6/2016 16:21	432.6	77.4
7	7/6/2016 16:22	434.9	77.1
8	7/6/2016 16:23	436.1	78.7
9	7/6/2016 16:24	436.2	77.2
10	7/6/2016 16:25	436.4	79
11	7/6/2016 16:26	436.8	78.3
12	7/6/2016 16:27	436.9	79.2
13	7/6/2016 16:28	436.6	79.3
14	7/6/2016 16:29	436.4	78.5
15	7/6/2016 16:30	436.1	77.9
16	7/6/2016 16:31	436	77.6
17	7/6/2016 16:32	436.4	78.3
18	7/6/2016 16:33	437.1	76.3
19	7/6/2016 16:34	437.5	77.6
20	7/6/2016 16:35	437.5	77.3
21	7/6/2016 16:36	437.3	77.4
22	7/6/2016 16:37	437.3	77.8
23	7/6/2016 16:38	437.6	78
24	7/6/2016 16:39	435.5	78.8
25	7/6/2016 16:40	435.2	77.9
26	7/6/2016 16:41	435	
27	7/6/2016 16:42	437.1	76.7
28	7/6/2016 16:43	438.3	76.4
29	7/6/2016 16:44	439	78.3
30	7/6/2016 16:45	439.1	78.6
31	7/6/2016 16:46	439.1	77.8
32	7/6/2016 16:47	439.2	77.5
33	7/6/2016 16:48	439.4	78.5
34	7/6/2016 16:49	439.3	77.8
35	7/6/2016 16:50	439.5	77.5
36	7/6/2016 16:51	439.8	78.6

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 16:16
Stop Time	7/6/2016 19:10
Elasped Time	00000Day02:54:01
Interval Time	0:01:00
Data Number	175

0	Date/Time	T1	T2
37	7/6/2016 16:52	440.4	4 77.5
38	7/6/2016 16:53	440.9	9 79.1
39	7/6/2016 16:54	441.2	2 77.1
40	7/6/2016 16:55	441.3	3 79.1
41	7/6/2016 16:56	441.	7 78.5
42	7/6/2016 16:57	442	2 77.9
43	7/6/2016 16:58	442.3	3 78.4
44	7/6/2016 16:59	442.0	5 78.4
45	7/6/2016 17:00	442.	7 78.8
46	7/6/2016 17:01	442.8	3 77.9
47	7/6/2016 17:02	443	3 79.4
48	7/6/2016 17:03	442.9	78.2
49	7/6/2016 17:04	442.8	3 79.1
50	7/6/2016 17:05	442.9	78.7
51	7/6/2016 17:06	443.	5 78.5
52	7/6/2016 17:07	443.9	
53	7/6/2016 17:08	444.:	1 78.5
54	7/6/2016 17:09	444.2	2 77.8
55	7/6/2016 17:10	444.3	3 78.2
56	7/6/2016 17:11	444.:	1 79.1
57	7/6/2016 17:12	444.	5 78.1
58	7/6/2016 17:13	444	4 77.5
59	7/6/2016 17:14	443.2	
60	7/6/2016 17:15	442.	7 79.7
61	7/6/2016 17:16	442.8	3 77.8
62	7/6/2016 17:17	443.:	1 78.6
63	7/6/2016 17:18	443.4	
64	7/6/2016 17:19	443.0	
65	7/6/2016 17:20	443.	
66	7/6/2016 17:21	443.9	
67	7/6/2016 17:22	443.8	3 78.6
68	7/6/2016 17:23	443.4	
69	7/6/2016 17:24	442.9	
70	7/6/2016 17:25	442.8	
71	7/6/2016 17:26	442.9	
72	7/6/2016 17:27	443	3 79.7

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 16:16
Stop Time	7/6/2016 19:10
Elasped Time	00000Day02:54:01
Interval Time	0:01:00
Data Number	175

[Date/Time	T1		Т2	
73	7/6/2016 17:28		438.7		79.9
74	7/6/2016 17:29		440.3		80
75	7/6/2016 17:30		441.2		80.2
76	7/6/2016 17:31		441.1		80.2
77	7/6/2016 17:32		441.8		80
78	7/6/2016 17:33		442.1		80.2
79	7/6/2016 17:34		442.2		80.3
80	7/6/2016 17:35		442.2		80.7
81	7/6/2016 17:36		442.1		80.7
82	7/6/2016 17:37		441.8		80.4
83	7/6/2016 17:38		441.2		80.5
84	7/6/2016 17:39		440.7		80.1
85	7/6/2016 17:40		440.6		79.8
86	7/6/2016 17:41		440.8		80.3
87	7/6/2016 17:42		441.3		80
88	7/6/2016 17:43		441.5		80.6
89	7/6/2016 17:44		441.3		80.7
90	7/6/2016 17:45		440.3		80.8
91	7/6/2016 17:46		440.1		80.1
92	7/6/2016 17:47		439.6		81.2
93	7/6/2016 17:48		439.4		81.1
94	7/6/2016 17:49		439.5		81.6
95	7/6/2016 17:50		439.6		81.1
96	7/6/2016 17:51		439.5		81.8
97	7/6/2016 17:52		439.7		81.1
98	7/6/2016 17:53		440.2		82
99	7/6/2016 17:54		440.7		81.7
100	7/6/2016 17:55		441		81.9
101	7/6/2016 17:56		440.5		81.6
102	7/6/2016 17:57		439.7		81.2
103	7/6/2016 17:58		439.2		81.6
104	7/6/2016 17:59		439		81.3
105	7/6/2016 18:00		438.8		81.8
106	7/6/2016 18:01		439		81.4
107	7/6/2016 18:02		439.4		81.7
108	7/6/2016 18:03		439.4		82.8

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/6/2016 16:16
Stop Time	7/6/2016 19:10
Elasped Time	00000Day02:54:01
Interval Time	0:01:00
Data Number	175

D	ate/Time	T1	Т2
109	7/6/2016 18:04	439.	.5 82.2
110	7/6/2016 18:05	439.	.3 82.2
111	7/6/2016 18:06	439.	.2 81.9
112	7/6/2016 18:07	438	.9 82.1
113	7/6/2016 18:08	438	.5 81.2
114	7/6/2016 18:09	438.	.2 81.5
115	7/6/2016 18:10	438.	.2 82.1
116	7/6/2016 18:11	438.	.1 81
117	7/6/2016 18:12	438.	.2 82.3
118	7/6/2016 18:13	438.	.1 82.4
119	7/6/2016 18:14	437.	.9 82.1
120	7/6/2016 18:15	437.	.6 82.8
121	7/6/2016 18:16	437.	.5 83.2
122	7/6/2016 18:17	437.	.1 83.1
123	7/6/2016 18:18	435.	.7 84.6
124	7/6/2016 18:19	436	.2 83.7
125	7/6/2016 18:20	435.	.3 84.3
126	7/6/2016 18:21	436	.3 83.9
127	7/6/2016 18:22	43	87 82.3
128	7/6/2016 18:23	437.	.9 80.9
129	7/6/2016 18:24	438.	.5 82.7
130	7/6/2016 18:25	438.	.2 81.8
131	7/6/2016 18:26	437.	.2 82.4
132	7/6/2016 18:27	436	.3 82.9
133	7/6/2016 18:28	435.	.9 81.3
134	7/6/2016 18:29	43	
135	7/6/2016 18:30	436	
136	7/6/2016 18:31	436	
137	7/6/2016 18:32	436	
138	7/6/2016 18:33	436	
139	7/6/2016 18:34	436	
140	7/6/2016 18:35	436	.3 84.2

Measure Unit	¢XF		
Measure Type	К-Туре		
Start Time	7/6/2016 16:16		
Stop Time	7/6/2016 19:10		
Elasped Time	00000Day02:54:01		
Interval Time	0:01:00		
Data Number	175		

NO.

D	ate/Time	T1	Т2
141	7/6/2016 18:36	436.8	83.7
142	7/6/2016 18:37	436.6	83.7
143	7/6/2016 18:38	436.5	81.6
144	7/6/2016 18:39	436.7	83.6
145	7/6/2016 18:40	437.2	82.7
146	7/6/2016 18:41	437.8	82.5
147	7/6/2016 18:42	438.3	83
148	7/6/2016 18:43	438.8	83
149	7/6/2016 18:44	439.3	82.7
150	7/6/2016 18:45	439.7	83.5
151	7/6/2016 18:46	439.7	82.5
152	7/6/2016 18:47	439.6	82
153	7/6/2016 18:48	439.7	82.8
154	7/6/2016 18:49	440	83.3
155	7/6/2016 18:50	440.3	83.7
156	7/6/2016 18:51	439.4	84.3
157	7/6/2016 18:52	440.4	83.8
158	7/6/2016 18:53	440.8	82.9
159	7/6/2016 18:54	441.2	82.5
160	7/6/2016 18:55	441.7	82.4
161	7/6/2016 18:56	442.4	80.9
162	7/6/2016 18:57		80.6
163	7/6/2016 18:58		81
164	7/6/2016 18:59	443.3	82.5
165	7/6/2016 19:00	442.8	81.6
166	7/6/2016 19:01	442.2	82.6
167	7/6/2016 19:02		81.7
168	7/6/2016 19:03	441.4	81
169	7/6/2016 19:04		81.2
170	7/6/2016 19:05		81.6
171	7/6/2016 19:06	441.1	80.7
172	7/6/2016 19:07	441.1	79.1
173	7/6/2016 19:08		81.1
174	7/6/2016 19:09		79.7
175	7/6/2016 19:10		79.4
		439.7	80.4

Average

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1		Т2	
1	7/7/2016 9:01		436.9		65.4
2	7/7/2016 9:02		435.7		68.2
3	7/7/2016 9:03		434.6		65.9
4	7/7/2016 9:04		431.6		69
5	7/7/2016 9:05		434.7		70.5
6	7/7/2016 9:06		434.2		69.3
7	7/7/2016 9:07		434.8		68.7
8	7/7/2016 9:08		435.4		68.8
9	7/7/2016 9:09		435.6		70.5
10	7/7/2016 9:10		435.8		70.8
11	7/7/2016 9:11		434.7		70.3
12	7/7/2016 9:12		428.2		69.6
13	7/7/2016 9:13		435.5		67.6
14	7/7/2016 9:14		436.7		68
15	7/7/2016 9:15		437		68.2
16	7/7/2016 9:16		437.3		73.4
17	7/7/2016 9:17		437.5		67.3
18	7/7/2016 9:18		437.7		68.2
19	7/7/2016 9:19		437.8		70.8
20	7/7/2016 9:20		437		69.8
21	7/7/2016 9:21		438.2		70.3
22	7/7/2016 9:22		438.4		70.6
23	7/7/2016 9:23		438.8		71.6
24	7/7/2016 9:24		439.1		70.8
25	7/7/2016 9:25		439.2		71.8
26	7/7/2016 9:26		439.1		70.7
27	7/7/2016 9:27		438.8		70.6
28	7/7/2016 9:28		438.6		68.5
29	7/7/2016 9:29		438.7		70.7
30	7/7/2016 9:30		438.7		68.4
31	7/7/2016 9:31		438.6		67.4
32	7/7/2016 9:32		434		68.3
33	7/7/2016 9:33		436.2		67.7
34	7/7/2016 9:34		438.1		66.7
35	7/7/2016 9:35		438.3		66.9

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

[Date/Time	T1	Т2
36	7/7/2016 9:36	438.1	67.9
37	7/7/2016 9:37	438	67.5
38	7/7/2016 9:38	437.8	65.8
39	7/7/2016 9:39	437.6	68.8
40	7/7/2016 9:40	437.5	66.3
41	7/7/2016 9:41	437.7	66.7
42	7/7/2016 9:42	438	66.5
43	7/7/2016 9:43	438.3	68.1
44	7/7/2016 9:44	438.6	66.8
45	7/7/2016 9:45	438.9	69.6
46	7/7/2016 9:46	439.2	68.6
47	7/7/2016 9:47	439.3	70.7
48	7/7/2016 9:48	439.5	67.1
49	7/7/2016 9:49	439.6	68.2
50	7/7/2016 9:50	439.3	68.6
51	7/7/2016 9:51	439	67.6
52	7/7/2016 9:52	438.8	66.3
53	7/7/2016 9:53	438.9	67.4
54	7/7/2016 9:54	439.1	66.9
55	7/7/2016 9:55	439.1	68.3
56	7/7/2016 9:56	438.6	67.8
57	7/7/2016 9:57	438.3	66.1
58	7/7/2016 9:58	438.5	67.4
59	7/7/2016 9:59	438	65.9
60	7/7/2016 10:00	436.7	65.9
61	7/7/2016 10:01	436.8	66
62	7/7/2016 10:02	438.6	66.4
63	7/7/2016 10:03	439.4	67.7
64	7/7/2016 10:04	439.7	66.2
65	7/7/2016 10:05	439.9	67.2
66	7/7/2016 10:06	439.8	67.6
67	7/7/2016 10:07	439.8	70.3
68	7/7/2016 10:08	440.1	67.3
69	7/7/2016 10:09	439.6	68.6
70	7/7/2016 10:10	440.2	67.4

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

[Date/Time	T1	Т2
71	7/7/2016 10:11	440.5	69.3
72	7/7/2016 10:12	440.5	67.3
73	7/7/2016 10:13	440.2	69.4
74	7/7/2016 10:14	439.7	69
75	7/7/2016 10:15	439.5	67.5
76	7/7/2016 10:16	439.6	69.1
77	7/7/2016 10:17	438.6	68.6
78	7/7/2016 10:18	439.4	67.4
79	7/7/2016 10:19	439.4	68.8
80	7/7/2016 10:20	439.1	69.1
81	7/7/2016 10:21	438.5	70.1
82	7/7/2016 10:22	438.2	70.1
83	7/7/2016 10:23	438.2	71
84	7/7/2016 10:24	438	70.9
85	7/7/2016 10:25	437.7	72.3
86	7/7/2016 10:26	437.4	71.4
87	7/7/2016 10:27	437.2	71.4
88	7/7/2016 10:28	435.1	70.8
89	7/7/2016 10:29	435.7	70.5
90	7/7/2016 10:30	436.1	70.7
91	7/7/2016 10:31	437.4	69.6
92	7/7/2016 10:32	437.3	68.2
93	7/7/2016 10:33	437.3	67.9
94	7/7/2016 10:34	437.5	68.4
95	7/7/2016 10:35	437.4	70.2
96	7/7/2016 10:36	437.2	70.3
97	7/7/2016 10:37	436.9	70.7
98	7/7/2016 10:38	437.3	72.5
99	7/7/2016 10:39	437.9	71.2
100	7/7/2016 10:40	438	73
101	7/7/2016 10:41	438.1	68.4
102	7/7/2016 10:42	438	69.4
103	7/7/2016 10:43	437.8	72
104	7/7/2016 10:44	437.9	70.5
105	7/7/2016 10:45	438.1	70.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
106	7/7/2016 10:46	437.9	70.8
107	7/7/2016 10:47	438.3	69.8
108	7/7/2016 10:48	438.5	70
109	7/7/2016 10:49	438.9	70.3
110	7/7/2016 10:50	439.3	69.7
111	7/7/2016 10:51	439.6	70.2
112	7/7/2016 10:52	439.5	69.4
113	7/7/2016 10:53	439.5	69.9
114	7/7/2016 10:54	439.2	71.7
115	7/7/2016 10:55	439.5	71.3
116	7/7/2016 10:56	440.2	68.3
117	7/7/2016 10:57	439.6	72.1
118	7/7/2016 10:58	436	70.4
119	7/7/2016 10:59	436.1	70.9
120	7/7/2016 11:00	437.4	68.7
121	7/7/2016 11:01	437.5	70.4
122	7/7/2016 11:02	437.9	68.5
123	7/7/2016 11:03	438.9	70.6
124	7/7/2016 11:04	439	70
125	7/7/2016 11:05	438.8	70.2
126	7/7/2016 11:06	438.8	70.3
127	7/7/2016 11:07	438.6	69.2
128	7/7/2016 11:08	439.2	67.9
129	7/7/2016 11:09	440.5	68.2
130	7/7/2016 11:10	440.9	68.6
131	7/7/2016 11:11	441.2	68.8
132	7/7/2016 11:12	441.4	70.2
133	7/7/2016 11:13	441.4	69.4
134	7/7/2016 11:14	441.7	67.8
135	7/7/2016 11:15	442	69.6
136	7/7/2016 11:16	442.3	67.9
137	7/7/2016 11:17	442.5	67.7
138	7/7/2016 11:18	439.3	66.7
139	7/7/2016 11:19	441.5	67.2
140	7/7/2016 11:20	441.9	66.8

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
141	7/7/2016 11:21	442.1	66.8
142	7/7/2016 11:22	442.2	66.9
143	7/7/2016 11:23	442.4	66.8
144	7/7/2016 11:24	442.5	67
145	7/7/2016 11:25	442.6	66.8
146	7/7/2016 11:26	442.8	64.9
147	7/7/2016 11:27	442.8	66.4
148	7/7/2016 11:28	442.2	65.8
149	7/7/2016 11:29	440.2	66.7
150	7/7/2016 11:30	442.4	65.7
151	7/7/2016 11:31	440.3	67.3
152	7/7/2016 11:32	441.8	66.5
153	7/7/2016 11:33	441.5	65.7
154	7/7/2016 11:34	441.5	66.4
155	7/7/2016 11:35	441.4	66.2
156	7/7/2016 11:36	441.5	66.6
157	7/7/2016 11:37	441.6	66
158	7/7/2016 11:38	441.6	65.2
159	7/7/2016 11:39	441.6	67.1
160	7/7/2016 11:40	439.7	66.3
161	7/7/2016 11:41	441	64.3
162	7/7/2016 11:42		66.3
163	7/7/2016 11:43	440.5	65.5
164	7/7/2016 11:44	440	65.9
165	7/7/2016 11:45	439.8	
166	7/7/2016 11:46	439.7	66.2
167	7/7/2016 11:47	439.6	65.9
168	7/7/2016 11:48	439.6	66.8
169	7/7/2016 11:49	436.5	66.8
170	7/7/2016 11:50	439.8	66
171	7/7/2016 11:51	440.5	65.5
172	7/7/2016 11:52	440.9	66.2
173	7/7/2016 11:53	440.8	67
174	7/7/2016 11:54	440.2	67.1
175	7/7/2016 11:55	439.1	66.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
176	7/7/2016 11:56	438.3	66.3
177	7/7/2016 11:57	438.1	65.5
178	7/7/2016 11:58	438.3	66.5
179	7/7/2016 11:59	438.6	66
180	7/7/2016 12:00	434.5	66.6
181	7/7/2016 12:01	433.5	66.1
182	7/7/2016 12:02	436.7	66.4
183	7/7/2016 12:03	438.5	67.1
184	7/7/2016 12:04	438.3	66.7
185	7/7/2016 12:05	438.5	66
186	7/7/2016 12:06	438.5	66.3
187	7/7/2016 12:07	438.6	65.9
188	7/7/2016 12:08	438.9	66.5
189	7/7/2016 12:09	438.2	66.2
190	7/7/2016 12:10	439.1	66.4
191	7/7/2016 12:11	440	68.5
192	7/7/2016 12:12	440.3	66.3
193	7/7/2016 12:13	440.5	67.2
194	7/7/2016 12:14		66.3
195	7/7/2016 12:15	440.9	68
196	7/7/2016 12:16	441.1	67.1
197	7/7/2016 12:17	441.3	68
198	7/7/2016 12:18	441.2	69
199	7/7/2016 12:19	438.5	68.6
200	7/7/2016 12:20	439.5	68.1
201	7/7/2016 12:21	439.7	67.9
202	7/7/2016 12:22	438.1	68.6
203	7/7/2016 12:23	437.9	66.8
204	7/7/2016 12:24	436.7	67.6
205	7/7/2016 12:25	436.9	68.1
206	7/7/2016 12:26		66.6
207	7/7/2016 12:27		66.9
208	7/7/2016 12:28		67.1
209	7/7/2016 12:29		65.5
210	7/7/2016 12:30	426.4	65.5

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

[Date/Time	T1	Т2
211	7/7/2016 12:31	426.2	66.9
212	7/7/2016 12:32	436.2	66.5
213	7/7/2016 12:33	436.9	66.3
214	7/7/2016 12:34	438.9	65.6
215	7/7/2016 12:35	439.5	68.3
216	7/7/2016 12:36	439.8	67
217	7/7/2016 12:37	439.7	65.7
218	7/7/2016 12:38	439.7	66.9
219	7/7/2016 12:39	440.4	66.6
220	7/7/2016 12:40	440.7	67.2
221	7/7/2016 12:41	440.8	66.3
222	7/7/2016 12:42	441.1	67.7
223	7/7/2016 12:43	441.4	67.1
224	7/7/2016 12:44	439.8	67.8
225	7/7/2016 12:45	440.5	69.3
226	7/7/2016 12:46	441.2	67.7
227	7/7/2016 12:47	441.6	66.4
228	7/7/2016 12:48	441.8	66.8
229	7/7/2016 12:49	441.7	69.2
230	7/7/2016 12:50	441.2	68.2
231	7/7/2016 12:51	440.7	68.5
232	7/7/2016 12:52	439.2	66.2
233	7/7/2016 12:53	440.3	67.2
234	7/7/2016 12:54	440.3	67.1
235	7/7/2016 12:55	440.5	69.5
236	7/7/2016 12:56	440.6	65.5
237	7/7/2016 12:57	440.9	68.1
238	7/7/2016 12:58	441.1	67.2
239	7/7/2016 12:59	441.1	68.1
240	7/7/2016 13:00	441.2	67
241	7/7/2016 13:01	441.3	67.9
242	7/7/2016 13:02	441.4	68.8
243	7/7/2016 13:03	441.3	68.2
244	7/7/2016 13:04	441	66.8
245	7/7/2016 13:05	440.6	68.8

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
246	7/7/2016 13:06	440.3	67.6
247	7/7/2016 13:07	440.3	69.9
248	7/7/2016 13:08	440.4	67.3
249	7/7/2016 13:09	440.4	71.1
250	7/7/2016 13:10	440.3	68.1
251	7/7/2016 13:11	440.1	68.5
252	7/7/2016 13:12	438.6	68.8
253	7/7/2016 13:13	437.1	66.4
254	7/7/2016 13:14	436.8	69.1
255	7/7/2016 13:15	435.6	66.6
256	7/7/2016 13:16	438.4	67.7
257	7/7/2016 13:17	439	68.5
258	7/7/2016 13:18	438.8	68.2
259	7/7/2016 13:19		69.5
260	7/7/2016 13:20		
261	7/7/2016 13:21		69.8
262	7/7/2016 13:22	439.1	69.9
263	7/7/2016 13:23		
264	7/7/2016 13:24		
265	7/7/2016 13:25		
266	7/7/2016 13:26		68.8
267	7/7/2016 13:27		
268	7/7/2016 13:28		
269	7/7/2016 13:29		
270	7/7/2016 13:30		
271	7/7/2016 13:31		
272	7/7/2016 13:32		
273	7/7/2016 13:33		
274	7/7/2016 13:34		
275	7/7/2016 13:35		67.4
276	7/7/2016 13:36		
277	7/7/2016 13:37		
278	7/7/2016 13:38		
279	7/7/2016 13:39		
280	7/7/2016 13:40	439.3	65.5

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
281	7/7/2016 13:41	439.7	65.2
282	7/7/2016 13:42	440	65.6
283	7/7/2016 13:43	440.4	66.2
284	7/7/2016 13:44	440.7	65.8
285	7/7/2016 13:45	440.2	66.2
286	7/7/2016 13:46	440.7	65.7
287	7/7/2016 13:47	440.5	64.2
288	7/7/2016 13:48	440.3	64.7
289	7/7/2016 13:49	440.4	64.2
290	7/7/2016 13:50	440.5	65.1
291	7/7/2016 13:51	440.7	66.2
292	7/7/2016 13:52	440.7	68.5
293	7/7/2016 13:53	440.7	65.8
294	7/7/2016 13:54	440.8	64.3
295	7/7/2016 13:55	441	65.6
296	7/7/2016 13:56	441.4	65.6
297	7/7/2016 13:57	441.6	67.2
298	7/7/2016 13:58	441.6	65.7
299	7/7/2016 13:59	441.3	64.3
300	7/7/2016 14:00	441	66.2
301	7/7/2016 14:01	441	65.4
302	7/7/2016 14:02	441.1	64.8
303	7/7/2016 14:03	439.3	66.5
304	7/7/2016 14:04	439.4	67
305	7/7/2016 14:05	441	65.7
306	7/7/2016 14:06	441.3	64.5
307	7/7/2016 14:07	441.4	64.5
308	7/7/2016 14:08	441.7	64.5
309	7/7/2016 14:09	442	66
310	7/7/2016 14:10	442.2	63.7
311	7/7/2016 14:11	442.4	63.7
312	7/7/2016 14:12	442.2	65.2
313	7/7/2016 14:13	442	64.7
314	7/7/2016 14:14	441.9	64.4
315	7/7/2016 14:15	442	65.5

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

	Date/Time	T1	Т2
316	7/7/2016 14:16	442	63.6
317	7/7/2016 14:17	442	64.2
318	7/7/2016 14:18	441.7	65.1
319	7/7/2016 14:19	441.4	64.6
320	7/7/2016 14:20	441	64.1
321	7/7/2016 14:21	440.8	64.7
322	7/7/2016 14:22	440.5	64.6
323	7/7/2016 14:23	440.2	64.3
324	7/7/2016 14:24	440.2	63.9
325	7/7/2016 14:25	440.2	64
326	7/7/2016 14:26	440	64.1
327	7/7/2016 14:27	439.9	64.3
328	7/7/2016 14:28	440	63.3
329	7/7/2016 14:29	440	64.5
330	7/7/2016 14:30	440	64
331	7/7/2016 14:31	440.1	64.5
332	7/7/2016 14:32	440	64.8
333	7/7/2016 14:33	439.8	63.3
334	7/7/2016 14:34	439.3	64.1
335	7/7/2016 14:35	439.2	64.2
336	7/7/2016 14:36	439.2	65.4
337	7/7/2016 14:37	439	64.7
338	7/7/2016 14:38	438.8	63.8
339	7/7/2016 14:39	438.7	63.9
340	7/7/2016 14:40	438.8	63.8
341	7/7/2016 14:41	439.1	63.8
342	7/7/2016 14:42	436.5	64
343	7/7/2016 14:43	439.4	65
344	7/7/2016 14:44	439.8	64.2
345	7/7/2016 14:45	439.9	65
346	7/7/2016 14:46	440	63.8
347	7/7/2016 14:47	440.1	64.5
348	7/7/2016 14:48	440.2	65
349	7/7/2016 14:49	440.2	64
350	7/7/2016 14:50	440.2	65.8

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
351	7/7/2016 14:51	440	64.6
352	7/7/2016 14:52	439.8	64.8
353	7/7/2016 14:53	438.8	65
354	7/7/2016 14:54	439.3	65.2
355	7/7/2016 14:55	440.1	65.1
356	7/7/2016 14:56	440.1	65.4
357	7/7/2016 14:57	440	64.4
358	7/7/2016 14:58	439.8	64.5
359	7/7/2016 14:59	439.8	64.5
360	7/7/2016 15:00	439.7	65
361	7/7/2016 15:01	439.7	66.3
362	7/7/2016 15:02	439.7	64.6
363	7/7/2016 15:03	439.8	63.7
364	7/7/2016 15:04	439.8	65.4
365	7/7/2016 15:05	440	66.2
366	7/7/2016 15:06	439.9	66.4
367	7/7/2016 15:07	439.8	64.6
368	7/7/2016 15:08	439.7	63.7
369	7/7/2016 15:09	439.5	63.8
370	7/7/2016 15:10	439.4	63.8
371	7/7/2016 15:11	438.6	64
372	7/7/2016 15:12	438.8	64.9
373	7/7/2016 15:13	436.9	64.7
374	7/7/2016 15:14	438.3	64.5
375	7/7/2016 15:15	437.3	70.3
376	7/7/2016 15:16	438.8	64.7
377	7/7/2016 15:17	439.3	67.5
378	7/7/2016 15:18	439.7	65.1
379	7/7/2016 15:19	439.9	64.9
380	7/7/2016 15:20	440	64.2
381	7/7/2016 15:21	439.9	64.8
382	7/7/2016 15:22	439.7	65.1
383	7/7/2016 15:23	439.5	65.2
384	7/7/2016 15:24	439.2	64.4
385	7/7/2016 15:25	438.6	65.6

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
386	7/7/2016 15:26	438.3	64.6
387	7/7/2016 15:27	438.3	65.3
388	7/7/2016 15:28	438.4	65.1
389	7/7/2016 15:29	438.5	65.3
390	7/7/2016 15:30	438.5	65.1
391	7/7/2016 15:31	437.9	65.7
392	7/7/2016 15:32	438.7	64.9
393	7/7/2016 15:33	438.9	65.7
394	7/7/2016 15:34	438.3	64.9
395	7/7/2016 15:35	438.2	65.2
396	7/7/2016 15:36	438.6	64.7
397	7/7/2016 15:37	438.3	66.1
398	7/7/2016 15:38	437.9	64.9
399	7/7/2016 15:39	437.6	65.5
400	7/7/2016 15:40	437.5	64.2
401	7/7/2016 15:41	436.5	65.3
402	7/7/2016 15:42	435.8	64.3
403	7/7/2016 15:43	437	64.8
404	7/7/2016 15:44	437.6	64.7
405	7/7/2016 15:45	438.1	65.5
406	7/7/2016 15:46	436.7	67.1
407	7/7/2016 15:47	434	64.9
408	7/7/2016 15:48	436	63.9
409	7/7/2016 15:49	436.7	64.5
410	7/7/2016 15:50	436.8	64.6
411	7/7/2016 15:51	436.8	66.3
412	7/7/2016 15:52	436.7	65.8
413	7/7/2016 15:53	436.8	66
414	7/7/2016 15:54	437	64.7
415	7/7/2016 15:55	437.3	64
416	7/7/2016 15:56	437.3	65.8
417	7/7/2016 15:57	437.4	65
418	7/7/2016 15:58	437.5	64.5
419	7/7/2016 15:59	437.8	64.3
420	7/7/2016 16:00	438.1	64.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

[Date/Time	T1	Т2
421	7/7/2016 16:01	437.9	64.7
422	7/7/2016 16:02	438.8	64.5
423	7/7/2016 16:03	439.3	64.5
424	7/7/2016 16:04	439.7	63.8
425	7/7/2016 16:05	440	65.1
426	7/7/2016 16:06	440.2	64.5
427	7/7/2016 16:07	439.9	63.4
428	7/7/2016 16:08	439.4	64.7
429	7/7/2016 16:09	439.1	64.1
430	7/7/2016 16:10	438.1	64.8
431	7/7/2016 16:11	440	65.5
432	7/7/2016 16:12	438.6	64.7
433	7/7/2016 16:13	438.5	66.6
434	7/7/2016 16:14	439.1	63.8
435	7/7/2016 16:15	438.9	64.5
436	7/7/2016 16:16	438.5	64.4
437	7/7/2016 16:17	439.2	64.6
438	7/7/2016 16:18	438.9	65.2
439	7/7/2016 16:19	438	64.3
440	7/7/2016 16:20	439.1	65.2
441	7/7/2016 16:21	439.6	66.6
442	7/7/2016 16:22	439.9	66.2
443	7/7/2016 16:23	439.8	65.5
444	7/7/2016 16:24	439.7	65.7
445	7/7/2016 16:25	439.6	65.1
446	7/7/2016 16:26	439.6	65.3
447	7/7/2016 16:27	439.8	65.8
448	7/7/2016 16:28	439.3	64.7
449	7/7/2016 16:29	440.1	64.6
450	7/7/2016 16:30	439.9	65.4
451	7/7/2016 16:31	439.6	64.9
452	7/7/2016 16:32	439.6	65.8
453	7/7/2016 16:33	439.8	65.2
454	7/7/2016 16:34	440.1	65.4
455	7/7/2016 16:35	440.4	66.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
456	7/7/2016 16:36	440.7	65.1
457	7/7/2016 16:37	440.9	64.3
458	7/7/2016 16:38	440.8	65.5
459	7/7/2016 16:39	440.1	66.3
460	7/7/2016 16:40	441.1	65.2
461	7/7/2016 16:41	441.8	63.9
462	7/7/2016 16:42	442	66.2
463	7/7/2016 16:43	441	65.3
464	7/7/2016 16:44	441.8	64.7
465	7/7/2016 16:45	439.7	66.2
466	7/7/2016 16:46	439	64.3
467	7/7/2016 16:47	441.6	65.6
468	7/7/2016 16:48	442.1	64.6
469	7/7/2016 16:49	442.2	64.6
470	7/7/2016 16:50	442.1	64.4
471	7/7/2016 16:51	441.9	64.7
472	7/7/2016 16:52	441.8	64.6
473	7/7/2016 16:53	440.8	64.7
474	7/7/2016 16:54	441.6	65.1
475	7/7/2016 16:55	441.6	64.6
476	7/7/2016 16:56	442.1	64.1
477	7/7/2016 16:57	441.7	63.9
478	7/7/2016 16:58	441.3	63.8
479	7/7/2016 16:59	441	63.3
480	7/7/2016 17:00	440.9	63.5
481	7/7/2016 17:01	440.9	64.7
482	7/7/2016 17:02	440.8	64.6
483	7/7/2016 17:03	440.5	64
484	7/7/2016 17:04	440.1	64.2
485	7/7/2016 17:05	438.4	63.9
486	7/7/2016 17:06	439.3	64.3
487	7/7/2016 17:07	439.4	64.3
488	7/7/2016 17:08	439.2	64.2
489	7/7/2016 17:09	439.6	64.4
490	7/7/2016 17:10	439.9	64.3

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
491	7/7/2016 17:11	439.8	64.1
492	7/7/2016 17:12	439.6	62.7
493	7/7/2016 17:13	439.5	63.9
494	7/7/2016 17:14	439.5	63.8
495	7/7/2016 17:15	439.7	63.8
496	7/7/2016 17:16	439.9	63.8
497	7/7/2016 17:17	440.1	64
498	7/7/2016 17:18	440.3	63.7
499	7/7/2016 17:19	440.4	63.8
500	7/7/2016 17:20	440.3	64.7
501	7/7/2016 17:21	439.9	64.4
502	7/7/2016 17:22	439.5	62.7
503	7/7/2016 17:23	439.3	63.1
504	7/7/2016 17:24	439.2	63.2
505	7/7/2016 17:25	439.2	63.4
506	7/7/2016 17:26	439.2	63.2
507	7/7/2016 17:27	439.2	63.4
508	7/7/2016 17:28	439.3	63.5
509	7/7/2016 17:29	439.5	64.1
510	7/7/2016 17:30	439.8	64
511	7/7/2016 17:31	440.2	63.2
512	7/7/2016 17:32	440.4	63.4
513	7/7/2016 17:33	440.3	62.8
514	7/7/2016 17:34	439.8	63.9
515	7/7/2016 17:35	438.8	63.9
516	7/7/2016 17:36	439	63
517	7/7/2016 17:37	438.2	64.8
518	7/7/2016 17:38	439.1	62.8
519	7/7/2016 17:39	438.8	63.5
520	7/7/2016 17:40	438.6	62.8
521	7/7/2016 17:41	438.7	62.8
522	7/7/2016 17:42	436.3	64.3
523	7/7/2016 17:43	438.7	62.2
524	7/7/2016 17:44	437.8	62.2
525	7/7/2016 17:45	437.8	64

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
526	7/7/2016 17:46	438.2	64.1
527	7/7/2016 17:47	438.6	64.1
528	7/7/2016 17:48	439.1	63.2
529	7/7/2016 17:49	439.6	61.7
530	7/7/2016 17:50	439.9	62
531	7/7/2016 17:51	439.9	62.9
532	7/7/2016 17:52	439.8	64
533	7/7/2016 17:53	439.8	63
534	7/7/2016 17:54	440	62
535	7/7/2016 17:55	440.4	62.1
536	7/7/2016 17:56	440.6	64.4
537	7/7/2016 17:57	440.8	63
538	7/7/2016 17:58	441.1	63
539	7/7/2016 17:59	441.4	62
540	7/7/2016 18:00	441.4	63.2
541	7/7/2016 18:01	441.4	62.6
542	7/7/2016 18:02	441.5	61.6
543	7/7/2016 18:03	439.7	62.9
544	7/7/2016 18:04	441.5	62.2
545	7/7/2016 18:05	442.2	63.3
546	7/7/2016 18:06	442.5	63.8
547	7/7/2016 18:07	439	63.9
548	7/7/2016 18:08	441.1	63.7
549	7/7/2016 18:09	441.1	64.4
550	7/7/2016 18:10	441.2	65
551	7/7/2016 18:11	441.5	64.5
552	7/7/2016 18:12	441.4	63.5
553	7/7/2016 18:13	442.3	63
554	7/7/2016 18:14	442.9	63.4
555	7/7/2016 18:15	443.2	64
556	7/7/2016 18:16		63.5
557	7/7/2016 18:17	443.9	64.4
558	7/7/2016 18:18	443.8	62.7
559	7/7/2016 18:19	443.2	62.9
560	7/7/2016 18:20	442.7	64.1

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

D	ate/Time	T1	Т2
561	7/7/2016 18:21	442.5	65.6
562	7/7/2016 18:22	442.6	63.1
563	7/7/2016 18:23	442.8	65.2
564	7/7/2016 18:24	442.8	64.5
565	7/7/2016 18:25	442.6	65.2
566	7/7/2016 18:26	442.3	63.9
567	7/7/2016 18:27	439.9	62.9
568	7/7/2016 18:28	440.1	64.3
569	7/7/2016 18:29	438.3	65.7
570	7/7/2016 18:30	441.3	63.2
571	7/7/2016 18:31	. 441.6	64.4
572	7/7/2016 18:32	441.3	64.1
573	7/7/2016 18:33	441.1	66.1
574	7/7/2016 18:34	441.1	64.2
575	7/7/2016 18:35	441	63.6
576	7/7/2016 18:36	440.8	63.4
577	7/7/2016 18:37	440.5	64.4
578	7/7/2016 18:38	440.4	64
579	7/7/2016 18:39	440.3	65.4
580	7/7/2016 18:40	440.2	64.8
581	7/7/2016 18:41	. 440	65.3
582	7/7/2016 18:42	439.9	65.8
583	7/7/2016 18:43	439.8	64.4
584	7/7/2016 18:44	439.7	65.3
585	7/7/2016 18:45	439.9	64.8
586	7/7/2016 18:46	440	64.6
587	7/7/2016 18:47	439.9	65.9
588	7/7/2016 18:48	440.3	66.3
589	7/7/2016 18:49	440.4	64.1
590	7/7/2016 18:50	440.4	65.2
591	7/7/2016 18:51	440.2	65.3
592	7/7/2016 18:52	439.9	65.2
593	7/7/2016 18:53	439.6	64.8
594	7/7/2016 18:54	439.5	63
595	7/7/2016 18:55	439.6	64.2

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

C	Date/Time	T1	Т2
596	7/7/2016 18:56	6 439.7	64.1
597	7/7/2016 18:57	439.4	64.5
598	7/7/2016 18:58	438.2	64.6
599	7/7/2016 18:59	436.4	63.6
600	7/7/2016 19:00	439.4	62.8
601	7/7/2016 19:01	439.5	64.8
602	7/7/2016 19:02	439.3	63.6
603	7/7/2016 19:03	439.3	65.6
604	7/7/2016 19:04	439.4	64.8
605	7/7/2016 19:05	439.6	63.8
606	7/7/2016 19:06	6 439.6	65
607	7/7/2016 19:07	439.6	66.2
608	7/7/2016 19:08	439.5	66
609	7/7/2016 19:09	439.5	64.4
610	7/7/2016 19:10	439.7	65.2
611	7/7/2016 19:11	439.9	65.7
612	7/7/2016 19:12	439.7	66
613	7/7/2016 19:13	439.4	63.6
614	7/7/2016 19:14	439.2	64.5
615	7/7/2016 19:15	439.3	63.3
616	7/7/2016 19:16	6 439.5	64.8
617	7/7/2016 19:17	439.9	64.4
618	7/7/2016 19:18	440.2	66.1
619	7/7/2016 19:19	440.5	65.3
620	7/7/2016 19:20	440.3	66
621	7/7/2016 19:21	439.8	65.2
622	7/7/2016 19:22	439.3	65.6
623	7/7/2016 19:23	439.5	64.9
624	7/7/2016 19:24	439.2	65
625	7/7/2016 19:25	439.8	64.8
626	7/7/2016 19:26	6 441.4	64.3
627	7/7/2016 19:27	439.6	63.5
628	7/7/2016 19:28	440.1	64.1
629	7/7/2016 19:29	441.8	64.1
630	7/7/2016 19:30) 441.9	64

Measure Unit	¢XF
Measure Type	К-Туре
Start Time	7/7/2016 9:01
Stop Time	7/7/2016 19:36
Elasped Time	00000Day10:35:02
Interval Time	0:01:00
Data Number	636

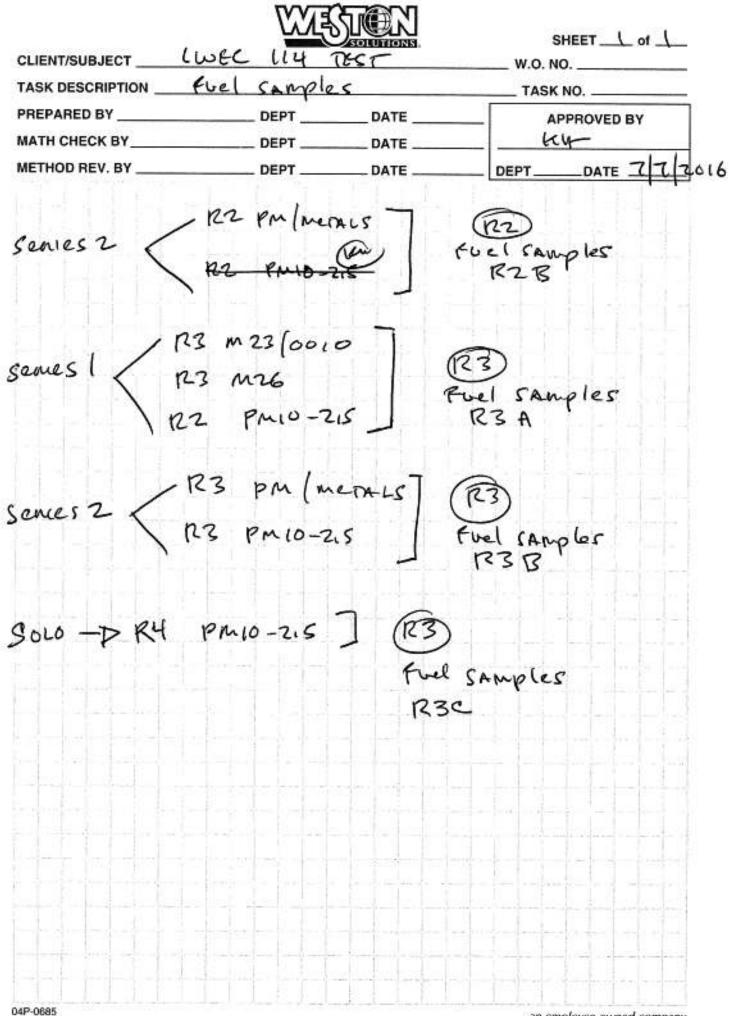
NO.	C	Date/Time	Τ1	Т2	
	631	7/7/2016 19:31		441.6	64
	632	7/7/2016 19:32		441.4	64.4
	633	7/7/2016 19:33		441.4	64.2
	634	7/7/2016 19:34		441.7	63.7
	635	7/7/2016 19:35		442.1	63.8
	636	7/7/2016 19:36		442.1	63.3
Average				439.4	66.1

APPENDIX B RAW TEST DATA

B.1	Test Log
B.2	Particulate/Metals
B.3	PM ₁₀ /PM _{2.5}
B.4	PCDD/PCDF and Cresol Isomers
B.5	Hydrogen Chloride/Chlorine
B.6	VOCs
B.7	O_2/CO_2
B.8	Opacity

B.1 TEST LOG

	T_LWEC ILL TES T W.O. NO.
PREPARED BY	
MATH CHECK BY	
METHOD REV. B	DEPT DATE DEPT DATE 76 2016
0914	STATE M23/0010, BOILOR e Lord STATE M26
1040	M26 Complete
1231	MZ3/0010 Complete
1314	START Primetals & PMID-25
1500	SMART PM/metals & PMID-25 (M5/29) (M201A/202) PMID-25 Complete. Herd & PITOT ASSEMBLY TWISTED, DPSLOW
1521	M5/29 Complete
1552	START RZ M23/0010
1621	START RZ MZG
1726	RZ MIG COMPLETE
1907	RZ MZ3/0010 Complete

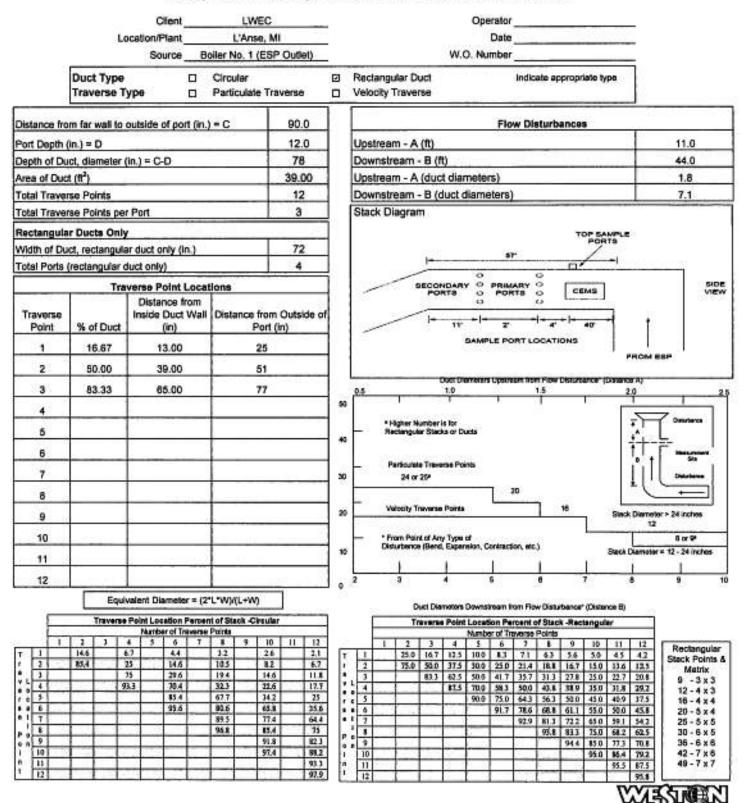

- * TEMPS REcorded @ STACK INCET DUCT DURING AU NUNS.
- ** come MJA/MZSA ONLINE ENTITEDAY, WILL USE VFR FROM MS/25 TO COLULATE IN/LA USE

848	OPACITY (mg)	conducted	During	PM (metals	(1340-1440)
	(~9)				
04P-0685	<u>i 1 a 1 1</u>			an employee-o	wned company

	LWEC				10	
ASK DESCRIPTI	DN <u>5740</u>	× SAMPle			(NO	
MATH CHECK BY		DEPT		- 0 SI 33	PPROVED BY	
IETHOD REV. BY		DEPT		DEPT_		121-
0840	SPART R	r pml	mente 1	Boiltn	e LOAD	
०९५९	Spant 1	iz pmio	-215 (R	epeat	of RI,	N FIZ
0930	R2 PM	10-2.5	STOP		con iceptie	W211
	Probe n	smp lou	CANCE IN	LEED PR	086 4	
	TOM G.	SHORT O	EQ AND	gita.	SPOKE	lace
			RUN +			
1055	R2 41	-lmenec	s Comple	ere		
1057	START	RZ PI	mio-215	(2nd	ATTEMPT	-)
1135	START 1					
1251	R2 PMU	-2.5	conplete			
1334	START	R3 M2	26			
1439	R3 M2	6 compl	eite			
1450	R3 M2	2/0016	Comple	17E		
1513	STANT	RZ PM	10-215			
1515	START R	3 PML	mentes			
1704	R3 PM]	meanes	\$ PMID-	25 00	mplete	
1742	STANT R	4 pmio	-2.5			
1926	R4 PMIC	2-2.5	complete			

	WEC ILL	1051	W.O. NO.	§
TASK DESCRIPTION	STACK SAMPL	e nunr	TASK N	
PREPARED BY	DEPT	DATE	and the second s	ROVED BY
МАТН СНЕСК ВУ	DEPT	DATE	- K	y
METHOD REV. BY	DEPT	DATE	DEPT	DATE 772
* TEMPS RECO AU NONS	vded e a	CALLE INIE	T DUCT	DUNING
of cens m	3A(25A C	DALINE A	U DAY.	
EXE OPACITY	(ms) (a dia Den		P2
PMIMET	LC (DSC	8 - (000)	And	03
FXX OPACITY PM/METR Pm/metr	45 (1520	- (630)		
	In Sunday In Bridge	- handler bage		
NZIOD SMER.	samples p	i exced up 60	MAXXAA	counter
			7	
	frankra ha ha ha an			-
	and a series		and a family of the second	hard a start

CLIENT/SUBJECT LWEC 114 DEST _ W.O. NO. _____ TASK DESCRIPTION _ FUEL SAMPLES TASK NO. ___ PREPARED BY DEPT DATE APPROVED BY MATH CHECK BY DEPT _____ DATE __ ku-DEPT____DATE 76 201 METHOD REV. BY DEPT_ DATE 121M23/0010 stries li RIA 1 RIB RI PMANERLS Serves 2 R2 M23 (0010 Fuel SANDES RZA serves (



an employee-owned company

B.2 PARTICULATE/METALS

.

Sample and Velocity Traverse Point Data Sheet - Method 1

		Client oaction/Plant	LWEC		- Operator M, 115	11
		oaction/Plant	1'Ans	P	Date 2/13/00	r C
		Source	Esp a	TheT	W.O. Number	715
	Duct Ty Travers		Circular	ate Traverse	Rectangular Duct Indicate appropriate type Velocity Traverse	10
Distance	e from far w	all to outside o	of port (in.) =	90	Elaw Disturb	
	pth (in.) = D	10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -		12	Flow Disturbances Upstream - A (ft)	11
Depth of	Duct, diam	eter (in.) = C-	D	78	Downstream - B (ft)	
vea of l	Duct (ft ²)			39.00	Upstream - A (duct diameters)	44
fotal Tra	werse Poin	15		12	Downstream - B (duct diameters)	-
fotal Tra	verse Point	s per Port	83 - CQ	3	a (add ordinerets)	
Rectang	ular Ducts	Only			Diagram of Stack	
Vidth of	Duct, rectai	ngular duct on	ly (in.)	72"		
		lar duct only)		4	\$ 78" [1
1	Trav	verse Point L	ocations		00	
		Distance fro			000,1	1
fraverse Deint	The second se	Inside Duc	t Distar	nce from	8 8 72"	
Point	% of Duc		Le la contra de la c	of Port (in)	00 1	_
1	0.161	13,026	25.00	25		-
2	0.500	39	51	51	F' > 62	>
3	0.833	64.974	1 26,974	77	Duct Diameters Upstream from Flow Disturbance* (Distance A)	100
4					so 0.5 1.0 1.5 2.0	
5						1
6				17"	40 Higher Number Is for Reclangular Stacks or Ducts	Courterus
0.000	1.74		+	- A		÷
7	Com			F	20 - Perficulais Traverse Points	Die
8	0.167	Dory	24.024	24 1	5 = 294023	Databance
	0,500	36	48	48 +5	20 = 5-7 18	+
10	0.873	59.976	71.576	72 4	= 77 16 Stack Diameter >	M Inches
11					10 - From Poerli of Any Type of	
12					etc.) Stack Diameter = 12	· 24 inches
	Equivale	nt Diameter = (21 740/11 +144	7		1
1-				= 74,8	Duct Diameters Downstream from Flow Disturbance* (Distance 8)	9 1
-		Number of Travers	e Points	r	Traverse Point Location Percent of Stack -Rectangular	
1	1 3 4	5 6 7	1 9 10		Munter of Traverse Points	
2	85.4 25	14,6	10.5 8.2	1 1 1 1	1 210 167 125 100 83 71 63 56 50 45 42 Re	ctangular ick Points
1	10	and the second se	19.4 14.4	118	1 83.3 /02.5 50.0 41.7 35.7 31.3 37.8 75.0 77.7 75.0	& Matrix
5		85.4	67.7 34.2	11	4 4 475 700 543 300 434 38,9 350 31.8 292 9	-3x3
6 -		93.6	30.6 65.8	35.6	a 6 01.2 286 489 500 450 409 175 1	2-4x3 5-4x4
11			89.5 77.4 94.1 85.4		7 92.9 311 722 650 901 441 2	0-5×4
4			918	101	91.8 83.3 13.0 44.2 62.5 2	5 - 5 x 5
10	_		97.4		s 94.4 25.0 173 704 3	0-6×5
11				93,1	95.0 44.4 79.2	5-6×6
-41	1			979	951 875	2-7×6

Providente Barrill and a se

٠.

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Inputs for Particulate and Metals Calculations

Test Data			
Test run number	1	2	3
Location		Boiler No.1	
Date	7/6/16	7/7/16	7/7/16
Time period	1314-1521	0840-1055	1515-1704
Operator	DF	DF	DF
Inputs For Cales.			
Sq. rt. delta P	0.85750	0.86097	0.88282
Delta H	1.6367	1.7083	1.8125
Stack temp. (deg.F)	437.3	430.3	433.7
Meter temp. (deg.F)	92.3	77.4	71.1
Sample volume (act.)	63.332	63.749	65.414
Barometric press. (in.Hg)	29.27	29.38	29.38
Volume H ₂ O imp. (ml)	252	244	235
Weight change sil. gel (g)	22.9	24.3	22.8
% CO2	13.8	13.3	13.1
% O ₂	6.6	7.1	7.3
% N	79.6	79.6	79.6
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	96	96	96
Static pressure (in.H2O)	-12.6	-12.4	-12.4
Nozzle dia. (in.)	0.250	0.250	0.250
Meter box cal.	1.0017	1.0017	1.0017
Cp of pitot tube	0.84	0.84	0.84
Traverse points	12	12	12
Particulate Laboratory Report Data			
Front half acetone rinse, g	0.0035	0.0056	0.0033
Filter, g	0.002	0.007	0.0049
Total catch, g	0.0055	0.0126	0.0082
Laboratory Report Data			
Arsenic (As), ug	< 0.80	0.93	0.95
Lead (Pb), ug	7.68	6.62	7.45
Manganese (Mn), ug	9.80	19.0	19.0
Nickel (Ni), ug	7,80	3.10	4.00

X BASDauClass Folders G-ULWECH 6464 007 004 2016 114 Test 2016 CEMS RATA/Dau/PM-matals sh

L'Anse Warden Electric Company L'Anse, MI Boiller No.1 Method 5 PM Acetone Blank Correction Workshoet

Blank liq vol = 160 ml Blank particulate catch = 1.0 mg particulate correction = 0.0063 mg/ml max. particulate correction = 0.0100 mg/ml

TEST CONDITION	TEST RUN	FHA	INITIAL VOLUME	Blank Correction	SAMPLE	filter wt	TOTAL
		Particulate	Acetone	value	Corrected		Particulate
		(lab results)	(rinse vol)		value		catch
		(Bm)	(ml)	(mg)	(mg)	(mg)	6
PM-FHA	-	4.4	140	0.88	3.5	2.0	0.0065
PM-FHA	2	6.7	180	1.13	5.6	7.0	0.0126
PM-FHA	•	4.5	190	1.19	3,3	4.9	0.0082

Whether/associASDate/Client Fictions G-LUWED/14464 007:004 2015 114 Test 2016 CEMS RATA/Date/Phometals.vb

0.80 7.68 7.80 6.62 0.01 7.45 19.0 0.93 3.10 0.95 CATCH TOTAL TOTAL CATCH CATCH TOTAL (B) (8n) 8 ٧ RUN# THREE RUN# Boiler No.1 ONE FRONT + BACK FRONT + BACK FRONT + BACK 0.80 0.80 1.8 0.50 1.8 0.80 0.50 1.8 COMBINED COMBINED COMBINED BLANK HALF BLANK HALF BLANK HALF (iii) (Sn) (Bn) LOCATION LOCATION ESP ٧ x × ESP FRONT + BACK FRONT + BACK FRONT + BACK 0.95 7.95 20.8 0.80 8.18 11.6 9.8 0.93 7.12 20.8 6.0 COMBINED COMBINED 1.5 COMBINED CATCH CATCH CATCH HALF HALF HALF (Bn) (8n) (Bn) ٧ 8 8 13.805 13.805 8 13.805 FILTER SIZE (mm) FILTER SIZE (mm) FILTER SIZE (mm) Manganese, (Mn), ug Manganese (Mn), ug Manganese (Mn), ug BLANK LIMIT BLANK LIMIT Arsenic (As), ug BLANK LIMIT Arsenic (As), ug Arsenic (As), ug Nickel (Ni), ug Nickel (Ni), ug Nickel (Ni), ug Lanse Warden Lanse Warden Lead (Pb), ug Lanse Warden Lead (Pb), ug Lead (Pb), ug CLIENT CLIENT

L'Anse Warden Electric Company Metals Blank Correction Calculations Weakerinee (#SDearClear Follow SPL), MEO (4404 001 004 2016 (14 Tee 2016 CFMS BATX (MeePM weeks do

96

PRINT PRINT PRINT

L	Client _		mination	1.07.0.000000	Operator 2	DE/KS		Pitot Coeff (Cp) Stack Area, ft ² (As)	0.84 39
	Source	ESP			W.O. Number	11.	Pit	ot Tube/Thermo ID	
			Run Number Time ss, in Hg (Pb)	1730	0-1740				
			n H ₂ 0 (Pstatic) ture, % (BWS) O ₂ , % CO ₂ , %	14 7 12					
	ic Flow ination	Traverse	Location	Leaft Che		Leak Check		Leak Check g Y / N	00d ?
Delta P at O*	Angle yeilding zero Delta P	Port	Point	Delta P	Source Temp, F ^o (Ts)	Delta P	Source Temp, F* (Ts)	Delta P	Source Temp, F [*] (Ts)
0	<5°	A	1		430		1		5 015520
.05	450		2		435				
0	0		3		435				
.05	0 45	в			430				
O	0		2		420				č.
0	6		3		420				
6	0	C			420				
0	0	0	Z		425				
۵	0		3		419				
6	8	*	1		42				
0	σ	-	2		42				
.05	250		3		421				
					-				
1003767-000		20000							
Avg Angle			elta P & Temp		1		1		
' Vol	Average g flow rate @ ac	2010	elocity, ft/sec.						

Comments

Viail IMEC Sta	Stack Conditions	Itions	Matter Brie ID	14		datas Bros ID	-	٤.		ΙΓ
% Moisture	Assumed		Meter Box Y Meter Box Del H	East (B)	L1007 14	7 Leak Checks		K Factor	2.21 Mid-Point	Final
Impinger Vol (ml)	でお話	252	Probe ID / Length	Eluli PISH	1 5'	Sample Train (N [*])	E	0,066	1	00
Silos gel (g)		5.22	Probe Material	0	Boro	Leak Check @ (In Hg) Band cond	(6H ul) 0	15"	(22
02. % by Vol		1.2	Plot Coefficient		0.84	Orsal good		Do I say	our tax	
Temperature ('F)	e(F) 435	1000	Nozzie ID		252. 540	Temp Check		Pre-Test Set	est Set	Post-Test Set
Meter Temp ("F)			Avg Nozzle Dia (in)	1		Meter Box Temp	2	8		55
nic Press	Static Press (in H ₂ O) - 3	9.11-	Area of Stack (ft')		1	Reference Temp	Ê	S.		82
Ambient Terms ("E)	en en		Sample Time		4 5	Tomo Change B	C)	- L -	L THE	184 1 181
ALL LAND	da la	N.D.	I COLI I L'AVERSE PIS	Comparison of the second se	A.	remp crange response	Mesponse -	(ad	10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ou r Gad
VILDGITY ESQUEE, Deal P (bi HZO)	a Pressure Beta M (In Hzo)	DRY GAB NETER SEADING (h ⁻)	STACK TEAP (7)	DOW TENP (T)		FILTER BOX TEMP (f)	EXIT TEMP	SAMPLE TEANS VIC	また を 井	comments
. 64	2.7	210.012	422	61.	240	2.5.2	11-	2.0	245	A NEW YORK AND A DESCRIPTION OF
200	1.4	C 212	445		242	152	1.1.	0	249	1320 0000
82	256-1	317.3	745	5	250	252	104	2.0	248	1338 Parvic
09.	1.3	311.7	442	12	260	152	3	2.0	256	
160	E1) +++ (19)	322.6	438	88	254	250	59	2.0	251	12.921
150	1.2	324.236	438	88	248	250	60	2,0	251	
-	(1	1	1	1	ľ	1	ı	
515	1.6	326.8	425	KK KK	243	248	66	2.5	250	
5	1.6	329.4	844	N.	250	250	60	2.5	251	
.70	1.5	331.9	845	000	252	250	65	215	251	15.037
01.	1.5	334.4	445	23	256	250	64	2.5	152	
00	1.3	33016	443	90	152	250	63	0.2	250	
, too	6.1	339.275	824	9	248	250	c+	0.2	250	
	,	2	,	(١	,	1	,	,	
20	1.8	342.0	425	12	241	249	4+	215	0.52	
160	1.8	344.7	+++	93	442	152	64	2.5	15-2	att al
2	1.9	217.6	446	53	249	251	63	2.5.	251	PRESS ACTO
20	1.4	350.4	4#2	94	2540	251	to	5.2	152	
22.	118	7. 255	425	45	252	250	64	2.5	250	
8	81	120.955	124	96	249	250	65	2.5	250	
	1	356.021	1	1	١	1	1	(1	
95	2.1	159.0	935	5	243	249	610	3.0	250	
5	1.2	342.0	434	98	250	152	66	0.6	251	
95	1.21	365.0	437	99	250	250	64	3.0	250	
50		308.0	432	69	254	250	64	0.6	240	
Avg Sont Delta P	Avg Delta H	Total Volume	Avg Ts	Avg Tm	MinMax	Min/Max	Max Temp	Max Vac	Max Temp	
Construction of the second	A ALCONDUCT OF							and the second second		

Switch	Sample Loc.	ESP Stack	Run No.			K Factor	2.21							
150 1,50 1,5 1,5 1,5 1,5 2,5 <th>an time</th> <th>and the second se</th> <th>VELOCITY PRESSURE Deta P (in H2O)</th> <th>ORFICE PRESSURE Delta H (in H2O)</th> <th>E C</th> <th>A HILF AND AND</th> <th>DOM PALET TEAP (°F)</th> <th>DOM CUTLET TEMP (F)</th> <th>the network the</th> <th>Contraction of the second s</th> <th>and the second se</th> <th>SAMPLE TRAIN VAC (in Hg)</th> <th></th> <th>COMMENTS</th>	an time	and the second se	VELOCITY PRESSURE Deta P (in H2O)	ORFICE PRESSURE Delta H (in H2O)	E C	A HILF AND AND	DOM PALET TEAP (°F)	DOM CUTLET TEMP (F)	the network the	Contraction of the second s	and the second se	SAMPLE TRAIN VAC (in Hg)		COMMENTS
[5±1] 1,5±0 1,5 313.647 430 700 247 250 250 [5±1] 1,5±0 1,5 313.647 430 100 247 260 260 [5±1] 1,5±0 1,5 1,5 1,5 1,6 1,6 [5±1] 1,5±0 1,6 1,6 1,6 1,6 [5] 1,6 1,6 1,6 1,6 [5] 1,6 1,6 1,6 1,6 [5] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 1,6 [6] 1,6 1,6 1,6 [6] 1,6 1	3 92		225		370.8	430		100	249	249	64	3.0	250	
Анд Dealer H Total Yours Ang Ten Ang Ten Ang Dealer H Total Yours Ang Ten Ang		1251	1 800	~	373.647	+30		001	742	250	65	5.0	250	07201-11
Анд Delish 1 Total Volume Ang Te Ang Ten Manyker Man Yakas Man Yakas Manyker Man Yakas Manyker Man Yakas Manyker Man Yakas														
Avg DeBer Avg Te Avg Te Manyke Manyke <thmanyke< th=""> <thmanyke< th=""> <thmanyke<< td=""><td></td><td></td><td></td><td></td><td></td><td>201-01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thmanyke<<></thmanyke<></thmanyke<>						201-01								
AvgDealeH Total Volume AvgTa AvgTare AvgTare AvgDealeH Total Volume AvgTare AvgTare AvgTare														
AvgDebeH Total Volume AvgTm MaxVac														
Avg Detach Avg Tan Avg Tan Ava Vac														
Avg Detech Avg Ta Avg														
Avg Deter H Total Volume Avg Ts Avg Tm ManMax ManMax Max Vac Max Vac Max Temp Vac Max Temp Vac Vac Max Temp Vac														
Avg Delta H Total Volume Avg Ts Avg Tam ManMax ManMax ManMax Max Vac Max Temp Max Vac Max Temp Max Temp Max Temp Max Temp Max Temp 2.3 246 / 245 / 66 3.33 2.5 2.5 25 1														
Avg Delte H Total Volume Avg Tim Min/Max														
Avg Delia H Total Volume Avg Train Minikjax														
Avg Delia H Total Volume Avg Ts Avg Tm MinNjax Min				-										
Avg Delia H Total Volume Avg Ts Avg Tm MinMax MinMax Temp Max Vac Max Temp (. 637) (.5.332. 157.3 2.0 2.5 2.0 2.5 2.5 2.5 2.5 1														
Avg Della H Total Volume Avg Ts Avg Tm MinMax MinMuk Max Temp Max Vac Max Temp (.637) (.5.332 157.3 92.3 200.7.4.4.2/L55 (.40 3.6 2.5]														
Avg Delta H Total Volume Avg Ts Avg Tm MinMax MinMax MinMax Temp Max Vac Max Temp (. 637/ 63.332.2457.3 2243/255 60 3.6 251														
Avg Delta H Total Volume Avg Ts Avg Tm MinMax MinMax Max Temp Max Vac Max Temp Max Vac Max Temp Max Vac Max Temp 1, 637/ 63.3332.0137.3														
Avg Delta H Total Volume Avg Ts Avg Tm MinMax MinMux Max Temp Max Vac Max Temp Max Vac Max Temp 1.637 63.3322 457.3 2242,3242,2487,253 60 3.6 2.5	-													
			Ang Sun Durg		Total Volume	Avg Ts # 57.3	EwA	1	7.60	MMMM SS	Max Temp Lde	Max Vac 3, b	Max Temp 2.5	102.0

ALL PADE	LWEG	Stack Conditions	Anthread 1	Meter Box ID	50		ſ		K Factor	2.29	
LWEC	35 Moisture	- IL	Proping in the	Meter Box Del H	2.1	+1L1.2	Leak Checks	ocks		Mid-Point	Final
114	Impinger Vol (ml)	ml) second	244	Prote ID / Length		6524 S'	Sample Train (R ²)	ain (R ²)	01010	0100	0000
STK	Sifes gel (g) CO3 & hu VM	~	24.3	Probe Material Pitol / Thermonumie ID	10 052 C	Boro	Leak Check	Leak Check @ (in Hg) Pire cond	100	00100	(mal i an
M29	02. % by Vol	1	2.1	Pitot Coefficient	108	0.84	Orsat good				01 101
4JUL2016		(F) 434	The second se	Nozzie ID		1250	Temp Check	eck	Pre-Te	est Set	Post-Test Set
ESP			8	Avg Nozzle Dia (in)) F	1250	Meter Box Temp	Temp	02		14
	Static Press (in H2O)	E1- (02H B	+17.4	Area of Stack (R*)		39	1	Temp	20		-
21.38	Ambient Temp ("F)	(F)	70	Sample Time Total Traverse Pts		31-21	1	Passifall (+/- 2) Temp Change Response	N.	/ Fail	Mart I no
	ないないのである	desce		THE CALLS	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Non-State	The second	and the second second		- m -	State State
	nei Predsure Deta	PHESSING Defect in H201	HEADING (A)	TEMP(F) DO			CC BOATEM	e lexin team	TEALN VAC		COMMEN
0 0840	A A A A A A A A A A A A A A A A A A A		492.749	Statistics in	A REAL PROPERTY	「「「「「「」」	State of the state		ALC: NOT	and the second se	ないない
4	1.0		495.5	425	1	70 243	3 250	Lolo	0.4	243	
8	1.0	2.3	6'864	436	-			55	4.0	250	
12	0.1	2.3	502.10	436		72 251		+	4.0	255	
٩	1.0	2.3	505.1	125		1	+	+	4.0	255	
20	0.85	1.9	507.9	+23		+	+	59	3.5	258	
	185	6-1	510.74	420	-	5 코	1 250	59	3.5	258	
2907	1	,	210.74	1		+	+	1	1		34.751
28	80	10	513.4	420		75 246	10	66	3.5	2.57	
32	2.51	1.8	514.3	437		75 248		_	3.5	240	
36	, 85	6.1	519.0	4 90		76 250	0 250	-	3.5	260	
*0	\$3	- 6-1	521.8	435		-	_	-	3.5	261	
	.85	61	524.40	420	6	-		61	3.5	260	
+8 0931	. Co	8.1	527.520	424		PH2 87	-	62	2.5	260	Stand 0
1001	,	1	1997125	1		+	+	+	(1	
\$52	01:	1.0	530.1	\$26		79 248	-	-	3.5	2400 5	Statel
Sle	01.	1.60	532.6	イエト	-		-	. 63	3.5	-	1001
60	P.	د.	535.2	ナナゴ	0	+	-	59	3.5	240	
(04	10	<u>e</u>	537.8	440	90	80 251		59	3.5	-	15.331
68	165	1,5	540,4	425	~	-	1 251	60	30	240	
72 1026	01	· ·	543.018	125		90 247	7 250	23	315	741	
1801	t		543,102	t			,	1	1	1	
76	. 55 .	1.3	545.4	410			152 2	lo lo	5,0	260	
1 92	155	1.3	1: 143	436	5	2HS 2HS	152 5	65	3.0	1	13.667
84	55.	1.3	1.022	14.5	-	8 251		3	1.0		
55	151	(.3	152.4	433	3				3,0	260	
-	Avg Sqrf Delta P	Avg Déta H	Total Volume	AvgTs	1 Avg Tm	WINN .	10-11. 8 - 12	Max Temp	Mex Vac	Max Temp	103,5
このであって		Avg Sqrt Del H	Comments:					EPA 5/29 from 40CFR60	m 40CFR60	/6.	16.96%
										ATC12	<

	3	TRAVERSE POINT NO. 3	Clent Source Sample Loc
	ap	97 S.u	
	[855	CLOCK TIME (plant line)	ESP Stack
Avg Sart Deta P	۰,5ο	VELOCITY PRESSURE Delta P (In H2O) • 5 b	Operator Run No. Date
Avg Delta H 1. 70 % V	1.1	ORIFICE PRESSURE Detta H (in H2O)	₽F 7 - 1 - 1 - 2
Total Volume 63.749 V	556.769	DRY GAS METER READING (M ²) 552.1 554.7	
4 30. 7 V	430	STACK TEMP (%)	K Faclor
		DOM PAET TEVP (P)	2.29
	92	DGM NUMET TEMP (F)	
Min Wask	14	PROBE TEMP ("F)	
Minilian 17/256 2.17/252	050	FILTER BOX TEMP (F) 2.50	
Max Temp	19	IMPING EXIT TEMP (°F)	
Max Vac	3.0	SAMPLE TRAIN VAC (In Hg)	
Max Temp ZG/	260	Fint- Evit 240	
		COMMENTS	

	2		Actual 11-4- 7-1-4-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-	All Meler Box Y Meler Box Del H 255 Probe ID / Length Putor / Themcouple ID Putor Coefficient Nozate ID Avg Nazate ID Avg Nazate ID Avg Nazate Dia (in) Semple Time Total Travene Pis Total Travene Pis Total Travene Pis Total Travene Pis	1001	800 5	Leak Checks Sample Train (ft [*]) Leak Check @ (in Hg) Photgood Orat good	 ສີຍິສິ	hittal Avoog (5 "	Mid-Point Mid-Point Lon	Final
				teter Box Del H robe ID / Length Kote Maxerial Not / Tharmocouple ID Vict Coefficient Iozzle ID vg Nazzle Dia (m) vg Naz			Leak Check Semple Train Leak Check (Pitor good Orsat good	9 9 9 9 9 9 9	0,008 (5"	0/000	0.00
				tick Manana tick / Thermocouple ID tick Coefficient locate ID wg Nazzle Da (n) wg Nazzle Da (n) wg Stack (n ²) sampe Time otal Travense Pis strak (n ²) travense Pis strak (n ²) travense Pis travense Pis travense Pis			Leak Check Pitot good Orsat good	(6H H) (6	(S	100	100
				ttot / Thermocouple ID tot Coefficient lozde ID wg Nazzle Da (m) maa of Stack (m ¹) ample Time otal Travense Pis strack occu	<u>1:54</u>		Phot good Orsat good	1 million and a million and	Nel 1 mg	ou i w	10
				tick Coefficient Instale ID wg Nazzle Dia (in) mae of Stack (in ¹) simple Time of Stack (in ¹) simple Time Time I of A			Orsat good				and the
		44 11 11 11 11 11 11 11 11 11 11 11 11 11		ezzle ID wg Nazzle Dia (n) ma of Stack (n ¹) ample Time otal Travense Pis stAck och Table (11, Tb Table (11, Tb Table (11, Tb)	日本の		None interio		100		
ocalion E8P Belle 7/ Bes (in Hg) 24 Bes (in Hg) 24 C + + +				vg Nazzle Da (m) maa of Stack (m ³) semple Time dal Travense Pts stAck ocen Travense Pts stAck ocen travense Pts stAck ocen travense Pts stAck ocen	日本の	1.1.1	Temo Check		Pre-Test Set	st Set	Post-Test Set
14				ma of Stack (m ²) emple Time dial Travense Pts strack ocen iTeMp (*1, TeV 430	日本市場	. 1	Meter Box Temo	OL	1.0		
		ингисе истание селание с с с с с с с с с с с с с с с с с с с		ampe Time dial Travense Pis STACK DCA TEMP (15) TEX 150 (15)	日本市会会		Reference Temp	Ê	(49		
A otorio	Ambient Temp Ambient Temp Precessions Prec	ингесе сазыне сазыне си при нас 1.4 1.4 1.3 1.3 1.3		dial Travense Pis STACK OCM TEMP (15) TEMP	3		Pass/Fail (+/- 2 ⁰)	ي. ج	Ege / Fail	Fail	Pass / Fail
анала 2000	VELOCITY PRESSURE Donta P (n. 1900) 	ě l	6.00-1946		and and a	12	Temp Change Response	e Response	1	1 100	yes / no
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESSURE Data Print Pool	ê l	0.850.794	Contraction of the local distance of the loc			FALLER		SAMPLE	R.F.A.	
44 6 4 4 5			653.198	430 1	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	Toker (SP)	BOX TEMP	exit TEMP PE	TRAIN VAC (in Ho)	一世語	COMMENTS
44	69 99 88 88 88	ē	683.1 105.10 101.158.0	430 1	and the second second	and the second	THE WAY	A COLORADOR	and the second se		Sold and a second
	100	ē	100.10	439	70	250	242	61	215	255	
	35	ē	1 90.2		12	248	242	60	2.5	250	
_	S S		1 40.2	44	71	42	252	9	2.5	255	
	, 15	_	1,19	944	71	245	253	59	2.5		14.213
3 20			692.7	420	71	248	294	52	2.5	254	
-	155		110.260	420	71	248	250	5)	2.15	258	
11544	1		110.264	1	/	1	1	/	/	/	
20 1 28	.75	1.7	697.6	430	70	248	248	54	3,0	255	
/ 32	.75	い	-	441	12	250	250	53	3.0	255	1
2 36		r,1	9.20L	055	ic	253	349	52	3.0		15.789
2 40	5L, 1	1.7	705.5	433	70	253	242	52	3.0	253	
	175	1.7		432	11	250	250	54	3,0	253	
3 48 1403	.70	1.6	710.795	430	71	250	250	\$	2.0	252	
[0]3	/		710.857	/	l	1	/	/	1	/	
SPERI SL	0.1	2.3	13.9	+35	70	299	1251	(00	3.5	250	
1 54	36,		716.9	439	72	842	250	Sa	3,5		
2 60	0:1	2.3	9.91	443	71	252	- 52	57	315		17.571
2 64	011		1.61	438	71	522	250	57	3.5	250	
3 44	175	L'I		437	12	250	250	60	253.53.0	255	
	115	1.1	729.428	437	72	248	249	62	4.5	152	
1640	1	1	5	1	,	1	1	,	1	1	
22	110		30	434	71	250	0 12	40	3.5	250	
1 800	1,0	2.3	5	724	72	244	249	GG4	3.5	251	
2 54	1.0	-	-	437	72	252	-	et	3.5	250	
2 83	0')	2.3	740.7	+ 28 1	72	152	250	10	3.5	250	
	Avg Sqrt Detta P	_	Total Volume		Avg Tm	MinMax	1	Max Temp	Max Vac	Max Temp	
		Aun Seid Dal H Auman	-					The amendance and then	- annergan		

			Т	Т	Π	Т	Г	Π	Т	Τ			Т	Т	Т	Т	Т	Т	П	Т	Т	Т	٦			
	COMMENTS		17.8460																				103.6	15.9%	1 5708.7	64.232
	吉吉	253	250																				Max Temp 2.58	ŕ	-	64
	SAMPLE TRAIN VAC (In Hg)	3,0	3.ბ							-													Max Vac 3.5			
ľ	IMPING EXIT TEMP- ("F)	ŝ	2																				Max Temp 24			
	FILTER BOX TEMP (F)	250	592																	,			MinMax 292/253	-		
	PROBE TEMP ('F)	250	248																				MinMax Z4-2-53	Ļ		
	DGM DUTH ET TEMP (°F)	72	Ļ																				-			
2.29	DOM PALET TEXP (F)		_	_					_	_	_	_		_		_	-			_	+	+				
K Factor	STACK TEMP (°F)	425	420																				433.7.			
	DRY GAS METER READING (R ¹) 740.7		そして きもん																				Total Volume	~		
2f 1/1/ν	ORFICE PRESSURE Della H (in H2O)	1.8	1.8																				and the second se	Avg Sqrt Del H		
Operator Run No. Date	VELOCITY PRESSURE Dolta P (in H2O)	Sto-	8																				Avg Sort Delta P	e. d /	. (20)	
LWEC ESP Slack	CLOCK TIME (plant time)		Ho-1																					ſ		
	2 ≣	5 2	96																							
Client Source Sample Loc.	TRAVERSE POINT NO.	٣	1																				EV.N	P)		

EPA Method 5/29 - PM/METALS- / W

Page Z of Z

ISOKINETIC FIELD DATA SHEET

SAMPLE RECOVERY FIELD DATA

EPA Method 5/29 - PM/METALS

Client	10 242	LWE	C		W.O. #		14464	1.007.004		
Location/Pla	int _	L'Anse, N	lichigan	Source	& Location		ESP	Stack		
Run No. Sample I.D.	1 LWEC - 114	- STK - 1 - M2)-	5	Sample Date Analyst	7/6/16			ery Date 7	6/6/10
					Imping	er			()	
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HN03 / H202	2HNO3/H202	Empty (N. GI ILIPO	1-01-1100			Silica Gel	
Final	128	200	124					-	322.9	
Initial	8	100	100		100	100			300	
Gain	128	100	24	231				232	22.9	
Impinger Cold		TAL CA	lings		Labeled?		1/			
Silica Gel Cor	10	16 1	3. 0		Sealed?		L	/		8
Silica Gel Col		16	une		Sealed?		_		_	
Run No. Sample I.D.	2 LWEC - 114	- STK - 2 - M2		5	Sample Date Analyst	7/7/16			ery Date Number /6	7/7/
					Imping			1		- 1
81 - E	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	the second se	2HNO3 / H2O2	Empty		N-OLUNSO		Secondy 15	Silica Gel	The second s
Final	118	196	130						324.3	o'llines
Initial	10	100	100	्री	100	100			300	
Gain	118	01	30					244	243	
Service South	1. A. C. C.	N.10		~	1		1	1 1		30
Impinger Cold	ν <u>ζ</u>	en j	colales	S	Labeled?					50
Silica Gel Cor	ndition	12 30	we		Sealed?				and the second se	
Run No.	3		24 191	Ę	Sample Date	7/1/16			ry Date	p/
Sample I.D.	LWEC - 114	- STK - 3 - M2	-		Analyst	m		Filter	lumber /	0509
	1	2	3	4	Imping	6	7	Imp Tatal	8	Total
Contents	Empty	the second se	3 2HNO3 / H2O2	Empty	5	6 Louvest	- (Imp.Total	8 Silica Gel	Total
Final	150	175	110	Cinpty				ALL DESCRIPTION OF THE PARTY OF	372,8	CALL OF COLUMN
Initial	18	100	100		100	100			300	8
Gain	150	75	10		100	100		235	22.8	
	- /	11.1			1.1.1.1.1.1.		~	1.1.1	0.10	100
impinger Colo			50.00 D C C		Labeled?		-	,		
Silica Gel Cor	ndition	2 Blu	e		Sealed?		0	0		8

Check COC for Sample IDs of Media Blanks

WESTON

B.3 PM₁₀/PM_{2.5}

SOURCE ID: Boller No. 1 DATE: 7/7/16 TEST CONDITION: High Load

CLIENT: LWEC FACILITY: L'Anse, MI RUN: 2

DWELL TIME CALCULATION (For the dwell time collocation, input the the total run time and the most recent Average Data P)

Total run time Number of points

105 minutes 12 Twelve points are all that is required

0.720 in H2O

(520)

Avg. Data P (from LAST velocity barrano) 0.720 in H2O NOTE: This is NOT the square root of Deta P NOTE: If stack diameter is less their 24 inches preliminary velocity is adjusted for blockage. Inset the volue for each Deta P, prior is sampling that point. The apprentian TOTAL sample there will be calculated for that point. NOTE: All deel times are beend on the Deta P for opinitif and the own Deta P from the last barrano.

10000201	1000 N 200 Ca	PORTA	122101021	2000 C C C C	lines.	FORT A	and the second
Point Number	P	SORT Owne P	Sample	Point Number	Peta	SORT Deta P	Sample
9-1	0.95	0.97	10.05	8-1	0.63	0.79	8.20
0.2	0.93	0.96	2.94	8-2	0.62	0.79	6.10
0-3	0.95	0.67	10.05 1	6-3	0.57	0.75	7.93
_A1	0.86	0.92	9.51	C-1	0.48	0.68	7.00
A2.	0.73	0.65	6.01	C-2	0.50	0.71	7.90
A-3	0.80	0.89	9 22 1	C-3	0.52	0.72	7.40
		Tengented	57.58	1. S. M.	1	Time(min)	45.80

Tris calculation establishes the # of points and min/pt necessary to meet the standard Mathed 5 officials of recording data avery <= 5 min, and the Method 201A orderie of rounding to a 15 sec interval

POR	TA
# points	minipt
2	3.00
21	3.00
2	5.00
2	5.00
2	4.75
2	4.75

PORT	
#points	win/ot
21	4.75
2	4.50
2	3.50
2	1.50
2	3.50
2	1.50

de the and a	FRA DUD LODGE	topkine#c (ate)							
NUMBER OF	Fele ron vern		Total			-	Church	Marrie	
Port	Point#	Sancia Time		Oeto P	SortDo	Deta H	Stack	Meter	_
eun	PORCE	5.00	Time 5 00	0.95	0.97	039	Tomp	Tero-1	
	1	5.00	10.00	0.95	0.97	0.39	441	01	_
	2	5.00	15 00	0.00	0.96	0.30	433	81	
	2		20.00	0.831	0.96	0.39	400	81	
		5.00	25.00	0.96	0.67	0.38	421	82	
	3	5.00	30.00 2	0.961	0.97		425	12	
	1	5.00	35.00	0.85	0.92	0.39	445	82	
		5.92	40.00	0.55	0.52	0.50	440	82	-
-	2	4.75	44.75	0.73	0.65	0.39	436	82	
-	2	4.75	49.50	0.73	0.85	0.39	433	82	
	3	4.75	54.25	0.50	0.89	0.501	420	01	
7100	3	4.75	59.00	0.50	0.50	9.39	418	Bi	_
	1	4.75	63.75	0.63	0.79	0.50	410	81	_
		4,75	68.50	0.63	9.79	0.30	644	61	_
	2	4.00	73.00	0.02	0.79	0.39	436	81	_
	2	4.50	77.50	0.42	079	0.301	426	81	
	5	3.50	81.00	0.57	0.75	0.301	420 5	B1	
-104-14	2	3.52	81.50	0.57	0.75	0.39	410	81 81	_
11111111	1	3.92	68.60	0.46	0.58	0.301	436	01	_
		3.50	91.50	0.45	0.68	0.39	440	50	_
	2	3.50	95.00	0.50	0.71	850	438	60	
	. 2	3.50	98.50	0.50	0.71	0.29	428	50	_
		3.50	102.00	0.2	0.72	0.30	426	50	_
110 2000	3	3,50	105.50	0.0	0.72	0.30	424	60	_
of Carried Street		2/2/	105.50	0.2				20	
		CONTRACTOR OF	105.52	and the second second			-	Contraction of the local division of the loc	
			105.50	10.000					_
		and the second s	105.50		_		-	Contract of the second	_
		Contract of the local division of the local	105.50	Contraction of the local division of the loc			and the second second	CONTRACTOR OF THE OWNER	
transminth the	1		105.50						
7170110		COLORED P	105.50	10000	-			CONTRACTOR OF THE OWNER	_
the states	Conference of the local division of the loca	- Designation of the local division of the l	105.50					States and the second s	
			105.50		_				_
1111111			106.50	And the owner which					
		COLUMN TWO IS NOT	106.52		_				
			105.50			the second s		- Contraction	****
100000	Territory and	abridge of the	105.50	Condensities in the		and the second	- and the second	the second s	
	a factorization in the	and the state of	105.50				100000		
	1111111111		105.50	Constraints of the		10000	-Personal Association		_
	100000000	almental second	105.50		-				_
- Contraction		100000	105.50			-	1000000	100000000	
	1100-11-0-0		106.50			and the second		and a grant of the	_
the second second se		Contractor and Contractor	105.50						_
			105.50	1011010		Constanting of the local division of the loc		Concession of the second	_
	and the second	Contraction of the	106.50	Concernance of the local diversion of the loc		and the second second	- interest	North Anna Party	
-			105.50	Contraction of the local division of the loc					
		105.5	1151-30	0.7092	0.63559	0.39	100.00	81.04	_
		1000	100 March 100 March 100	0.0452	0.030091	0.381	431.17	01.04	

B WARMANCOMMINATION AND CAMPACT SHE COLORS SHE IN THE 2016 COMPLEX PARTY OF A DESCRIPTION OF A

OURCE ID:	Boiler No. 1		CLIENT:	LWEC
ATE: EST CONDITION	7/7/16		FACILITY:	L'Anse, MI
EST GORDITION	: Inigh Loso		RUN:	2
	PM10	AND PM2.5 INPUT DATA FOR CALCULA	TIONS	
	T MITO	AND FINZ SINFOT DATA FOR CALCOLS	TIONS	
		RUN	2	-
		TEST PERIOD	1057-1251	
	Y	Meter Box y	0.9915	
	Delta H@	Meter Box Delte H@	1.5873	
	VM	Meter volume, #*3	36.455	
	CO2	CO2 concentration, %	13.1	
	02	Oxygen concentration, % Nozzle diameter, inches	7.3	
	A	Stack Area, so, ft.	39.000	-
	Pb	Barometric Pressure, Inches Hg	29.38	
	Pg	Static Pressure, Inches H2O	-12.40	
		Impinger water collected, g	150	1
		Silica Gal collected, g	14.4	
	6-	Total Imp catch	164.4	
	Cp Data P	Pitot Coeff Avg Sgrt Deta P, sgrt[inches H2O)(time weighted average)	0.781	
	Canar	Sample Time, min	0.8496	
	Ts	Average Stack Temp.dog F (time weighted average)	431.52	
	Ta	Average Stack Temp.deg R	891.52	
	Tm	Meter temperature (time weighted average)	81.11	
	Delta H	Avg Delta H, Inches H2O	0.39	
	O2(wel)	Oxygen concentration-WET	6,0	
		Nitrogen(+ CO) concentration	79.8	
	Bws	Fraction moisture content		(Ex. 4% = 0.04)
		Moisture percentago	18,257	Contraction and
	Md	Mole fraction of wet pas	0.817	
	MWd	Molecular Weight(Dry)	30.39	
	Ps	Molecular Weight(Wet)	28.13	
	MwParts	Absolute Stack Pressure Intermediate Calc	0.898	in Hg
	Ts/MwPs	Intermediate Celc	1.113	
	(Vmsid)	Standard Meter Volume, culft	34,653	
			- Street	
	Qs	Cyclone flowrate (actual), cfm	0.713	1
	Us2.5	Viscosity of Stack gas	245.44	micropoise
	Cum Con2.5		1.11	S1025-215
	Nre DEG Nov children		2255	
	D50-Nre<3162 D50-Nre>=3162		2.63	-
	D00-Mme>=3104		2.14	÷
	Cr2.5-Ne<3162		1.114	
	Cr2.5-Ne>3162		1.130	1
	D50-1-Nre<3162		2.43	
	D50-1-Nre>=318	2	2.12	
	ZNe>3162		1.00	
	Zne<3162		1.01	S
	-	No. 1 dimension		3
	Dn	Nozzle diameter	0.190	inches
	10-	Norsela Velacity	00.070	00.00
	R min. (Noz-1)	Nazzie Velocity	60.388	
	R max. (Noz-1)			N/sec N/sec
	Trans (Trans)		1.2/3	in and
	V min (Nog-1)	minimum velocity	41.31	fl/sec
	V max (Noz-1)	maximum velocity		R/sec
		NOTESTO - 2000000	And the second	10000
	ta e min. (Noz-1)	0.344	in.H20	
Delt	a p max. (Noz-1)	1.190	in.H2O	1
DON'T HALF TO	101041 0171	370.	200.05.	
RONT HALF ANAL		hant half malans the solution a strategy		
		tront, half cyclone (0) >PM10, g. (FHA1) clone 10 exit tube & front, half cyclone IV) <pm10, (fha2)<="" g.="" td=""><td>0.0053</td><td></td></pm10,>	0.0053	
	Mass PM 10 (0)	volone 10 exit tube & front half filter holder) <pm10, (fha2)<br="" g="">wolone IV exit tube & front half filter holder) <pm2.5, (fha3)<="" g="" td=""><td>0.0024</td><td></td></pm2.5,></pm10,>	0.0024	
	Mass (Rter) <pt< td=""><td></td><td>0.0065</td><td></td></pt<>		0.0065	
-	The fame below		0.0010	
			1	
ACK HALF ANALY	TICAL DATA			
ACK HALF ANALY	TICAL DATA H2O (Inorganic)	residue, g	0.0088	
ACK HALF ANALY			0.0088	

PM10 AND PM 2.5 RUN TEST DATA

PM2.5 PROGRAM SOURCE ID: Perryman 6 DATE: 7/7/65 TEST CONDITION: High Load

CLIENT: LWEC FACILITY: L'Anse, MI RUN: 3

DWELL TIME CALCULATION (For the dwell time calculation, input the the total run time and the most recent Average Delta P)

Total run time	-	1.00	in the		
	100	al rur	1,210		

100 minutes 12 Twelve points are all that is required

Ava. Data P (Itom LAST velocity traverse) 0.740 in. H20 NOTE: This is NOT the square root of Data P NOTE: If stack diameter is less than 24 inches preliminary velocity is adjusted for blockage. Insert the value for each Deta P, prior to sampling that point. The appropriate TOTAL sample firms will be calculated for that point. NOTE: All dwell times are based on the Data P for point? and the way. Data P from the fast traverse (above). PORT A PORT A

-1000000	10.00 C C C	PORT A	122 221 231 231	0.0012.0001		PORT A	
Point Number	Petta	SQRT Dets P	Sample	Politt Number	P	SQRT Deta P	Sample
D-1	0.90	0.99	9.59	8-1	0.68	0.82	8.00
D-2	0.26	0.98 [9.49	8-2	0.65	0.81	7.80
D-3	0.26	0.92	9.59	8-3	0.70	9.84	8.10
A-1	0.88	0.93 [8.96	C-1	0.52	0.72	7.00
A-2	0.83	0.91	6.83	C2	0.49	0.70	6.80
A-3	0.361	1 60.0	8.66	C-3	0.47	0.69	6.60
	-	Time(min)	05.14	1000		Time(min)	44,30

This calculation establishes the # of points and minipt necessary to meet the standard Method 5 criteria of recording data every <= 5 min, and the Nethod 201A criteria of rounding to a 15 sec interval

POR	TA .
# points	minipt
2	5.00
2	5.00
2	5.00
2	4.75
2	4.75
2	4.75

PORT	T B
# points	min/pt
2	4.50
2	3.50
2	4.50
2	3.60
2	3.25
2	3.25

	E THE MAR WRITE	inskinetic rate i				1			
		Sample	Total		S 5		Stack	Motor	
Port	Point#	Time	Time	Deta P	Sart Do	Delta H	Тепр	Terp-1	
Contraction in	1	5.00	5.00	0.98	0.59	0.32	435	75	
		5.00	10.00	0.96	0.90	0.39	448	75	_
Contract of the	2	5.00	15.00	0.90	0.96	0.39	428	76	_
11.00	2	5.00	20.00	0.90	0.26	0.39	438	75	
	3	5.00	25.00	0.06	0.00	0.39			
	1	5.00	30.00	0.00		0.39	426	15	_
	1	4.75	34.75		0.99	0.29	418	70	
		4.75	39.50	0.66	0.93	0.39	441	76	
	2	4.76		0.88	0.93	0.39	448	75	
			44.25	0.53	0.91	0.59	440	70	-
design birgh since	2	4.75	49.00	0.83	0.91	0.50	429	76	
and the second second	3	4.75	53.75	0.00	98.0	0.39	422		
110021138	3	4,75	58.50	0.50	0.49	0.39	415	76	201
Ç		4,50	63.00	0.68	0.82	0.39	445	77	
111111	1	4,50	67.50	0.68	0.82	0.30	445	77	
and the second second	2	3.50	71.00	0.65	0.81	0.30	436	17	A
25.700.07		3.50	74.50	0.65	0.81	0.39	430	78	
	3	4.50	79.00	0.70	0.84	0.39	429	70	
	0	4.50	83.50	0.70	0.84	0.39	410	78	
2	1600201-24	3.50	87.00	0.52	0.72	0.36	436	78	
		3.50	90.50	0.52	0.72	0.39	442	78	
25	2	3.25	93.75	0.49	0.70	0.38	431	78	
1.000	2	3.25	87.00	0,49	0.70	0.29	425	76	
		3.25	100.25	9.49	0.70	0.38	420	- 78	100
	3	3.25	103.50	6.49	0.70	0.38	411	78	
			183.50	and the second second		1000			
			103.50	and the second se		the second second		all states and states	-
		and the second se	193.50				and the second		-
		Add at some simple setting	103.50		-	A 17 100 1110		and the second second	-
	- Charlester	And the second second		Contraction Pro-			_		
			103.50	and the second second			-	and service and	
		the second second	103.50			and the state of the	Acres and	and the second	
		and the second data	103.50						
	1.00		103.50	1000	_	A		Section in the	
		- Harrison Link	103.50	the second s		- Andrewski	and the second	MARY NOT	2
10000	Schutter - D	STREET, STREET,	103.50			Sector Line	The second	ALC: 1223	
	and the second second	the state of the second se	103.50	1.		51-60 JZS	V. Carlo		12.00
Conside C	1 States	Contraction of the second	103.50			1.000	School St.	10.000	
2212000	10-1-1-1	340. SANAS	103.50	(All School S		1000 Tath-03	and a state	Station .	
1.	SC 82	2-2-2010	103.50			100000	N. N. 1975	2	1
112-10-12-2	-2400	SI 655 0	103.50	S212-10-24	1000	1000	1000 B	2.111.1	1000
MENSING!	10.0	Contraction -	103.50	COLD THE PLACE	1000				
		274 D. C. B. P. P. S. S. B.	103.50	Collection of the		Sugar Sec.			
1.00000000	1	100 C 100	103.50		100 million (100 million)	CONTRACTOR OF	10.000	C. C. Caller	
		103.5		0.745	0.857	0.39	431.79	76.54	
			d Averages	0.771	0.872				

		CLIENT:	LWEC
ATE: 7/7/16		FACILITY:	L'Anse, Mi
EST CONDITION: High Load		RUN	3
DMAD	AND DM2 & INDUT DATA COD CALCUL AT		
PMIU	AND PM2.5 INPUT DATA FOR CALCULAT	IONS	
		S	
	RUN	3	
Y	TEST PERIOD	1513-1704	
Deta Hiti	Meter Box y Meter Box Delta H&D	0.9915	
VM	Meter volume, #*3	1.8673	
C02	CO2 concentration, %	35,261	
02	Oxygen concentration, %	7.3	
	Nozzie diameter, inches	0.190	
A	Stack Area, so, ft.	39.000	
Pb	Barometric Pressure, Inches Hg	29.38	
Pg	State Pressure, inches H2O	-12.40	
	Impinger water collected, g	138	
	Silica Gel collected, g	16.6	
	Total imp catch	154.6	
Cp	Pitot Coeff	0.781	
Delta P	Avg Sgrt Delta P, sgrt(inches H2O)(time weighted average)	0.8725	
	Sample Time, min	103.5	
Ta	Average Stack Terrol deg F (time weighted average)	432.10	
Ts	Average Stack Temp.deg R	892,10	
Tm	Maler temperature (time weighted average)	76.37	
Deta H	Avo Delta H, Inches H2O	0.39	
O2(wet)	Oxygen concentration-WET	6.0	
	Ntrogen(+ CO) concentration	79.5	
9ws	Fraction moisture content	0.173	(Ex. 4% = 0.04
	Moisture percentage	17.308	
Md	Mole fraction of wet gas	0.827	
MWd	Molecular Weight(Dry)	30.40	
MW	Molecular Weight/We()	28,26	
Ps	Absolute Stack Pressure		in.Hg
MwPs/Ts	Intermediate Calc	0.902	
TaMwPa	Intermediate Calc	1.109	
(Vinstd)	Standard Meter Volume, cu.ft	34.773	
A CONTRACT OF			
Os	Cyclone flowrate (actual), cfm	0.722	
Us2.5	Viscosity of Stack gas		micropolse
Cunn Con 2.5		1.11	1.
Nns		2282	
D50-Nre<316		2.40	
D50-Nre>=316	*	2.12	
0.05 10-510			
Cr2.5-Ne<316 Cr2.5-Ne>316		1.116	
D50-1-Nre<310		1.131	
050-1-Nre>=31		2.39	
		2.10	
		1.00	
ZNe>316 Zne<316		1.04	
ZNe>316 Zne<316		1.01	
Zne<316			
	Nozzle diameter		Inches
Zne~316. Dn	Nozzle diameter	0.190	inches
Zne<316 Dn Vn	Nazzle diameter Nazzle Velacity	0.190	Inches Nisec
Zne<316 Dn Vn R min, (Noz-1	Nozzle diameter Nozzle Velocity) minimum R	0.190 61.100 0.685	Inches Itisec Itisec
Zne<316 Dn Vn	Nozzle diameter Nozzle Velocity) minimum R	0.190	Inches Itisec Itisec
Zne<316 Dn Vn R min, (Naz-1 R max, (Naz-1	Nozzle diameter Nozzle Velocity) minimum R) minimum R	0.190 61.100 0.685 1.272	inches frisec frisec frisec
Zne<316 Dn Vn R min. (Noz-1 R max. (Noz-1 V min.(Noz-1 V min.(Noz-1)	Nozzle diameter Nozzle Velocity) minimum R Impelmum R impelmum velocity	0.190 61.100 0.685 1.272 41.86	Inches Nisec Nisec Nisec
Zne<316 Dn Vn R min. (Noz-1 R max. (Noz-1 V min.(Noz-1 V min.(Noz-1	Nozzle diameter Nozzle Velocity) minimum R) minimum R	0.190 61.100 0.685 1.272	Inches Nisec Nisec Nisec
Zne<316 Dn Vn R min. (Noz-1 R max. (Noz-1 V min.(Noz-1 V min.(Noz-1	Nozzle diameter Nozzle Velocity Iminimum R Ympeimum R minimum velocity maximum velocity	0.190 61.100 0.685 1.272 41.86	Inches Nisec Nisec Nisec
Zne<316 Dn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V min (Noz-1 V max (Noz-1	Nazzle diameter Nazzle Velacity Iminimum R Iminimum Velacity Iminimum velacity Iminimum velacity 0.355	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O	Inches Nisec Nisec Nisec
Zne<316 Dn Vn R min, (Noz-1 R max, (Noz-1 V min, (Noz-1 V min, (Noz-1 V max (Noz-1 Delta p min, (Noz-1 Delta p max, (Noz-1	Nozzle diameter Nozzle Velocity) minimum R) maximum R minimum velocity) maximum velocity) 0.355) 0.355	0.190 61.100 0.685 1.272 41.86 77.73	Inches Nisec Nisec Nisec
Zne<316 Dn Vn R min. (Noz-1 R max. (Noz-1 V min.(Noz-1 V max.(Noz-1 Delta p min. (Noz-1 Delta p min. (Noz-1 Delta p min. (Noz-1 Delta p min. (Noz-1	Nozzle diameter Nozzle Velocity I minimum R Iminimum velocity I maximum velocity I 0.355 I 0.355	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O	Inches Nisec Nisec Nisec
Zne<316 Dn Vn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V max (Noz-1 Delta p min, (Noz-1) Delta p min, (Noz-1)	Nozzle diameter Nozzle diameter Iminimum R Iminimum velocity Imaximum velocity I 0.355 I 0.355 I 1.222 (front helf cyclone I0) >PM10, g (FHA1)	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031	Inches Alsec Alsec Alsec Alsec
Zne<316 Dn Vn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V mix (Noz-1 V mix (Noz-1 Delta p mix, (Noz-1) Delta p mix, (Noz-	Nozzle diameter Nozzle diameter Nozzle Velocity) minimum R Masimum velocity) maximum velocity) 0.355) 0.355) 0.355) 0.355) 1.222 (front half cyclone I0) >PM10, g (FHA1) accione 10 oxit tube & front half cyclone IV) <pm10, (fha2)<="" g="" td=""><td>0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O</td><td>Inches Alsec Alsec Alsec Alsec</td></pm10,>	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O	Inches Alsec Alsec Alsec Alsec
Zne<316 Dn Wn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V max (Noz-1 Delta p min, (Noz-1 Delta p max, (Noz-1) Delta p max,	Nozzle diameter Nozzle Velocity) minimum R Imminimum velocity) maximum velocity) maximum velocity) 0.355) 0.355) 1.222 (front half cyclone I0) >PM10, g (FHA1) actione 10 axit tube & front half cyclone IV) <pm10, (fha2)<br="" g="">cyclone IV exit hate & front half filter holding) <pm2.5, (fha3)<="" g="" td=""><td>0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031</td><td>Inches Alses Alses Alses Alses Alses</td></pm2.5,></pm10,>	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031	Inches Alses Alses Alses Alses Alses
Zne<316 Dn Vn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V mix (Noz-1 V mix (Noz-1 Delta p mix, (Noz-1) Delta p mix, (Noz-	Nozzle diameter Nozzle Velocity) minimum R Imminimum velocity) maximum velocity) maximum velocity) 0.355) 0.355) 1.222 (front half cyclone I0) >PM10, g (FHA1) actione 10 axit tube & front half cyclone IV) <pm10, (fha2)<br="" g="">cyclone IV exit hate & front half filter holding) <pm2.5, (fha3)<="" g="" td=""><td>0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0027</td><td>Inches Nisec Nisec Nisec Nisec</td></pm2.5,></pm10,>	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0027	Inches Nisec Nisec Nisec Nisec
Zne<316 Dn Vn R min. (Noz-1 R max. (Noz-1 V min. (Noz-1 V min. (Noz-1) V max. (Noz-1 Delta p min. (Noz-1) V max. (Noz-1) Mass. PM 10.(Mass. (Rier-1)	Nozzle diameter Nozzle diameter Innimum R Imminum R Imminum velocity Imminum velocity Immin	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0037 0.0030	Inches Nisec Nisec Nisec Nisec
Zne<316 Dn Wn R min, (Noz-1 R max, (Noz-1 R max, (Noz-1 V min (Noz-1 V mix (Noz-1 Delta p min, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Mass PM 10 Mass PM 10 Mass PM 2.5 (Mass (Riter-1) ACK HALF ANALYTICAL, DATA	Nozzle diameter Nozzle diameter Nozzle Velocity) minimum R Masimum velocity) maximum velocity) 0.355) 0.355) 0.355) 0.355) 0.355) 1.222 (front half cyclone I0) >PM10, g (FHA1) actione 10 axit tube & front half (FHA1) actione 10 axit tube & front half (FHA1) actione IV exit tube & front half (FHA1)	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0027 0.0030 <0.0003	Inches Nisec Nisec Nisec Nisec
Zne<316 Dn Vn R min, (Noz-1 R max, (Noz-1 V min (Noz-1 V max (Noz-1 V max (Noz-1 Delta p min, (Noz-1 Delta p min, (Noz-1 Delta p max, (Noz-1 Mass PM 10) Mass PM 10) Mass (Rier-1): ACK HALF ANALYTICAL, DATA H2O (Inorgania	Nozzle diameter Nozzle Velocity Iminimum R Iminimum velocity Iminimum velocity Imini	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0031 0.0030 -0.0030 -0.0030	Inches Nisec Nisec Nisec Nisec
Zne<316 Dn Wn R min, (Noz-1 R max, (Noz-1 R max, (Noz-1 V min (Noz-1 V mix (Noz-1 Delta p min, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Delta p max, (Noz-1 Mass PM 10 Mass PM 10 Mass PM 2.5 (Mass (Riter-1) ACK HALF ANALYTICAL, DATA	Nozzle diameter Nozzle Velocity Iminimum R Iminimum velocity Iminimum velocity Imini	0.190 61.100 0.685 1.272 41.86 77.73 in.H2O in.H2O 0.0031 0.0027 0.0030 <0.0003	Inches Nisec Nisec Nisec Nisec

PM10 AND PM 2.5 RUN TEST DATA

PM2.5 PROGRAM SOURCE ID: Boiler No. 1 DATE: 7/7/16

TEST CONDITION: High Load

CLIENT: LWEC FACILITY: L'Anse, MI RUN: 4

DWELL TIME CALCULATION

(For the dwell time calculation, input the the total run time and the most recent Average Delta P)

 $\hat{\mathbf{x}}$

Total run time Number of points 96 minutes

0.740 in H2O

12 Twelve points are all that is required

Avg. Delta P (from LAST velocity traverse) NOTE: This is NOT the square root of Delta P

D.740

NOTE: This is NOT the square root of bera P NOTE: If stack diameter is less than 24 inches preliminary velocity is adjusted for blockage. Insert the value for each Delta P, prior to sampling that point. The appropriate TOTAL sample time will be calculated for that point. NOTE: All dwell times are based on the Delta P for point#1 and the avg. Delta P from the last traverse (above).

1222361	이 여행 맛이 가격을 즐기 때 아이들을 가 다 다 가 다 다 가 다 다 다 다 다 다 다 다 다 다 다 다	PORT A	CONCERNING AND INCOMENTATION	1.530.11	1000	PORT A	255 100
Point Number	P	SQRT Delta P	Sample Time	Point Number	Delta P	SQRT Delta P	Sample Time
1	0.51	0.71	6.64	1	0.86	0.93	8.60
2	0.50	0.71	6.57	2	0.84	0.92	8.50
3	0.52	0.72	6.70	3	0.85	0.92	8,60
4	0.70	0.84	7.78	4	0.98	0.99	9.20
5	0.66	0.81	7.55	5	0.96	0.98	9.10
6	0.68	0.82	7.67	6	0.92	0.96	8.90
		Time(min)	42.91			Time(min)	52.90

This calculation establishes the # of points and min/pt necessary to meet the standard Method 5 criteria of recording data every <= 5 min, and the Method 201A criteria of rounding to a 15 sec interval

POR	ТА
# points	min/pt
2	3.25
2	3.25
2	3.25
2	3.50
2	3.50
2	3.50

PORT	В
# points	min/pt
2	4.75
2	4.75
2	4.75
2	4.75
2	4.75
2	4.75

	ISOKINETIC C							6	
At the end o	of the run verify i					-			
Bed	Delast	Sample	Total	P. D. P.	P. 1 P.		Stack	Meter	
Part	Point #	Time	Time	Delta P	Sort Dp	Delta H	Temp	Temp-1	
D	1	3.25	3.25	0.51	0.71	0.37	436	78	
	1	3.25	6.50	0.51	0.71	0.37	432	78	
	2	3.25	9,75	0.50	0.71	0.37	426	78	
10012-0014	2	3.25	13.00	0.50	0.71	0.37	429	78	
	3	3.25	16.25	0,52	0.72	0.37	420	79	
	3	3.25	19.50	0.52	0.72	0.37	412	79	
C	1	3.50	23.00	0.70	0.84	0.37	446	78	
	1	3.50	26.50	0.70	0.84	0.37	448	79	
	2	3.50	30.00	0.66	0.81	0.37	440	79	
and a statistical	2	3.50	33.50	0.66	0.81	0.37	431	78	
and the second second	3	3.50	37,00	0.68	0.82	0.37	429	78	
	3	3.50	40.50	0.68	0.82	0.37	424	78	
Section 11	1	4.75	45.25	0.86	0.93	0.37	438	78	
B	1	4.75	50.00	0.86	0.93	0.37	441	78	
	2	4.75	54.75	0.84	0.92	0.37	435	79	
	2	4.75	59.50	0.84	0.92	0.37	430	79	-
	3	4,75	64.25	0.85	0.92	0.37	425	79	
and the second second	3	4.75	69.00	0.85	0.92	0.37	420	79	
A	1	4.75	73.75	0.98	0.99	0.37	448	79	
	1	4.75	78.50	0.98	0.99	0.37	449	79	
	2	4,75	83.25	0.96	0.99	0.37	431	80	
	2	4.75	88.00	0.96	0.98	0.37	433	81	
	3	4,75	92.75	0.92	0.96	0.37	435	81	
	3	4.75	97.50	0.92	0.96	0.37	421	81	-
		4.10	97.50	9.44	0.80	0.07	421	01	
			97.50						
			97.50					Station and a state of the	-
11000			97.50						
			97.50					1	-
								× 1	
		07.5	97.50	0.9/4	0.005				
		97.5		0.748	0.859	0.37	432.00	78,88	
		Time Weighte	d Averages	0.776	0.875	0.37	432.24	78.97	

SOURCE ID:	Boiler No. 1	CLIENT:	LWEC
DATE:	7/7/16	FACILITY:	L'Anse, MI
TEST CONDITIC	DN: High Load	RUN:	4

	RUN	4	-
	TEST PERIOD	1742-1926	-
Y	Meter Box y	0.9915	
Delta H@	Meter Box Delta H@	1.8873	
VM	Meter volume, ft*3	33.193	
C02	CO2 concentration, %	13.3	
02	Oxygen concentration, %	7.2	
	Nozzle diameter, inches	0.190	0
A	Stack Area, sq. ft.	39.000	
A Pb	Barometric Pressure, inches Hg	29.38	
Pg	Static Pressure, inches H2O	-12.80	
	impinger water collected, g	124	
· · · · · · · · · · · · · · · · · · ·	Silica Gel collected, g	17.4	-
	Total Imp catch	141.4	
	Pitot Coeff	0.781	-
Delta P			
Deita P	Avg Sqrt Delta P, sqrt(inches H2O)(time weighted average)	0.8753	
	Sample Time, min	97.5	
Ts	Average Stack Temp.deg F (time weighted average)	432.24	
Ts	Average Stack Temp.deg R	892.24	
Tm	Meter temperature (time weighted average)	78.97	
Delta H	Avg Delta H, inches H2O	0.37	
O2(wet)	Oxygen concentration-WET	5.9	
Cre(wel)	Nitrogen(+ CO) concentration	79.5	
Dur			
Bws	Fraction moisture content		(Ex. 4% = 0.04
	Moisture percentage	17.366	
Md	Mole fraction of wet gas	0.826	
MWd	Molecular Weight(Dry)	30.42	
MW	Molecular Weight(Wet)	28.26	-
Ps	Absolute Stack Pressure	28.44	in_Hg
MwPs/Ts	Intermediate Calc	0.901	
Ts/MwPs	Intermediate Calc	1.110	-
(Vmstd)	Standard Meter Volume, cu.ft	31.676	
(Vilista)	otendare moter voterne, co.t	21.010	
0.	Curdena Reverate (actual) afra	0.500	
Qs	Cyclone flowrate (actual), cfm	0.699	and an an all in
Us2.5	Viscosity of Stack gas		micropoise
Cunn Corr2.5		1.11	
Nre		2209	0.0
D50-Nre<3162		2.49	18
D50-Nre>=3162	2	2.18	
		P. C. 1997	
Cr2.5-Ne<3162	2	1.112	
Cr2.5-Ne>3162)	1.128	
D50-1-Nre<316		2.49	
D50-1-Nre>=316		2.16	
ZNe>3162		1.00	
Zne<3162		1.01	
Dn	Nozzle diameter	0.190	Inches
		0	10000
Vn	Nozzle Velocity	59.195	fl/sec
R min. (Noz-1)	minimum R	0.681	
R max. (Noz-1)		1.274	
		1	
V min (Max 4)	minimum velocity	40.24	êloos.
		40.31	
v max (NOZ-1)	maximum velocity	75.44	IL/SEC
			-
Delta p min. (Noz-1)		in.H2O	
Delta p max. (Noz-1)	1.150	in.H2O	1 (A-101)
FRONT HALF ANALYTICAL DATA		Second and a second	
Mass >PM 10 ((front half cyclone I0) >PM10, g (FHA1)	0.0036	
Mass PM 10 (c	volone 10 exit tube & front half cyclone IV) <pm10, (fha2<="" g="" td=""><td></td><td></td></pm10,>		
	cyclone IV exit tube & front half filter holder) <pm2.5, (fha<="" g="" td=""><td></td><td></td></pm2.5,>		
Mass (filter-1)<		<0.0003	
militade fontet=1]<	1. 11. 19. 19 M	50,0003	
BACK HALF ANALYTICAL DATA			
H2O (inorganic		0.0200	-
MeCI (organic)	residue, g	0.0017	
en andre a	Source and Sector		
		and the second second	

PM10 AND PM2.5 INPUT DATA FOR CALCULATIONS

XWSDate/Gen Future 0-LUNEO/1464.007.0042016114 Text 2016 CEMS RATA/Date/PM10/25.49

Turner Turner<	Client <u>LWEC</u> % Molsture Stack W.O.# <u>14464.007.004</u> % Molsture Project ID <u>LWEC</u> % Molsture ModelSource ID <u>114</u> impinger Vol (m) Samp. Loc. ID <u>STK</u> Silca gel (g) Run No.ID <u>TPM107.5 O2. % by Vol</u>	14464.007.004 14464.007.004 114 114 STK	% Motsture % Motsture impinger Vol (m) Silica gel (g) CO2, % by Vol	Stack Conditions Assumed 10	d Actual 150 124	Meter Box ID Meter Box V Meter Box Det H Probe (D / Length Probe Material Plact / Thermocouple		Aeter Box ID Aeter Box Y Aeter Box De H Proce D / Length Proce D / Length	S IS	Leak Checks Sample Train (H ³) Leak Check @ (n Hg) Pillot good 21 H	9 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	K Factor Initial	Mid-Point,	Final
Cl. 37 Manual function CD Same frame Image frame Paus frame (1, m) CD Paus frame (1, m) Paus frame (1,		4JUL2016 ESP Stack 71/6	Temperature (Meter Temp (* Static Press (in	ŝ	1-15-1-	Nozzle ID Avg Nozzle Dia Area of Stack (÷£	AT O	211.	Temp Chec Meter Box Te Reference Te		Pre-Te		Post-Test Ser
Advance (monol) Manuelle (monol) VELORITIE (monol) VELORITIE (monol) VELORITIE (monol) VELORITIE (monol) Menuelle (monol) Menuelle (mono	11	Le y	Ambient Temp	1	9	Sample Time Total Travense	PIS	12		Pass/Fail (+/- Temp Chang	2') a Response '	30	/ Fail	Cost Fail
Solo 1 9 1.3 1.0 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 <	RAVERSE SAMPLE POINT TIME (min) NO O	CLOCK TIME (plant time) 1057	and the second large party of the second	the state of the s	RY GAS METER READING (ft [*]) 101.0 ⁻⁵⁵ 1	a sectore 1.5	DGM INLET TEMP (*F)	DGM OUTLET TEMP (*)	PROBE TEMP ('P)	FILTER BOX TEMP (f)	IMPINGER EXIT TEMP (F)	SAMPLE TRAIN VAC (In Hg)	COND FILTER Temp OUT (F)>65 < 85	COMMENTS
1 Com 0.1 1 11 1 12 <th1 12<="" th=""> 1 12 1 12 <th1< td=""><td>5.00</td><td>-</td><td>.95</td><td>139</td><td>1.201</td><td>124</td><td>Put</td><td>18</td><td>HSI</td><td>458</td><td>64</td><td>3-0</td><td>71</td><td></td></th1<></th1>	5.00	-	.95	139	1.201	124	Put	18	HSI	458	64	3-0	71	
TO_{CO} $TO_$	2 1500		A	100	106.1	433	-	41	424	454	61	200	89	
U2000 1127 143 34 1174 44 32 41 44 35 <td></td> <td></td> <td>. 43</td> <td>- VC</td> <td>8.201</td> <td>72.17</td> <td></td> <td>18</td> <td>284</td> <td>460</td> <td>12</td> <td>00</td> <td>67</td> <td></td>			. 43	- VC	8.201	72.17		18	284	460	12	00	67	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+		9.5.5	39	100	425		32	0.14	46.4	58	3.5	61	
40.00 55 39 114.4 436 72 137 145 57 3.55 14/17 75 .37 116.4 436 73 75 57 3.55 5100 1154 50 .36 117.6 435 62 475 465 3.55 5100 1154 50 .36 117.6 435 67 475 475 57 3.55 5100 1154 50 .36 117.6 435 67 475 475 56 3.55 5100 1154 50 125.3 444 51 475 475 56 3.55 5100 1054 476 475 475 475 475 56 3.55 5100 1056 1750 476 456 56 3.55 3.55 9100 50 476 475 476 456 3.55 3.55 9100 50 <td>H</td> <td>1</td> <td>. 45</td> <td>12.</td> <td></td> <td>644</td> <td></td> <td>28</td> <td>463</td> <td>99/2</td> <td>ŝ</td> <td>3.5</td> <td>64</td> <td></td>	H	1	. 45	12.		644		28	463	99/2	ŝ	3.5	64	
Industry 173 3 117.1 13 3 14 13 3 4 13 3 3 4 14 3 4 16 3 3 3 3 4 15 3 4 15 3 3 3 3 3 3 3 4 17 4 3 5 4 3 4 4 3 3 3 3 3 3 3 3 3 3 4 4 4 3 4 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 4 4 4 3 <	+		. 52	39	1.4.1	444	-	24	121	294	5	M	67	
5123 732 730 55 17.0 12.5 17.1 12.5 17.1 12.5 17.1 12.5 17.5 14.5 4.6 5.6 3.5 103.75 170 1.3 35 17.5 14.7 51 14.5 440 56 3.5 103.75 170 1.5 177.5 14.7 51 14.5 440 56 3.5 103.6 1.5 3.7 125.6 125.6 125.6 474 56 3.5 103.6 1.6 3.7 12.5 126.7 125.6 451 56 3.5 103.6 73.8 17.5 410 51 474 56 3.5 11.5 .6 3.5 130.15 410 51 451 58 11.5 .4 1.6 3.6 132.4 410 58 3.5 11.5 .4 .5 3.5 451 58 3.5 11.5 .4 .4 .4 .4 .4 .5 58 11.5 .5 .5 .5 .5 .5 .5 .5 11.5 .5 .5 .5 .5 .5	-		24	200	2-211	433	-	220	437	191	56	N.	63	
SS_00 1/54 50 34 1/1 </td <td></td> <td></td> <td>, 30,</td> <td>15.</td> <td></td> <td>420</td> <td></td> <td>3</td> <td>451</td> <td>434</td> <td>54</td> <td>3.5</td> <td>63</td> <td></td>			, 30,	15.		420		3	451	434	54	3.5	63	
(a) (a) <td></td> <td>1159</td> <td>30</td> <td>192</td> <td></td> <td>418</td> <td></td> <td>2</td> <td>455</td> <td>460</td> <td>56</td> <td>22</td> <td>66</td> <td></td>		1159	30	192		418		2	455	460	56	22	66	
Press 17300 68 56 126.4 438 61 437 488 56 35 Press 7730 . Cl 3 127.1 426 91 454 456 35 35 Press 57 . 35 127.1 426 91 454 456 57 35	18.50		62	12.	123.9	म प म	-	10	434	458	56	3.5	20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	0022	.68	29	126.9	92h		5	12h	8.94	56	35	67	
Squesc $= 57$ $= 33$ $= 130.115$ $= 410$ $= 81$ $= 451$ $= 57$ $= 33$ $= 32.115$ $= 410$ $= 81$ $= 451$ $= 58$	1	17.50	ر د 1	224	124.7	010	-	10	157	165	35	30	200	
84.00 10.1 13.1.5 13.1.5 14.6 36 13.1.5 45.6 58 5.5 91.50 146 36 133.1 94.6 80 47.2 45.1 58 5.5 91.50 50 146 36 133.4 94.6 80 47.2 45.1 58 3.5 91.50 50 55 133.4 44.6 80 47.9 46.0 57 3.5 91.50 56 73 35.4 47.6 80 49.7 41.6 58 3.5 105.56 751 37 137.496 47.4 47.4 46.1 58 3.5 105.56 751 57 37.496 47.4 47.4 46.1 58 3.5 105.56 751 57 37.496 47.4 77 46.1 58 3.5 105.56 751 57 47.7 47.4 76.7 46.7 58 3.5 <td>+</td> <td></td> <td>15%</td> <td>,39</td> <td>120.115</td> <td>410</td> <td></td> <td>10</td> <td>101</td> <td>220</td> <td>20</td> <td>10</td> <td>22</td> <td></td>	+		15%	,39	120.115	410		10	101	220	20	10	22	
91.50 16 36 132.4 440 80 47.8 45. 58 35. 95.00 .50 .50 .33.6 43.6 43.6 45.4 46.6 77 3.5 96.55 .50 .36 .33.6 43.6 42.6 30 457 46.6 77 3.5 101.00 .51 .52 .35 .135.4 412.6 30 477 44.6 57 3.5 105.56 .71 .51 .37 .35.4 47.4 47.4 46.1 58 35 105.56 .71 .71 .37 .35.4 47.4 47.4 46.1 58 35 105.56 .71 .71 .746 47.4 7.24 7147 48.7 58 35 105.56 .751 .72 .37 .125,4 47.4 46.1 58 35 105.56 .751 .71 .71.45 47.7 47.7 46.1 58 35	H		2440	.36	131.3	489		10	220	451	38	3.5	27	
95 cco 50 73 133.6 434 40 57 3.5 101.00 751 37 135.4 416 60 47 3.5 101.00 751 37 135.4 416 77 3.5 101.00 751 37 135.4 416 77 3.5 105.56 751 37 135.4 416 77 416 53 105.56 751 37 424 474 474 58 3.5 105.56 751 37 434 474 474 56 3.5 105.56 751 37 474 474 56 3.5 105.56 751 37 474 474 58 3.5	91.50		. 46	.39	132.4	9440		30	824	455	58	35.	26	
9(4.50 1 90 34 154 124 124 20 40 57 3.5 101.00 151 152 34 135.4 416 40 475 416 58 3.5 105.56 1751 151 37 33.4 416 40 475 416 58 3.5 105.56 1751 151 37 137.4q6 474 46 58 3.5 105.56 1751 151 37 33.4 474 46 58 3.5 105.56 1751 474 46 46 58 3.5 105.56 1751 47 40 46 58 3.5 105.56 1751 47 47 46 58 3.5 105.56 1751 47 46 58 3.5 5 105.56 1751 47 47 46 58 3.5	95.00		8	130	1 33.6	436		40	434	460	27	3.5	66	
105.55 /751 57 37 137.496 474 1 40 457 40 58 3.5 105.56 /751 57 36 137.496 474 1 749 5 461 58 3.5 Avg Sart Detair Avg Sart Detair 1 7dai Volume Avg Ta Avg Sart Detair 7 2.9 7.1, 471 7 461 58 3.5			, 50	.35	134.8	42/1		00	へず	160	57	5.5	66	
1751 + 52 39 137.496 424 1 486 457 461 58 3.5 Avg Sart Deta P Avg Deta H Total Volume Avg Ta Avg Sart Deta P 2.4 21.425, 4317 Avg Tm Art 51, 4317 Avg Tm	-		1251	35	135.4	976		B	42	2	58	3.5	66	
Avg Delia H Total Volume Avg Ta Avg Tm MinMex MinMex Max Temp Max Vac	105.56	1251	25.	34	137.496	424	-	86	250	194	29	3.5	66	
		31	Avg Sqr Deta P	Avg Delta H	Total Volume 3L.H.SS.	4312	4) EQ	MinMex	Min/Max	Max Temp	Max Vac	Mak Temp	

100 201A/202 - FM	5163		Avg Nozzłe Die (m)	103.5	0CM	T TEMP (F) B	435 NH 75 446 468	3 1 75 452 4	75 454 41	438 138 175 453 454	75	22/1 24	25	76 470	24	12 11 12	25 22 B	36	78 457	c3 78 460	114 28 44	78	t	1 79 430 43	0 1 78	-	400 Ts Avg Tm Min/Max Min/Max
Conditions Assumed Actual	194		1.21+ 2.21-		DRFICE DRY GAS METER	PRESSURE READING (IT) TE Della H (In HZO) 16L 7 A U	9	190,9	9.24 02.	0701	× 194:712	0	0.102	104.4	206.1	202.603	101 101 10	211.9	21377	117	020 912	6-212	510.5	1 7922 52'	211.2	596.722 2	Avg Delta H Jan Ygume A
LIC FIELD DATA SH LMEC 14464.007.004 LMEC % Moisture	ModelSource ID 114 Impinger Vol (m) Samp. Loc. ID STK Silca gel (g) Run No ID 3 CO2, % by Vol Toor Monod ID Toorton E CO2 & by Vol	4JUL2018	Source/Location ESP Stack Meter (emp(1*) Sample Date 7/7/16 Static Press (in H_20)	In Hg) 24.58	48E SAMPLE CLOCKTIME V	THE (min) (plant pmo) PRESSURE Data P (m1420)		0	12	3 75 34	3 20 1543	5 1546	1 39.5 36		53.75	1615	291 6191 651	0	2 74.5 .65		1141	2 37.9 1844 16 V	25. 25.00 4	67	100.25 . 4	5 H021	Avg Sor Della P

ALL A LANGE AND				1800 Y 1800 Y 1800 Del 1 Thermoo 1 Therm		ALLA THE PROPERTY ALLOW THE ALLAND	1333 1335 13 13 13 13 13 13 13 13 13 13 13 13 13 1	Leak Checks Sample Train (1°) Leak Check (10 Hg) Leak Check (10 Hg) Leak Check (10 Hg) Plass Fair (1-2) Temp Check New Bax Temp Retenence Tem	A LAND AND COOL UNO UNO - MO 3 HERE BERNON		Mid-Point Mid-Point	Final Convertis
97.56 1926			256.143	124	-	8	12h	445	6	32	69	
	Avg Sqrt Detta P & CA 2.3	Avg Deta H	Jose Volume	4722.0	PP7	- 79.97	Min/Max	Min/Max	Mex Temp	Max Vec	MaxTemp	Max Temp Max Vac Max Temp

SAMPLE RECOVERY FIELD DATA

EPA Method 201A/202 - PM10/2.5

Location/Pl	ant	LWE L'Anse, M		Source	W.O. # & Location			Stack	
Run No.	1				Sample Date	7/6/1	6		ery Date
Sample I.D.	LWEC - 114 -	STK - 1 - TPN	10/2.5 -		Analyst	8		Filter N	lumber
	1	2	3	4	Impinger 5	6	7	Imp.Total	8
Contents	Empty	Empty	Di H20	4		0		imp.rotar	Silica (
Final	120	R	96					ALL PLANES AND	374
10000000	10							-	
Initial	130	X	100			-		Ser	300
Gain	4 0		Celople	~		1	-		163
Impinger Col Silica Gel Co	Sec. 1	12BU	<u>eleque</u>	71	Labeled? _		~		
			27			the			
Run No.	2			3	Sample Date	110			ery Date
Sample I.D.	LWEC - 114 -	STK-2-TPM	10/2.5 -	s	Analyst		-	Filter N	lumber
	1	2	3	4	Impinger 5	6	7	Imp.Total	8
Contents	Empty	Empty	Di H20	4	5	0	10	mp.rota	Silica (
Final	150	R	160						314
Initial	6	R	0.80	<u>.</u>					
		5	100			1			300
Gain Impinger Col	(50 °	1 Clean	Clorks	,5	Labeled?				14.
Gain	or		Colortes	,5	Labeled? _	t hu			14.)
Gain Impinger Col Silica Gel Co Run No.	or	(len 1/2 31	Colortes		Sealed?		5		ery Date
Gain Impinger Col Silica Gel Co	or	(len 1/2 31	Colortes		Sealed?	h	5		
Gain Impinger Col Silica Gel Co Run No.	or	(64) 1/2 30 STK-3-TPN	(Jorks		Sealed?	m		Filter N	ery Date
Gain Impinger Col Silica Gel Co Run No. Sample I.D.	or	(64) 1/2 31 STK-3-TPN 2	(Jorks		Sealed?	h	7		ery Date
Gain Impinger Col Silica Gel Co Run No. Sample I.D.	or	(64 1/2 30 STK-3-TPM 2 Empty	(Jorks nl 10/2.5- 3 Di H20		Sealed?	m		Filter N	ery Date Number 8 Silica (
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final	or	(64 1/2 30 STK-3-TPM 2 Empty	(Jorks nl 10/2.5- 3 Di H20 100		Sealed?	m		Filter N	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Sample I.D. Contents Final Initial	or	(64 1/2 30 STK-3-TPM 2 Empty 2 2	Colorks 10/2.5- 3 Di H20 100		Sealed?	m		Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain	or	(64 1/2 30 STK-3-TPM 2 Empty	(Jorks nl 10/2.5- 3 Di H20 100		Sealed?	m	7	Filter N	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Sample I.D. Contents Final Initial	or	(64 1/2 30 STK-3-TPM 2 Empty 2 2	Colorks 10/2.5- 3 Di H20 100		Sealed?	6	7	Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain Impinger Col Silica Gel Co	or	(64 1/2 30 STK-3-TPN 2 Empty 2 2 2 2 2 2 3 4 2 3 6 2 3 6	Colortes ml 10/2.5- 3 Di H20 100 100 100 100		Sealed?	6	7	Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain Impinger Col Silica Gel Co	or	(64 1/2 30 STK-3-TPN 2 Empty 2 2 2 2 2 2 3 4 2 3 6 2 3 6	Colortes ml 10/2.5- 3 Di H20 100 100 100 100		Sealed?	6	7	Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain Impinger Col Silica Gel Co	or	(64 1/2 30 STK-3-TPN 2 Empty 2 2 2 2 2 2 3 4 2 3 6 2 3 6	Colortes ml 10/2.5- 3 Di H20 100 100 100 100		Sealed?	6	7	Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain Impinger Col Silica Gel Co	or	(64 1/2 30 STK-3-TPN 2 Empty 2 2 2 2 2 2 3 4 2 3 6 2 3 6	Colortes ml 10/2.5- 3 Di H20 100 100 100 100		Sealed?	6	7	Filter M	ery Date Number Silica (3/6/
Gain Impinger Col Silica Gel Co Run No. Sample I.D. Contents Final Initial Gain Impinger Col Silica Gel Co	or	(64 1/2 30 STK-3-TPN 2 Empty 2 2 2 2 2 2 3 4 2 3 6 2 3 6	Colortes ml 10/2.5- 3 Di H20 100 100 100 100		Sealed?	6	7	Filter M	8 Silica G

SAMPLE RECOVERY FIELD DATA

EPA Method 201A/202 - PM10/2.5

Client Location/Plai		LWE		Source	W.O. # & Location			007.004 Stack		
			Anglan	oouroe	- Loouton		6.01			
Run No.	2			1	Sample Date			Recove	ery Date	
Sample I.D.	LWEC - 114	STK-2-TPM	10/2.5 -		Analyst			Filter N	lumber	
Í		~	~		Impinge	r	10-10-	/		
	1	2	2	4	5	6	\rightarrow	Imp.Total	8	To
Contents	Empty	Empty	Di H20			-			Silica Gel	
Final				-	$\geq \leq$	_	_			
Initial			100				~	1	300	
Gain										
mpinger Colo	r _				Labeled?	-			>	
Silica Gel Con	dilion				Sealed?				2.52	
	0-					11			X.	Ζ
Run No.	1ST			1	Sample Date	7/2/10	5	Recove	ary Date 7	\square
Sample I.D.	I WEC . TH	STK-3-TPM	10/2 5 -		Analyst	11	/	Filler	lumber	N
ampie i.u.	LIVEO - ITAL	SIN-3-IFM	1012.5		Impinge	/		1 1000 1	iunioui .	1.1
	1	2	2	4		6	7	Imp.Total	8	То
Contents	Empty	Empty	Di H20	\sim				登開に必要用	Silica Gel	12.2
Final	Ø	94	28	\sim	/				700.4	
Initial	8	100	100			/			300	
Gain	0	-6	-2			1	/			
		1 1-1	-65		Labeled?		-	~		
mpinger Cole	16	a lala			Labereu:					
mpinger Colo					2-9-9-0-052-0331L		0	/		
/		040 6			Sealed?		レ			
Silica Gel Con						76/1				5
Silica Gel Con					Sealed? Sample Date	7h#	<u>ر</u>	Recove	ary Date 7	h
Silica Gel Con Run No.	ndition <u>(0</u>	040 6	<u>s</u> ue	0		τh.			ary Date 7	h
Silica Gel Con Run No.	ndition <u>(0</u>	<u>о 46</u> stk-4-трм	110/2.5-		Sample Date Analyst Impinge	1 pm		Filter I	Number	h
Silica Gel Con Run No. Sample I.D.	dition <u>(0</u> 	096 6	3 110/2.5-	4	Sample Date	1p			Number /	h To
Silica Gel Con Run No.	dition <u>/0</u> 	<u>о 46</u> stk-4-трм	3 UNE 110/2.5 - 3 Di H20		Sample Date Analyst Impinge	1 pm		Filter I	Number 8 Silica Gel	то
Silica Gel Con Run No. Sample I.D.	dition <u>/0</u> <u>4</u> LWEC - 114 - 1 Empty I'LG	096 6	3 110/2.5-		Sample Date Analyst Impinge	1 pm		Filter I	Number /	т
Silica Gel Con Run No. Sample I.D. Contents	dition /0	2 Empty	3 UNE 110/2.5 - 3 Di H20		Sample Date Analyst Impinge	1 pm		Filter I	Number 8 Silica Gel	т
Silica Gel Con Run No. Sample I.D. Contents Final	dition <u>/0</u> <u>4</u> LWEC - 114 - 1 Empty I'LG	STK-4-TPM	3 Lue 10/2.5 - 3 Di H20 9 8		Sample Date Analyst Impinge	1 pm	\	Filter I	8 Silica Gel 3(7,4	то

Check COC for Sample IDs of Media Blanks

2

4.14

30 60

B.4 PCDD/PCDF AND CRESOL ISOMERS

.

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Inputs for Dioxin / Furan Calculations

Test Data						
Run number		1		2		3
Location		-2000 2000 2000		Boiler No. 1		
Date		7/6/2016		7/6/2016		7/7/016
Time period	2	0914-1231		1552-1907		1135-1450
Operator		DF		DF		DF
Inputs For Cales.						
Sq. rt. delta P		0.86450		0.85405		0.87985
Delta H		1.87500		1.62778		1.79722
Stack temp. (deg.F)		436.8		434.3		435.8
Meter temp. (deg.F)		86.6		97.1		77.4
Sample volume (act.)		126.625		118.288		122.983
Barometric press. (in.Hg)		29.27		29.27		29.38
Volume H ₂ O imp. (ml)		512.0		443.9		430.0
Weight chage sil. gel (g)		31.4		33.7		36.3
% CO2		13.4		13.2		13.2
% O2		6.9		7.1		7.3
% N-		79.7		79.7		79.5
Area of stack (sq.ft.)		39.00		39.00		39.00
Sample time (min.)		180		180		180
Static pressure (in.H ₂ O)		-12.6		-12.6		-12.8
Nozzle dia. (in.)		0.252		0.250		
Mozzie dia. (in.) Meter box cal.		0.252		1.0017		0.250
Cp of pitot tube		0.84		0.84		1.0017
Traverse points		12		12		0.84
Dioxin Laboratory Report Data, pg						
Total TCDD		150.0		56.6		69.70
2,3,7,8-TCDD		6.9		4.7		5.90
Total PeCDD		208.0		96.6		90.20
1,2,3,7,8-PeCDD		14.3		9.3		8.80
Total HxCDD		110.0		91.8		51.50
1,2,3,4,7,8-HxCDD		5.8		5.6	<	4.00
1,2,3,6,7,8-HxCDD		10.6		12.6		5.60
1,2,3,7,8,9-HxCDD		14.2		12.9		6.80
Total HpCDD		80.7		162.0		40.70
1,2,3,4,6,7,8-HpCDD		30.6		81.5		17.20
Total OCDD		95.9		238.0		53.10
Furan Laboratory Report Data, pg		112.91		1000		1007253
Total TCDF		78.6		30.2		30.5
2,3,7,8-TCDF (1)	<	23.00		10.70		12.00
Total PeCDF		17.00	<	3.90		7.50
1,2,3,7,8-PeCDF		3.80	<	3.900	<	3.50
2,3,4,7,8-PeCDF		4.00	<	3.90		3.70
Total HxCDF		10.20		5.40		3.80
1,2,3,4,7,8-HxCDF		5.20		5.40		3.80
1,2,3,6,7,8-HxCDF	<	3.50	<	3.70	<	3.30
2,3,4,6,7,8-HxCDF	<	3.90	<	4.00	<	3.60
1,2,3,7,8,9-HxCDF	<	4.20	<	4.40	<	4.00
Total HpCDF		10.40		17.10		3.40
1,2,3,4,6,7,8-HpCDF		6.00		7.70		3.40
1,2,3,4,7,8,9-HpCDF	<	4.10	<	3.80	<	3.30
Total OCDF	<	7.90	<	15.00	<	3.80

< = Not detected

(1) Test runs 1 and 2 data is from Confirmation analysis utilizing a DB-225 column.

.

L'Anse Warden Electric Company L'Anse, MI Boiler No. 1 Inputs for Semivolatile Organics Calculations

Test Data			
Run number	1	2	3
Location		Boiler No. 1	
Date	7/6/2016	7/6/2016	7/7/016
Time period	0914-1231	1552-1907	1135-1450
Operator	DF	DF	DF
Inputs For Calcs.			
Sq. rt. delta P	0.86450	0.85405	0.87985
Delta H	1.8750	1.6278	1.7972
Stack temp. (deg.F)	436.8	434.3	435.8
Meter temp. (deg.F)	86.6	97.1	77.4
Sample volume (act.)	126.625	118.288	122.983
Barometric press. (in.Hg)	29.27	29.27	29.38
Volume H ₂ O imp. (ml)	512.0	443.9	430.0
Weight change sil. gel (g)	31.4	33.7	36.3
% CO2	13.4	13.2	13.2
% O ₂	6.9	7.1	7.3
% N ₂	79.7	79.7	79.5
Area of stack (sq.ft.)	39.00	39.00	39.00
Sample time (min.)	180	180 -	180
Static pressure (in.H2O)	-12.6	-12.6	-12.8
Nozzle dia. (in.)	0.252	0.250	0.250
Meter box cal.	1.0017	1.0017	1.0017
Cp of pitot tube	0.84	0.84	0.84
Traverse points	12	12	12
CRESOL ISOMER LABORATORY REPO	ORT DATA, ug.		
2-Methylphenol	< 5.0	< 5.0	< 5.0
3-Methylphenol & 4-Methylphenol	< 5.0	< 5.0	< 5.0

Claint W O # Mode/Source ID Mode/Source ID Run No ID Fun No ID Fat Method ID Date ID Source/Location Sample Date Baro. Press (in Hg) Operator	Control Inc. Intercont Luvec Stat Cleart Luvec % Moleture Stat Project ID 114 Impinger Vol (m) Stat Project ID 114 Impinger Vol (m) Stat Mode/Source ID STK Stats gef (g) Moleture Mode/Source ID STK Stats gef (g) Moleture Aun No.ID 1 CO2 % by Vol Moleture (F) Aun No.ID 1 CO2 % by Vol Moleture (F) Jaun No.ID 1 CO2 % by Vol Moleture (F) Jaun No.ID 4JUL2016 Temperature (F) Moleture (F) Sourcentocation ESP, Statk Meter Temp (F) Moleture (F) Sample Date T/L/Lo16 Static Press (in H_Q) Moleture (F) Demoter DF Antitiont Temp (F) Moleture (F)	Stand Sheet A Sheet A Sheet A Sheet A Sheet A Sheet A Moleture (m) Sheet Vel (m) Sheet a privel (m) Sheet a privel (m) Sheet A Privel (m) Sheet Temp (f) Meter Temp (f) Sheet Temp (f) Andstend Temp (f)	Star Barder	Actual Artit Sta 31.4 v 7 7 6.4 13.1 v 7 - 12. 6	Meter Box ID Meeter Box V Meeter Box Det H Probe ID / Length Probe ID / Length Print / Thermocouple ID Print Coefficient Print Coefficient Aves of Stack (IP) Areas of Stack (IP) Sample Time Total Traverse Pts		Mean Box ID 2/6 Mean Box V 2.17.14 Mean Box V 2.17.14 Proce ID / Length 2.17.14 Mean Box 0.14 Oreat good 0.14 Vozzle ID 2.52 Mean Box Te Vease of Stack (ft') 3.47 7.25 Mean Box Te Mean Fermice Pts	Leek Checks Sample Train (n ⁺) Leek Check @ (n Hg) Leek Check @ (n Hg) Plut good Orset good Check Meer Bax Temp Reference Temp PassFal (+L 2 [*]) Temp Change Respon	Leak Checks Sampla Train (It') Leak Check @ (in Hg) Plut good Creat good Creat good Reference Tamp Reference Tamp Pass(Fail (+L 2 [*]) Temp Change Response (K Factor Mid Initial Mid (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Mid-Point Mid-Point e.obS for no tao set Set	Final Final Post-Test Set Post-Test Set Post-Test Set	
on Lind Seatra	Aurice CLOCK Tree	veucourt Pressue onla P. Jan Nacol	ORENGE PRESERVE Delle Hige HTD	DEC CAS MUTER REACTING (N)	STACK TEMP ("F)	al anal wou	PROME TEMPORE	ri, tek Box teke Po	REPINGER EXIT TEMP	SAMPLE TRANS VAC (64 fd)	KAD EXIT	comeinta	alter Bit
8	t	1.0	5.2	122.921	413	15	242	248	89	2.0	59		250
+	10	1.0	2.5	1.19	435	28	238	152	62	6.0	#3		250
-	15	(. b	1.5	1.551	435	S	246	248	65	7.02	1		250
-	20	0:0	2.2	198.5	426	23	234	250	63	er s	4		250
4 .	25	20.9	4-	2.202	+3+	53	2.53	250	62	615	45	1 0009.42	250
	35	28.0	1.6	210.2	202	2	240	240	1	2	24		0 SN
-	40	0.85	2.1	213.9	420	100	249	250	t	65	5		254
	45 0959	58.9	2.1	217.668	421	*8	250	250	500	615	48		1 52
	(003	1	,	322.612	1	,	1	1	1	1	1		200700
1 12	5e	05to	200	221.4	425	to	249	243	(olo	Sig	۶۶		251
-	55	0,80	2.0	225.0	945	54	243	251	63	615	ts		[52]
1	40	01 800	2.0	L1222	447	85	244	250	_	65	43		152
7 6	65	0510	ò	232.3	4 50	8.8	251	250	_	5.2	47	32.781	250
4	70	01 80	2,0	235.9	647	35	255	250	55	512	5		250
4	2	01,800	0.2	239.60	446	55	254	250	55	ورد	\$\$		250
M	80	0.80	2.0	243.2	425	860	250	250	Sb	615	46		250
2	53	0.00	2.0	24619	425	86	247	250	52	6.5	48		250
2	-	4.80	2.0	250.559	410	93	249	250	00)	615	F		420
1	1053	11	, ,	250, 48%	1	(3		1	1	1	13		
)	15	0	0	2114	404	200	201	450	9.1	2			50
1	105	34	6.1	261.1	460	8	241	251	27	6.0	56		251
2 11	110	175	6.1	264.7	452	5	246	152	45	615	15		152
2 11	115	:75	1.9	20812	450	36	255	-	65	6.5	15		251
NV1475	N.S.S.	Avg Sqrt Detta P	Avg Delta H	Total Volume	Avg Ts	Avg Tm	MiniMax	-	Max Temp	Max Vac	Max Temp		
と思うのです	ZIES	Aun Cart Date D	11 P 0 1										

و

			Dires I	251	152	251	152		250	250	250	250	250	250	20	2%	250		B
٩		COMMENTS			- 1	31.049						281149	Second S						5% 120.362
Page 2 of		XAD EXIT TEMP (F)	STATISTICS.	25	5	57	101	•(101	58	51	45	46	47	47	48	48'	Max Temp 6/ /0 ⁶ - 4	17.5% 120
		SAMPLE TRANVAC (In Hg)	AN STATE	6/0	6.0	6.0	6.0	1	WS-25.	5,5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	Mar Vac 7, Ö	6.3
		IMPING EDUT TEMP		es.	62	60	66)	66		40	20	62	60	58	69	61	Max Temp	20806.3
C/DF		FILTER BOX TENP (F)	101 A. A. A.	241	250	250	250	1	250	251	249	250	249	250	251	250	250	Minddaac	
- SVOC		PRQBE TEMP (*)		299	152	250	250	1	244	240	249	252	250	152	247	247	152	Mn/Max 258 255	
EPA Method 0010/23 - SVOC/DF	12.47	DOM Primer	A state of	20	62	88	88	1	69	90	6	10	91	90	96	916	90		
ethod (Đ	tely wet	2 1 A 2 2	-	_			_								222			121
EPA M	K Factor	STACK TEMP ['FI		150	449	420	420	1	420	447	949	749	444	144	(++)	440	440	Avg Ts	1
		DRY GAS METER READING (R ¹)	21272	271.6	0.275	278.3	2541.7 lala	128.18	285.0	288.0	241.2	294.3	297.4	50015	303.60	306.8	510.617	Total Volume Total Volume Later total Comments	
SHEET	DF	URUTICE PRESSURE Della M (In 1120)		F.1	1.7	1.1	1.7		1.5	+-	1.5	1.4	1.4	4.1	1.5	1,5	1.5	Avg Delta H R. 675 / Avg Sort Del H 1.365 /	
ISOKINETIC FIELD DATA SHEET	Operator Run No Date	E VILOCITY PRESSURE Dem P (in H20)		01.0	01-10	0170	0170	1	140	. 55	60	.55	• 55	155	160	09.	49.	/ fr day.	
C FIEL	LWEC ESP Stack	CLOCK TIME (plant time)					1138	1146									12.31		
NETIC		SANPLE THE (min)	2115	120	125	130	135		140	145	150	155	100	165	011	175	180		
ISOKI	Clent Source Sample Loc	TRAVERSE POINT NO	A STATE	2	3	3	2		A	-	-	4	h	4	m	5	3		

I	LIMEC	Clerit LWEC Stack	Stack Conditions	Achiel	Meter Box D 26	26				K Factor	2.21	
Project ID	LWEC	% Moisture Incident Vol ImD		412 A	Meter Box Del H	2.114	12	Leak Checks Sample Train (N ¹)		Initial	Mid-Point	Final
Samp. Loc. ID	STK	Silica gel (g)		33.7	Probe Material			Leak Check @ (In Hg)	(DHHQ)	1.57	10 "	1
Run No,ID	ы	C02, % by Vol		6.21	V/Phot / Thermocouple ID			Phot good		ou j And	01-00-	a/100
Test Method ID	M0010/23	02. % by Vol	l	An training	 Pilot Coefficient 			Orsar good		Drait and Cat	of Cot	Diet. Tool So
Date ID	4JUL2016	Meter Temp (F)			Auto Mozzle Dia Ant		1220	Meter Box Temp	. 9	No.	100 10	4.0
Sample Date	2/0/10	Static Press (in H ₂ O)	9	- 12.6	Area of Stack (R ²)	3		Reference Temp		85		18
Baro. Press (in Hg) Operator	29.12	Ambient Temp (°F)	60	\$5	Semple Time Total Traverse Pts	28		Pass/Fail (+/- 21) Temp Change Response	Response	93	/ Fail	01 IS
Provide the prior	cpock The Day time	VELOCITY PRESSURE Deta	Deliter Deliter	DOV DAS METER	erec and	a ta	PRODK.	FacTEN BOX TERM	SMITT THE	SAMPLE SAMPLE	XAD EXT TEMP (F)	COMPLEXE
Sect	1552	P (IN HZD)	Call Inda	212 11	とする		大学という	5				
1 5	100000000000000000000000000000000000000	(0)	2.2	1100	930 1	99	240	253	99	510	00	
1 10		irD	2.0	381.5	438	99	240	252	Ule	5.5	46	
1 15		07.	4		434	00	151	251	10	5.5	45	
		1.0		389.2	433	180	25)	250	64	5.5		
2 25		90	2.0	8.292.	478	001	750	249	¢ŧ	5.5		Joh Cf.
2 30		19.6	210	396.5	427	99	251	249	c4	5.5	1 3	New York
35 35		85	6.1	400,1	+24	99	248	249	61	5.0	44	
3 40		.85	6.1	403.7	420	6	249	251	60	s,o	44	
54 2	1437	185	6/1	407.317	420	99	249	251	8	5.0	44	
	1471	1	1	107.358	1	1	1	1	l	1	1	
1 50		. 85	51	HI0.9	+25	r,	642	249	66.	513	45	
1 55		190	2,0	414.5	H19	48	244	253	62	5.5	54	
1 60		06'	210	418.2	444	96	250	250	60	5.5	47	
2 65		.96	210	421.9	445	67	752	250	10	5.5	11a	
		.96	2:0	425.5	445	٩٦	250	249	63	5.5	53	32.335
21 25		۰6.	2.0	429.2	445	97	342	250	62	5.5	52	
30		80	1.8	432.7	432	63	642	250	63	5,5	84	
		1 80	1.8	436.2	43/	67	245	251	102	5.5	57	
	01261	.90	1.4	471.723	430	97	250	2 49	102	5.5	5	
	1731	1	1	439.723	1	1	١	ſ	5	1	1	
1 95		165	1.4	442.7	435	96	249	246	66	1.5	60	
1 100		.65	1.4	\$15.8	44	£	254	253	65	54	48	
1 /05		502.	4.1	446.7	444	10	152	251	62	415	So	
2 116		160	1.3	451.8	444	62	299	250	64	4.5	23	
2 115		160	1:3	454.8	442	38	249	-	65	4.5	2	
2		Avg Sqrt Detta P	Avg Detta H	Tatal Volume	Avg Ts	Avg Tm	MnMax	MinMax	Max Temp	Mark Vac	Max Temp	
した時にしている	F											

LINE Openant Pf E8 Run Ns 31 Lp/12 x Facor Sass Oase 31 Lp/12 x Facor Sass Oase 31 Lp/12 x Facor Sass Oase 15 4 St 4,3 443 Live 1.70 1.5 4 St 4,3 443 Live 1.60 1.3 4 60,13 413 Live 1.5 4 St 4,3 43 43 Live 1.5 4 50,13 443 43 Live 1.3 4 60,13 413 43 Live 1.3 1.1 4 43 43 Live 1.3 1.1 4 43 43 Live 1.3 1.1 4 43 43 Live 1.2 1.1 <	וליל				
SAMEL CLOCKTONE VELOCITY CORRECT MARLE CLOCKTONE VELOCITY CORRECT MARLE CLOCKTONE VELOCITY CORRECT CORRECT	10日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本	2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM YART DEM	PROPIL TLANP (F)	PALTER INFING OX TEMP EXT TEMI (P) (F)	B SAMPLE MP TRAS VAC (In Mg)	KAD EKT TEMP (F)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- -	142	250 65	4.5	50
130 130 100 13 463.9 13 1516 160 1.3 460.594 - 1822 - - 460.594 - 1822 .55 1.2 467.3 145 .55 1.2 467.3 145 .55 1.2 467.3 145 .55 1.2 467.3 145 .55 1.2 467.3 150 1.3 1.2 467.3 150 1.3 1.2 467.3 150 1.3 1.2 467.3 150 1.3 1.2 467.3 150 1.3 1.2 457.4 170 .55 1.2 457.4 170 .55 1.2 457.4 171 .55 1.2 457.4 175 .55 1.2 457.4 180 1907 .55 1.2 180 1907 .55 1.2 180 1.2 492.270	47	252	251 64	4.5	53 27.171
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	97	299	249 65	7.4	\$5
- 1822 - 1460-1894 He 155 1.2 4467.7 145 1.55 1.2 475.4 156 1.55 1.2 475.4 156 1.50 1.1 478.1 156 1.50 1.1 478.1 157 1.5 1.2 486.8 157 1.5 1.2 486.5 170 5.5 1.2 486.5 171 1.5 1.2 489.4 175 1.5 1.2 489.4 189 1907 .55 1.2 492.270	9	249	280 64	54	58
Mo I.2 469.7 1.45 .55 1.2 478.1 1.86 .55 1.2 478.1 1/85 .50 1.1 478.1 1/8 .50 1.1 478.1 1/8 .50 1.1 478.1 1/8 .50 1.1 478.1 1/1 .50 1.1 478.1 1/1 .50 1.1 478.1 1/1 .50 1.1 480.5 1/1 .55 1.2 489.5 1/15 .55 1.2 489.4 1/15 .55 1.2 499.4 1/15 .55 1.2 492.270 1/15 .55 1.2 492.270 1/10 .55 1.2 492.270		1	-	1	1
145 · .55 1.2- 472.5 120 .50 1.1 475.4 150 .50 1.1 475.4 151 .50 1.1 476.3 152 .50 1.1 476.3 150 .50 1.1 476.3 170 .50 1.1 476.3 171 .50 1.2 485.5 172 .55 1.2 486.5 171 .55 1.2 486.5 171 .55 1.2 492.270 175 .55 1.2 492.270	44	245	-	4.5	60
150 1.57 1.72 #75.4 151 150 1.1 478.1 150 1.1 478.1 160 .50 1.1 478.1 175 .50 1.1 478.1 176 .50 1.1 478.1 175 .50 1.1 478.5 176 .55 1.2 486.5 175 .55 1.2 489.4 175 .55 1.2 489.4 186 1907 .55 1.2 187 .55 1.2 492.270	94	282	253 64	4.5	60
156 1.1 478.1 166 .50 1.1 450.8 170 .55 1.2 480.5 171 .55 1.2 480.5 175 .55 1.2 480.5 176 .55 1.2 480.5 177 .55 1.2 480.5 178 1907 .55 1.2 187 .55 1.2 492.270	1 24		-	4.5	55
166 .50 1.1 490.8 125 1.2 485.0 176 .55 1.2 489.5 175 .55 1.2 489.5 175 .55 1.2 489.2 175 .55 1.2 489.2 186 1907 .55 1.2 186 1907 .55 1.2	54		1	4.0	43 25.376
No 1/2 1/2 1/2 1/2 1/2 170 171 1/2 1/2 1/800/5 171 1/5 1/2 1/800/5 175 1/2 1/2 1/800/5 180 1907 1/55 1/2 180 1907 1/55 1/2 180 1907 1/55 1/2	94	25.0	250 64	4,0	44
170 55 1.2 480.5 175 155 1.2 489.4 180 1907 .55 1.2 492.270	5		100		44
175 155 152 492.270 180 1907 155 1.2 492.270	96	250			44-
1907 155 1.2 492.270	5	342	-	4.5	46
	67	252	-	5.4	48
			7	-	
	-	T			
			-		
Avg SertDetia P Avg Delia H Total Volume Avg Ts SS4 V 1.628 V 118.2 8 4 34.3	AvgTm 47.1	74 0/254 2	Minihax Max Temp 246/153 1.40	mp Max Vac	Max Temp (K
Ava Sart Del H , Comments					•

110.265

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		No. Mon Mon Mon Free Test Set post-rest Set post-rest Set To To To
ALL 2016 Temperature (*) H3O Nearter (*) H3O	PERCENSION SALES	
Egg State Water Terre (T) $\frac{7}{3}$ $\frac{25}{3}$ $\frac{25}{3}$ $\frac{25}{3}$ $7/7$ $7/7$ $1/1$ State Terre (T) -13 -12 Ansol Terre (T) 256 24.1 State Terre (T) 25 -13 -12 Ansol Terre (T) 25 24.1 Matter (T) 26 -13 -12 Ansol Terre (T) 12 24.1 Matter (T) 26 -15 57.7 410 56 240 6 1135 165 1.5 561.5 410 56 240 6 1135 166 1.4 $577.4a$ 440 56 240 250 116 1.4 $577.4a$ 440 56 240 250 160 1.4 $577.4a$ 440 56 240 250 116 1.4 $577.4a$ 440 56 240 250 160 1.4 <th>анона (1) (1) (1) (1) (1) (1) (1) (1)</th> <th>Line Kongert Tranfig Congert C</th>	анона (1) (1) (1) (1) (1) (1) (1) (1)	Line Kongert Tranfig Congert C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(Fall Magazin 1000 1000 1000 1000 1000 1000 1000 10
DE Antion Target TO Total Transment Total	sepontas de la compara de la compar La compara de la compara de La compara de la comp	1 10 10 10 10 10 10 10 10 10 10 10 10 10
Strutt Lookating Strutt Lookating Strutt Lookating Lookati		100 0000 100 0000 100 000 100 0000 100 000 100 000 100 000 100 000 100 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 28	34+ + 2 2 3
i i </td <td>63.4</td> <td>34++~ 503</td>	63.4	34++~ 503
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 4	14 + + + + + + + + + + + + + + + + + + +
(s) (bo) (1.4) Sub, S $44b$ $8c$ $24g$ 23 (bo) (1.4) Scf, Lo 444 $8c$ $24g$ 23 (bo) (1.4) $S75, Lo$ 444 $8c$ 232 35 (50) (1.1) $575, Lo$ 444 $8c$ 236 35 (50) (1.1) $575, Lo$ 444 $8c$ 236 15 (1.6) (1.1) $575, Lo$ 444 $8c$ 236 15 (1.1) $575, Lo$ 444 $8c$ 236 15 (1.1) $587, Lo$ 474 $8c$ 236 15 (20) 211 $587, Lo$ 474 77 253 15 (20) 211 $587, Lo$ 474 77 253 160 $21, 1$ $587, Lo$ 474 50 254 160 $21, 1$ $587, Lo$ 474 50 254 170 $22, 1$ $587, Lo$ 441 50 254 76 $21, 1$ $602, 6$ 441 776 256 76 </td <td></td> <td>+ +</td>		+ +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9	\$ <u>*</u> \$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	de)	1 20 X
3_0 1_{00} 1_{11} 515.1_0 440 80 250 1_{12} 1_{20} 1_{11} 517.1_0 421 80 247 1_{10} 1_{20} 1_{20} 1_{11} 587.5 421 80 247 1_{10} 1_{20} 1_{11} 587.5 421 80 247 5_0 1_{11} 587.5 421 80 247 5_0 1_{11} 587.5 472 80 248 5_0 1_{10} 2_{11} 587.5 472 80 250 5_0 1_{10} 2_{11} 587.5 472 77 250 7_1 1_{10} 2_{11} 474 80 253 7_1 1_{10} 1_{10} 1_{10} 20 248 7_1 1_{10} 1_{10} 1_{10} 1_{10} 250 7_1 1_{10} 1_{10} 1_{10} 1_{10} 276 7_1 1_{10} 2_{10} 4_{10} 77 250 7_1 1_{10} 1_{10} 1_{10} 1_{10}	00	+
36 1.20 1.1 $373/5$ 421 360 247 1.5 1.20 1.50 1.1 581.5 421 360 247 1.5 1.20 1.50 1.1 587.5 421 360 247 50 220 1.1 587.5 472 370 250 56 1.6 2.1 587.5 472 500 250 56 1.6 2.1 587.5 472 50 250 56 1.6 2.1 587.5 472 50 250 56 1.6 2.1 587.5 472 77 253 76 2.1 598.5 441 50 250 76 2.1 598.5 441 70 250 76 2.1 598.5 441 70 250 76 2.1 598.5 441 70 250 76 $1.000.0$ 441 77 250 76 1.5 1.6 1.6 1.6 2.1 76 1.1	60	+
V_0 <t< td=""><td>9</td><td></td></t<>	9	
15 1220 150 11 585.162 410 00 230 56 1215 $ 583.647$ $ -$	29	
(215) (30) (21) (30) (21) (30) (21) (31) (44) (70) (25) (6) (30) (21) (51) (44) (50) (25) (25) (6) (70) 2.1 587.6 (44) 50 253 76 2.1 587.6 442 50 253 76 2.1 687.6 441 70 256 76 2.1 687.6 441 77 256 76 2.1 687.6 441 77 256 76 1.26 441 77 256 256 65 1.76 612.6 441 77 256 76 1.315 -7 77 256 256 1315 -7 432 77 256 256 1315 -7 435 73 256 256 1315 -7 435 73 256	+	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		t
76 196 2.1 662.3 441 76 2.1 75 196 2.1 667.6 441 76 2.56 75 170 1.6 609.6 441 76 2.56 75 170 1.6 609.6 441 77 256 76 1.70 1.6 609.6 441 77 256 70 170 1.6 615.815 430 79 246 1315 -7 -7 -7 -7 -76 246 1315 -7 -76 246 -76 -76 -246 1315 -7 -76 -76 -76 -76 -76 76 175 1.72 1.72 440 76 246 765 1.7 $6.72.77$ 440 76 246 765 1.7 $6.72.77$ 440 76 246 765 1.7 $6.72.77$ 440 76 246 765 1.7 $6.72.77$ 440 76 76 765 <td< td=""><td>20</td><td>41 22 075</td></td<>	20	41 22 075
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	39
g_0 i 70 1.6 609.6 441 79 250 e_S i 70 1.6 612.6 430 79 250 f_0 i 315 .70 1.6 615.815 430 79 250 f_0 i 315 .70 1.6 615.815 430 79 250 f_0 i 315 .70 1.6 615.815 430 79 250 f_0 .75 1.7 6.12.6 430 79 246 f_0 .75 1.7 6.22.7 440 79 246 f_0 .75 1.7 6.22.7 440 70 246	57	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40
50 1316	-	-
1315 +++++++++++++++++++++++++++++++++	28	1 +1 0
175 117 619.2 435 79 245 175 117 622.7 440 79 246 175 17 622.0 444 79 245		
1.75 1.7 16.22.7 440 1 79 245	40 59 5.5	+
1 1 75 1 (7) 676.0 444 1 74 1 245 1	SL	45
	35	-
73 230 444 73 230		
1 1 1 632,8 444 1 78 249	250 63 60	-
Avg Sqrt Deita P Avg Deta H Total Volume Avg Ts Avg Tm Min/Max	1.1	-
Avg Sar Del H Comments.	EPA Method 0010 from	EPA Method 0010 from EPA 5W-846 EPA Method 23 from 40CFR

73768.S

i,

Sample Loc		LWEC ESP Stack	Operator Run No.	DF 3 01/1/1	e a	K Factor	B.29							
TRAVERSE SA POINT NO	SAMPLE SAMPLE TIME (mic)	cuock tiele (plaint lame)	VELOCITY PRESSURE DVIIa P (In H20)	ORIFICE PRESSURE Deta H (In H2D)	DRV GAS METER READING (11 ³) CAD A	STACK TEMP ('F)	DGM PYZLT	DGM CUTLET TIMP (*)	PSOBE TEMP (T)	FILTER BOX TEMP F	IMPING EUT TEMP (*)	SAMPLE TRAIN VAC (In Hg)	KAD EKIT TEMP (F)	COMMENTS
4	120		51.	1.1	636.0	443	1	5	157	249	64	6.0	58	Copyre Road Thermore
	125		SL:	1.7	659.4	943	9	110	249	255	6	6.0	22	30-143
3	130		51.	1.7	642.7	434	2	0-1-0	248	250	65	60	22	
S	135	Q0+1	51:	Ľ.)	646.132	438		75	152	642	45	614	28	
-		46	1	4	446.132	1		1	1	1	1	,	1	
-	140		0.1	5.3	649.9	430		73	248	249	40	1.0	58	
-	145		0'1	6.4	1043,3	434		23	152	245	64	0'1	58	
-	150		1.0	2.3	651.7	436		14	25	249	62	7.0	47	
2	155		0')	2.3	661.6	436		5	250	250	23	7.0	44	39.314
2 1	160		1.6	2.3	665.4	433		73	254	259	57	7.0	45	4
1 2	165		1,0	5.3	66914	429		73	842	249	54	2.0	45	
3 1	170		٩ <u>,</u>	2.1	1073.0.	426		13	250	250	55	6.5	47	
-	175		100	2,1	1076.5	420		72	248	249	Sla	6.5	47	
3 1:	180	1450	٩٩	2.1	680,446	924		4	249	250	57	6.5	54	
_														
+							-							
-						_								
						10 - 51 L/s								
+			Avg Sqrt Detta P	Avg Deta H ,	Total Volume	Avg Ts	H		Xfu	++-	Max Temp	Max Vac	Max Temp	
い田間の言いい	この町		V008.	_	122.785			1	240 4.51	244255	lo la	1.0	(ala	

SAMPLE RECOVERY FIELD DATA

EPA Method 0010/23 - SVOC/DF

Client Location/Pla	ant	LWE L'Anse, Mi		Source	W.O. # & Location			Stack		88
Run No. Sample I.D.	1	- STK - 1 - M00	10/23 -		Sample Date	n/c/ie	5		ery Date 7	14
					Impinger	1	0			-
	1	2	3	4	5	6	7	Imp.Total	8	1
Contents	Empty	HPLC H20	HPLC H20	Empty			XAD	Paskee on	Silica Gel	265
Final	370	225	108	2			3,29		331.4	1
Initial	8	100	100	8			305,9		300	
Gain	370	125	8	2			7	512	314	
Impinger Col	or Cep ;	Colorlex	(Labeled?		ć.		/	
_	ndition 14				Sealed?					
	1-		-			1	1,			ann.
Run No.	2				Sample Date	7/6/	6	Recow	ery Date	7
Sample I.D.	Mallout cases	- STK - 2 - M00	10/23 -		Analyst	1-1-	8800 		Number	1
cample i.b.	LWEG-TH-	-31K-2-W00	10/23 -		Impinger		_	rineri	vomber	-
	1	2	3	4	5	6	7	Imp.Total	8	1
Contents	Empty	HPLC H20	HPLC H20	Empty			XAD		Silica Gel	102
Final	380	153	100	8			320.0		333.7	
Initial	à	100	100	4			31/1		300	
Gain	380	55	X	63			89	4439	33.7	
Impinger Col		ex lot	wheas	1	Labeled?		.,			
Silica Gel Co		14 BL			- Sealed?					
01104 001 00		11 -			- Dealed :	T 1	L			7
						101	11		100 million (100 million)	1_
Run No.	3				Sample Date *	71 <i>1</i> 1	16	Recove	ary Date 7	п
Run No.	3	STK 3 M00	10/22		Sample Date _	767	lb		ary Date 7	17
Run No. Sample I.D.	1 5-71	- STK - 3 - M00	10/23 -		Analyst	101	lb 		ary Date 7	17
	LWEC - 114				Analyst Impinger	- pr	Цb 	Filter N	Number 'l	
	LWEC - 114	STK - 3 - M00	10/23 - 3 HPLC H20	4 Empty	Analyst	101	1.b 			
Sample I.D.	LWEC - 114	2 HPLC H20	3 HPLC H20	4 Empty	Analyst Impinger	6	XA	Filter N	Number 8 Silica Gel	
Sample I.D. Contents	LWEC - 114	2	3	4 Empty 2	Analyst Impinger	6		Filter N	Number	1
Sample I.D. Contents Final	LWEC - 114	2 HPLC H20	3 HPLC H20 90	4 Empty	Analyst Impinger	6	XA) 3266	Filter N	Number 8 Silica Gel 3363	
Sample I.D. Contents Final Initial	LWEC - 114 - 1 Empty 370 0 370 370 370	2 HPLC H20 [60 100	3 HPLC H20 90 100	4 Empty 2	Analyst Impinger	6	XM) 3266 325:6	Filter M	Number 8 Silica Gel 3363	

Check COC for Sample IDs of Media Blanks

B 98 100 20 X 100 0 $\bar{2}_{126}$ 8 8

XAD 1.el 316.8 300

B.5 HYDROGEN CHLORIDE/CHLORINE

L'Anse Warden Electric Company Inputs for Hydrogen Chloride and Chlorine Calculations

Test Data			
Run number	1	2	3
Location		Boiler No. 1	
Date	07/06/2016	07/06/2016	07/07/2015
Time period	0935-1040	1621-1726	1334-1439
Operator	KS	KS	KS
Inputs For Cales.			
Delta H	1.8000	1.8000	1.8000
Stack temp. (deg.F)	450.2	444.2	443.4
Meter temp. (deg.F)	84.2	103.8	75.6
Sample volume (act.)	46.886	46.930	46.500
Barometric press. (in.Hg)	29.27	29.27	29.38
Volume H2O imp. (ml)	198.0	174.0	168.0
Weight change sil. gel (g)	14.1	12.0	16.4
% CO2	13.6	13.0	13.0
% O2	6.7	7.4	7.5
% N	79.7	79.6	79.5
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	65	65	65
Static pressure (in.H2O)	-12.60	-12.60	-12.80
Meter box cal.	0.9915	0.9915	0.9915
Cp of pitot tube	0.84	0.84	0.84
Traverse Points	12	12	12
HCI Laboratory Report Data			
HCl, mg	8.20	8.80	7.40
Cl ₂ , mg	< 1.2	< 1.2	< 1.2

A Substantian Control of Silver and Substantian Silver and Silver		Stack Conditions Mere Box (D Assumed Z/Z K Factor Stack Conditions Mere Box (D Assumed Actual Mere Box (III) Mere Box (D Assumed Z/Z K Factor Mater Box Valuation Scice gel (III) Assumed Actual Assumed Mere Box (D Assumed Z/Z K Factor Mere Box Valuation Scice gel (III) I/Z I/Z Eask Checks Initial Mid-Point Final Scice gel (III) I/Z I/Z Eask Checks Eask Checks Initial Mid-Point Final Coc. % by Valuation I/Z I/Z Eask Checks Initial Mid-Point Final Coc. % by Valuation I/Z I/Z Initial Mid-Point Final Coc. % by Valuation I/Z Initial Initial Mid-Point Final Coc. % by Valuation I/Z Initial Initial Mid-Point Final Coc. % by Valuation I/Z Initial Initial Initial Initial Initial Coc. % by Valuation I/Z I/Z Initia	Operation Operation Monitories Monitorie	a Ang Delia H Total Volume / 449 Ta Ang Tm / MinNex MinNex Max Temp Max Vac Max Tamp
	D LWEC Notes ID 1484.007.004 Notes ID 114 Notes ID 115 Notes ID 115 Notes ID 115 Notes ID 115 Notes ID 11 Notes ID 11 <tr< td=""><td>SMoreaure impinger Vol (ml) Silica gel (g) Silica gel (g) CO2, % by Vol O2, % by</td><td>20000011110000000000000000000000000000</td><td>Avg Sqrt Detta P</td></tr<>	SMoreaure impinger Vol (ml) Silica gel (g) Silica gel (g) CO2, % by Vol O2, % by	20000011110000000000000000000000000000	Avg Sqrt Detta P

Avg Sqr Deta P Avg Deta H Total Volume Avg Ts / DAVA Min/Max Min/Max May Temp Max Vec Max Temp Max Vec Max Temp

Client LWEC Stack Conditions M.O.# LWEC Stack ODT.004 Project ID LWEC % Mosture Mode/Source ID LWEC % Mosture Mode/Source ID STK Sitca gel (g) Run No.ID Sitca gel (g) Run No.ID 3 CO2, % by Vol Remperature (°F) Source1coation ESP Stack Mosture (°F) Source1coation ESP Stack Mosture (°F) Source1coation ESP Stack Mosture (°F) Static Press (in H ₂ O) -1.2C	MANDO MONDO DO DO NO NO	Avg Sort Detta P Avg Detta H Lotal Vg
B Meter Box ID Actual Actual Meter Box V 0.9915 Meter Box V 0.9915 5 Meter Box Cell 12.3 7 Plux / Thermocupie ID 0.94 0 12.9 Plux / Thermocupie ID 0.94 Avy Nozzle ID 0.94 0 Avana of Stack (fr ¹) 39 6 Sample Time 6 6	Cot al - 20	DS / 443:4/
And the second secon	2000 100 100 100 100 100 100 100 100 100	Avg Time AnnMax MinMax 3
K Factor Initial Mid-Point Final Initial Mid-Point Final (in Hg) 15 wes / no wes / no Reg/ no wes / no wes / no Pre-Test Set Post-Test Set Pre-Test Set Post-Test Set Resonce wes / no wes / no	AQ AQO A O O O O O O O	Max Temp Max Vac Max Temp EPA 26A from 40CFR Part 60 App A

 (\vec{u})

SAMPLE RECOVERY FIELD DATA

EPA Method 26A - HCl & Cl2

Client Location/Pla		LWEC		Source	W.O. # & Location			1.007.004 Stack		
Run No.	1	L /1100, 1914	angon -		ample Date	2/6/16			ry Date 7	6/16
Sample I.D.	LWEC - 114 -	STK - 1 - M264	1-		Analyst	m		Filter N	lumber (NA
					Impinger					
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	H2SO4	H2SO4	H2SO4	NaOH	NaOH			A CONTRACTOR	Silica Gel	£35.0-
Final	190	146	110	102	100				314.1	
Initial	50	100	100	100	100				300	
Gain	140	46	16	2	0	_		198	141	
Impinger Colo	or ret	- Colo	rees		Labeled?	2	~			
Silica Gel Co		1/2 34	re		- Sealed?		~			
	17 MORE -					1.1.				11
Run No.	2			5	ample Date	7/6/16		Recove	ary Date	7/6/16
Samole I D	LWEC-114-	STK - 2 - M26/			Analyst	'A'		Filter M	lumber	NA
dampie i.u.	LWEG-114-	51K-2- m20			Impinge	A	<u>0</u>	1 1001 1	Tallio of	141)
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	H2SO4	H2SO4	H2SO4	NaOH	NaOH			di Contra	Silica Gel	
Final	182	142	-96	104	100				312,0	
Initial	50	100	100	100	100				300	
Gain	132	42	-4	ч	82	12	2102	174	12.0	
St. 32 10 12 1		· la	10105	-+	CONTRACTOR		1	11.3.5		
Impinger Col	or <u>('ee</u>	Y2 BC	orcess		Labeled? -					
Silica Gel Co	ndition	12150	ine	1.533325	Sealed?		1970	the state of the s		_
						15/1				bla
Run No.					Sample Date	71/16	2		ary Date	1110
Sample I.D.	LWEC - 114 -	STK - 3 - M26	Ą.,		Analyst	m		Filter	Number	N
	-				Impinge		_	1		T 1
Contrate	1	2	3	4 NaOH	5	6	7	Imp.Total	8 Silica Gel	Total
Contents	H2SO4	H2504	110	104	NaOH (00)		<u></u>	No. Science and		
Final	1000 (Sec 18)	a state of the	-1	and the second	Construction of the			1	316,4	
Initial	50	100	100	100	100		š	111	300	
Gain	110	44	10	17	0			168	16.4	
Impinger Col	or No	1- 101	orles	5	Labeled?		4			
Constant a constant	-	1- 101 1/2 BL	.0	200			~			
Silica Gel Co	naition	12-56	r4		Sealed?				-	

Check COC for Sample IDs of Media Blanks

10

G & - 22

B.6 VOCs

METHODS AND ANALYZERS

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1

٠

. .

Project Number: 14464.007.004.0001 Operator: TB Date: 6 Jul 2016

File: C:\DATA\LWEC\2016\7-6-16 test day #1.cem Program Version: 2.0, built 21 Feb 2015 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.7
Channel 6	

Analyte	THC
Method	EPA 25A, Not Using Bias
Analyzer Make, Model & Serial No.	JUM 3-300A
Full-Scale Output, mv	10000
Analyzer Range, ppm	10.0
Span Concentration, ppm	10.0

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1

Project Number: 14464.007.004.0001 Operator: TB Date: 6 Jul 2016

Start Time: 08:07

2		
J	2	
-	-	

01
Method: EPA 3A
Method. EFA 3A
Calibration Type: Linear Zero and High Span

Calibration	Standards	
%	Cylinder ID	
11.9	XC016048B	
21.3	SG9168232	
 Calibratio	n Results	
Zero	16 mv	
Span, 21.3 %	8121 mv	
 Curve Co	efficients	
Slope	Intercept	
380.5	16	

Calibratio	Method	CO₂ ∶EPA 3A ear Zero and High Span	
	Calibration	n Standards	
	%	Cylinder ID	
	8.9	XC016048	
	16.7	SG9168232	
	Calibrati	on Results	
	Zero	-1 mv	
Spa	an, 16.7 %	8378 mv	
	Curve C	oefficients	
	Slope	Intercept	
	500.5	-1	

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1

Project Number: 14464.007.004.0001 Operator: TB Date: 6 Jul 2016

Start Time: 08:07

тнс

100	,
Method: E	PA 25A
Calibration Type: Linear	Zero and High Span

Calibration	Standards	
ppm	Cylinder ID	
2.54	CC261812	
5.10	CC37650	
8.56	CC344084	
Calibration	Results	
Zero	-17 mv	
Span, 8.56 ppm	8582 mv	
Curve Coe	efficients	
Slope	Intercept	
1005	-17	

CALIBRATION ERROR DATA

ocation:	LWEC L'Anse, Michigan		0-11-0-4	Ope	erator:	
Source:	Boiler # 1		Calibration	1	Date:	6 Jul 2016
			Start Time: 08	3:07		
			O2			
			Method: EPA			
		Classe	Span Conc. 21			
-		Slope	360.5	Intercept 16.0		
	Standard	Result	Difference			
	%	%	%	%		Status
	Zero	0.0	0.0	0.0		Pass
	12.0	12.2	0.2	0.9		Pass
-	21.3	21.3	0.0	0.0		Pass
			Later -			
			CO ₂ Method: EPA	24		
			Span Conc. 16			
		Slope		Intercept -1.0		
-	Standard	Result	Difference	Error		
	%	%	%	%		Status
	Zero	0.0	0.0	0.0		Pass
	8.9	8.7	-0.2	-1.2		Pass
×-	16.7	16.7	0.0	0.0		Pass
~						20
			THC Mathedu EDA	254		
			Method: EPA			
		Slope	Span Conc. 10.0 1005	Intercept -17.00		
87	Standard	0.000				
	Standard	Result	Difference			Status
	ppm Zero	ppm 0.00	ppm 0.00	% 0.0		Status Pass
	2.54	2.57	0.00	1.2		Pass
	5.10	5.13	0.03	0.6		Pass
	0.10	8.56	0.00	0.0		Pass

BIAS

Number 1

Location:	LWEC L'Anse, Michigan Boiler # 1		Calib	ration 1	Oper	nber: 14464.007.004.000 ator: TB Date: 6 Jul 2016
			Start Ti	me: 08:36		
				O₂ d: EPA 3A onc. 21.3 %		
			Bias	Results		
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias % 0.0 12.2	Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass
=			Method	CO₂ d: EPA 3A onc. 16.7 %		
			Bias	Results		
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass

•

Location:	LWEC L'Anse, Michiga Boiler # 1	in	Calib	ration 1	Opera	ber: 14464.007.00 ator: TB Pate: 6 Jul 2016	4.0001
			Start Ti	me: 12:35			
				•			
			Methor	O₂ 1: EPA 3A			
				onc. 21.3 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero 0.0		0.1	0.1	0.5	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.5	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
=		*Bias No. 1					
				CO2			
				d: EPA 3A			
				onc. 16.7 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.6	Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	

		Calibra	ation Drift		
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.1	0.1	0.6	Pass
Span	8.6	8.6	0.0	0.0	Pass
•	*Bias No. 1				

Location:	LWEC L'Anse, Michiga Boiler # 1	an	Calib	ration 1	Operator:	14464.007.004.0001 TB 6 Jul 2016
			Start Ti	me: 12:35		
			Method	THC : EPA 25A c. 10.00 ppm		
				ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	ppm	ppm	ppm		Status
	Zero	0.00	0.01	0.01	0.1	Pass
	Span	2.57	2.59	0.02	0.2	Pass
		*Cal No. 1				

Client: LWEC ocation: L'Anse, Michigan Source: Boiler # 1		Calibra	ation 1		Operator:	14464.007.004.000 TB 6 Jul 2016
Boner # 1		ounore			Duto.	00012010
	Time	O2	CO ₂	THC		
		%	%	ppm		
	13:16	6.6	13.4	0.14		
	13:17	6.5	13.7	0.04		
	13:18	7.3	12.7	0.07		
	13:19	7.1	13.0	0.08		
	13:20	6.0	14.0	0.05		
	13:21	6.3	13.7	0.03		
	13:22	6.7	13.3	0.03		
	13:23	7.5	12.5	0.05		
	13:24	7.1	13.0	0.04		
	13:25	6.5	13.6	0.46		
	13:26	6.1	14.0	0.04		
	13:20	6.5	13.5	0.04		
	13:28	7.1	13.0	0.04		
	13:29	6.6	13.5	0.04		
	13:30	6.9	13.2	0.03		
	13:31	7.1	13.0	0.05		
	13:32	7.3	12.8	0.07		
	13:33	6.7	13.3	0.14		
	13:34	6.5	13.6	0.06		
	13:35	6.7	13.4	0.06		
	13:36	6.9	13.3	0.12		
	13:37	6.6	13.6	0.24		
	13:38	6.7	13.3	0.07		
	13:39	6.6	13.4	0.08		
	13:40	6.9	13.1	0.03		
	13:41	6.7	13.3	0.01		
	13:42	6.9	13.2	0.03		
	13:43	6.8	13.2	0.03		
	13:44	6.8	13.3	0.03		
	13:45	6.9	13.2	0.03		
	13:46	6.5	13.6	0.11		
	13:47	6.4	13.8	0.06		
	13:48	6.8	13.3	0.06		
	13:49	7.8	12.2	0.06		
	13:50	7.1	12.9	0.08		
				0.08		
	13:51	6.9	13.2			
	13:52	6.3	13.8	0.18		
	13:53	7.3	12.7	0.07		
	13:54	6.7	13.3	0.08		
	13:55	7.0	13.1	0.05		
	13:56	6.8	13.3	0.10		
	13:57	7.3	12.8	0.08	\mathcal{M}	<u>LESTON</u>

LWEC L'Anse, Michigan Boiler # 1 Calibratio			ation 1	Operator:	14464.007.004.0001 TB 6 Jul 2016	
	Time	O2 %	CO2 %	THC ppm		
	13:58	7.0	13.1	0.06		
	13:59	6.7	13.5	0.14		
	14:00	6.4	13.7	0.06		
	14:01	6.8	13.2	0.09		
	14:02	6.2	13.8	0.05		
	14:03	6.9	13.1	0.04		
	14:04	7.3	12.8	0.03		
	14:05	7.2	12.8	0.02		
	14:06	6.6	13.4	0.00		
	14:07	6.6	13.5	0.03		
	14:08	7.1	13.1	0.04		
	14:09	6.6	13.3	0.07		
	14:10	6.3	13.8	0.04		
	14:11	6.6	13.4	0.07		
	14:12	7.5	12.4	0.04		
	14:13	8.0	11.9	0.08		
	14:14	7.6	12.4	0.05		
	14:15	6.5	13.4	0.06		
	Avgs	6.8	13.2	0.07		

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibra	ation 1	Operator	14464.007.004.0001 TB 8: 6 Jul 2016
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %	THC EPA 25A ppm	
	Time: 13:	15 to 14:15		
	Run A	verages		
	6.8	13.2	0.07	
	Pre-run Bi	ias at 12:35		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.1 8.6 8.9	N/A N/A N/A	
	Post-run B	ias at 15:23		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9	N/A N/A N/A	
Averages corrected f	or the averag	ge of the pre	-run and post-ru	n bias

6.7	13.7	0.07*
*No Co	orrection	

Number 3

Client: LV Location: L' Source: Bo	Anse, Michig	an	Start Ti	ration 1 me: 15:23 O ₂ d: EPA 3A onc. 21.3 %	Opera	ber: 14464.007 ator: TB ate: 6 Jul 2010	
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias Bias % 0.1 12.1	Results Difference % 0.1 -0.1	Error % 0.5 -0.5	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.1 12.1 *Bias No. 2	Calibra Final % 0.1 12.1	ation Drift Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass	
			Method	CO₂ 1: EPA 3A onc. 16.7 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	
	Standard Gas Zero	Initial* % 0.1	Final % 0.0	ation Drift Difference % -0.1	Drift % -0.6	Status Pass	
	Span	8.6 *Bias No. 2	8.6	0.0	0.0	Pass	

=

=

Number 3

Location:	LWEC L'Anse, Michiga Boiler # 1	in	Calib	ration 1	Operator:	14464.007.004.000 TB 6 Jul 2016
			Start Ti	me: 15:23	64-51-9111	
			Method	FHC : EPA 25A c. 10.00 ppm		
			Calibra	ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	ppm	ppm	ppm	%	Status
	Zero	0.00	0.01	0.01	0.1	Pass
	Span	2.57 *Cal No. 1	2.61	0.04	0.4	Pass

(1)

1221

METHODS AND ANALYZERS

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016

File: C:\DATA\LWEC\2016\7-7-16 test day 2.cem Program Version: 2.0, built 21 Feb 2015 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

 \sim

Channel 1

Analyte	02
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.7
Channel 6	

Channel 6

Analyte	THC
Method	EPA 25A, Not Using Bias
Analyzer Make, Model & Serial No.	JUM 3-300A
Full-Scale Output, mv	10000
Analyzer Range, ppm	10.0
Span Concentration, ppm	10.0

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016

Start Time: 07:58

-			
r	ъ	~	
۰.	,	z	
_		-	

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibrati	on Standards	
%	Cylinder ID	
11.9	XC016048B	
21.3	SG9168232	
Calibra	ation Results	
Zero	10 mv	
Span, 21.3 %	8124 mv	
Curve	Coefficients	
Slope	Intercept	
380.9	10	

~~

Method:	O2 EPA 3A	
Calibration Type: Line	ar Zero and High Span	
Calibration	Standards	
%	Cylinder ID	
8.9	XC016048	
16.7	SG9168232	
Calibratio	on Results	
Zero	11 mv	
Span, 16.7 %	8369 mv	
Curve Co	pefficients	
Slope	Intercept	
499.3	11	

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016

Start Time: 07:58

THC

Method: EPA 25A Calibration Type: Linear Zero and High Span

Calibration		
ppm	Cylinder ID	
2.54	CC261812	
5.10	CC37650	
8.56	CC344084	
Calibration	Results	
Zero	-55 mv	
Span, 8.56 ppm	8556 mv	
Curve Coe	efficients	
Slope	Intercept	
1006	-55	

CALIBRATION ERROR DATA

Location:	LWEC L'Anse, Michigan Boiler # 1		Calibration 1	Oper	Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016		
			Start Time: 07:58	3			
		Slope 3	O ₂ Method: EPA 3A Span Conc. 21.3 % 80.9 Int				
-	Standard	Result	Difference	Error			
	Standard %	Kesult %	binerence %	%	Status		
	Zero	0.0	0.0	0.0	Pass		
	12.0	12.2	0.2	0.9	Pass		
	21.3	21.3	0.0	0.0	Pass		
=	-						
			CO₂ Method: EPA 3A				
			Span Conc. 16.7 9				
		Slope 4	,	tercept 11.0			
-	Standard %	Result %	Difference %	Error %	Status		
	Zero	0.0	0.0	0.0	Pass		
	8.9	8.7	-0.2	-1.2	Pass		
-	16.7	16.7	0.0	0.0	Pass		
			THC				
			Method: EPA 25A	4			
			Span Conc. 10.00 p				
		Slope 1		ercept -55.00			
-	Standard	Result	Difference	Error			
	ppm	ppm	ppm	%	Status		
	Zero	0.00	0.00	0.0	Pass		
	2.54	2.54	0.00	0.0	Pass		
	5.10	5.11	0.01	0.2	Pass		
	8.56	8.56	0.00	0.0	Pass		

BIAS

LWEC L'Anse Boiler	, Michigan # 1		Calib	ration 1	Ope	mber: 14464.007.004.0 rator: TB Date: 7 Jul 2016
			Start Ti	me: 08:08		
			Method	O₂ I: EPA 3A onc. 21.3 %		
Z	ndard Gas Zero Span	Cal. % 0.0 12.2	Bias Bias % 0.1 12.1	Results Difference % 0.1 -0.1	Error % 0.5 -0.5	Status Pass Pass
			Method	CO₂ 1: EPA 3A onc. 16.7 %		
_						
	ndard					
	Gas					Status
					+ + +	Pass Pass
(Z	G		ias % ero 0.0	ndard Cal. Bias as % % ero 0.0 0.0	as % % % ero 0.0 0.0 0.0	dardCal.BiasDifferenceErroras%%%%ero0.00.00.00.0

Location:	LWEC L'Anse, Michigan				Proje	Operator:	
Source:	Boiler # 1		Calibra	ation 1		Date:	7 Jul 2016
		Time	O 2 %	CO₂ %	THC ppm		
		09:31	7.7	12.3	0.00		
		09:32	7.5	12.6	0.00		
		09:33	6.7	13.4	0.00		
		09:34	7.4	12.7	0.00		
		09:35	7.7	12.2	0.00		
		09:36	6.9	13.2	0.30		
		09:37	7.1	13.0	0.00		
		09:38	7.5	12.6	0.00		
		09:39	7.5	12.6	0.00		
		09:40	7.5	12.7	0.00		
		09:41	7.0	13.1	0.00		
		09:42	7.4	12.8	0.00		
		09:42	7.7	12.4	0.00		
		09:44	7.4	12.6	0.00		
		09:45	6.9	13.2	0.00		
		09:46	6.8	13.3	0.00		
		09:40	7.0	13.0	0.00		
		09:48	7.2	13.0	0.00		
		09:48	7.2	12.9	0.00		
		09:49	7.7	12.9	0.00		
		09:50	8.1	12.4	0.00		
					0.00		
		09:52	8.1	12.1			
		09:53	7.2	12.8	0.05		
		09:54	6.7	13.3	0.00		
		09:55	8.0	12.0	0.00		
		09:56	8.9	11.1	0.00		
		09:57	8.8	11.3	0.00		
		09:58	7.5	12.5	0.00		
		09:59	7.1	13.1	0.00		
		10:00	7.6	12.5	0.00		
		10:01	7.8	12.3	0.00		
		10:02	8.3	11.7	0.00		
		10:03	7.1	12.9	0.00		
		10:04	6.7	13.4	0.00		
		10:05	7.6	12.4	0.00		
		10:06	8.4	11.7	0.00		
		10:07	7.6	12.5	0.36		
		10:08	6.5	13.6	0.00		
		10:09	7.3	12.8	0.00		
		10:10	7.1	13.1	0.00		
		10:11	7.3	12.7	0.00		
		10:12	7.0	13.2	0.00		A C C C C C C C C C C C C C C C C C C C

Location:	LWEC L'Anse, Michigan Boiler # 1	Calibration 1			-	Operator:	14464.007.004.0001 TB 7 Jul 2016	
		Time	O2 %	CO₂ %	THC ppm			
		10:13	7.7	12.5	0.00			
		10:14	7.7	12.4	0.00			
		10:15	6.4	13.6	0.00			
		10:16	6.9	13.2	0.00			
		10:17	7.2	12.8	0.00			
		10:18	6.7	13.4	0.00			
		10:19	6.4	13.7	0.00			
		10:20	7.8	12.3	0.00			
		10:21	7.5	12.5	0.00			
		10:22	6.8	13.3	0.00			
		10:23	6.3	13.9	0.15			
		10:24	7.2	12.8	0.00			
		10:25	7.5	12.5	0.00			
		10:26	7.0	13.2	0.00			
		10:27	6.4	13.7	0.00			
		10:28	7.1	12.9	0.00			
		10:29	7.0	13.1	0.00			
		10:30	6.4	13.6	0.00			
		Avgs	7.3	12.8	0.01			

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibr	ration 1	Operator	: 14464.007.004.0001 : TB : 7 Jul 2016
Method Conc. Units	0₂ EPA 3A %	CO₂ EPA 3A %	THC EPA 25A ppm	
	Time: 09	:30 to 10:30		
	Run A	verages		
	7.3	12.8	0.01	
	Pre-run B	ias at 08:08		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9	N/A N/A N/A	
	Post-run E	Bias at 10:57		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9	N/A N/A N/A	
Averages corrected f	or the avera	ge of the pre	-run and post-ru	n bias
	7.2 *No C	13.2 orrection	0.01*	

	LWEC L'Anse, Michig	nan			-	ber: 14464.007 ator: TB	.004.0001
	Boiler # 1	Jan	Calibration 1		Date: 7 Jul 2016		
			Start Ti	me: 10:57			
				O ₂			
			Metho	: EPA 3A			
			Span Co	onc. 21.3 %			
				Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0 12.2	0.1 12.1	0.1 -0.1	0.5 -0.5	Pass Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
				ation Drift			
	Standard	Initial*	Final	Difference	Drift	-	
	Gas	%	%	%	%	Status	
	Zero	0.1	0.1	0.0	0.0	Pass	
	Span	12.1	12.1	0.0	0.0	Pass	
=		*Bias No. 1					=
				d: EPA 3A onc. 16.7 %			
	Otomological	0-1		Results	F		
	Standard	Cal.	Bias	Difference	Error	Chatura	
	Gas Zero	% 0.0	% 0.0	% 0.0	% 0.0	Status Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	
	- Opun	0.1	0.0	0.1		. 200	
				ation Drift			
	Standard	Initial*	Final	Difference	Drift		

Standard Gas	Initial* %	Final %	Difference %	Drift %	Status
Zero	0.0	0.0	0.0	0.0	Pass
Span	8.6 *Bias No. 1	8.6	0.0	0.0	Pass

BIAS AND CALIBRATION DRIFT Number 2

Location:	LWEC L'Anse, Michiga Boiler # 1	an	Calib	ration 1	Operator:	14464.007.004.0001 TB 7 Jul 2016		
			Start Ti	me: 10:57				
	THC Method: EPA 25A Span Conc. 10.00 ppm							
			Calibra	ation Drift				
	Standard	Initial*	Final	Difference	Drift			
	Gas	ppm	ppm	ppm	%	Status		
	Zero	0.00	0.04	0.04	0.4	Pass		
	Span	2.54	2.59	0.05	0.5	Pass		
	-	*Cal No. 1						

.

	L'Anse, Michie	gan	Calib		Oper	ber: 14464.007.004.0 ator: TB
Source:	Boiler # 1		Calib	ration 1	L	Date: 7 Jul 2016
			Start Ti	me: 14:53		
				O2		
				I: EPA 3A		
			Span Co	onc. 21.3 %		
			Bias	Results		
	Standard	Cal.	Bias	Difference	Error	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	12.2	12.1	-0.1	-0.5	Pass
			Calibra	ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	%	%	%	%	Status
	Zero	0.1	0.0	-0.1	-0.5	Pass
	Span	12.1	12.1	0.0	0.0	Pass
_		*Bias No. 2				
				CO2		
,				1: EPA 3A		
				onc. 16.7 %		
			Bias	Results		
	Standard	Cal.	Bias	Difference	Error	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	8.7	8.6	-0.1	-0.6	Pass
			Calibra	ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	8.6	8.6	0.0	0.0	Pass
		*Bias No. 2				

Location:	t: LWEC n: L'Anse, Michigan e: Boiler # 1 Calibration			ration 1	Operator	: 14464.007.004.0001 : TB : 7 Jul 2016		
			Start Ti	me: 14:53				
	THC Method: EPA 25A Span Conc. 10.00 ppm							
	Standard Gas	Initial* ppm	Calibra Final ppm	ation Drift Difference ppm	Drift %	Status		
	Zero Span	0.00 2.54 *Cal No. 1	0.03 2.54	0.03 0.00	0.3 0.0	Pass Pass		

Client: LWEC Location: L'Anse, Michigan	1			Projec	t Number: Operator:	14464.007.004.0001 TB
Source: Boiler # 1		Calibra	ation 1		Date:	7 Jul 2016
	Time	O2 %	CO₂ %	THC ppm		
	15:46	6.6	13.6	0.07		
	15:47	7.8	12.2	0.09		
	15:48	8.2	11.9	0.07		
	15:49	7.1	13.0	0.04		
	15:50	6.9	13.4	0.01		
	15:51	7.1	13.0	0.02		
	15:52	7.9	12.1	0.05		
	15:53	7.4	12.8	0.08		
	15:54	7.2	12.9	0.06		
	15:55	7.0	13.2	0.34		
	15:56	7.0	13.2	0.09		
	15:57	7.7	12.4	0.08		
	15:58	7.6	12.6	0.09		
	15:59	7.4	12.8	0.11		
	16:00	7.4	12.8	0.10		
	16:01	8.2	11.9	0.12		
	16:02	8.0	12.1	0.12		
	16:03	7.3	12.8	0.07		
	16:04	7.7	12.4	0.10		
	16:05	6.7	13.3	0.15		
	16:06	7.0	13.1	0.07		
	16:07	8.2	11.9	0.07		
	16:08	8.7	11.5	0.09		
	16:09	8.0	12.2	0.07		
	16:10	8.0	12.2	0.09		
	16:11	7.7	12.5	0.10		
	16:12	7.6	12.6	0.12		
	16:13	7.8	12.3	0.10		
	16:14	7.7	12.4	0.08		
	16:15	8.0	12.1	0.05		
	16:16	8.6	11.4	0.03		
	16:17	8.7	11.4	0.06		
	16:18	8.5	11.7	0.05		
	16:19	8.0	12.3	0.08		
	16:20	7.1	13.0	0.05		
	16:21	7.1	13.1	0.05		
	16:22	8.0	12.2	0.05		
	16:23	8.3	11.8	0.06		
	16:24	8.5	11.6	0.07		
	16:25	7.7	12.5	0.07		
	16:26	7.8	12.4	0.08		
	16:27	7.7	12.7	0.09		/re(Sra@NI

Location:	LWEC L'Anse, Michigan Boiler # 1		Calibra	ation 1	Projec	Project Number: 14464.007.004.000 Operator: TB Date: 7 Jul 2016			
		Time	O2 %	CO2 %	THC ppm				
		16:28	6.9	13.2	0.27				
		16:29	7.5	12.7	0.08				
		16:30	8.2	12.0	0.09				
		16:31	8.2	12.0	0.09				
		16:32	8.0	12.2	0.10				
		16:33	7.3	12.9	0.08				
		16:34	7.5	12.8	0.08				
		16:35	8.0	12.1	0.11				
		16:36	8.3	11.9	0.12				
		16:37	7.6	12.6	0.20				
		16:38	7.1	13.2	0.10				
		16:39	7.5	12.6	0.14				
		16:40	7.6	12.6	0.13				
		16:41	8.1	12.0	0.14				
		16:42	7.3	12.8	0.12				
		16:43	7.4	12.8	0.12				
		16:44	7.8	12.4	0.13				
		16:45	7.7	12.6	0.11				
		Avgs	7.7	12.5	0.09				

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calib	ration 1	Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016		
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %	THC EPA 25A ppm		
	Time: 15	:45 to 16:45			
	Run A	verages			
	7.7	12.5	0.09		
	Pre-run B	ias at 14:53			
Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9	N/A N/A N/A		
	Post-run E	Bias at 17:08			
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9	N/A N/A N/A		
Averages corrected f	or the avera	ge of the pre	-run and post-ru	ın bias	

7.6	12.9	0.09*
*No (Correction	

Location:	LWEC L'Anse, Michi Boiler # 1	gan	Calib	pration 1	Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016		
_			Start T	ime: 17:08			
				O₂ d: EPA 3A onc. 21.3 %			
	Standard	Cal.	Bias Bias	Results Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.5	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
			Calibr	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.5	Pass	
=	Span	12.1 *Bias No. 3	12.1	0.0	0.0	Pass	
				CO₂ d: EPA 3A			
				onc. 16.7 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	
			Calibr	ation Drift			

Otom dowel	1		ation Drift	D-161	
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.0	0.0	0.0	Pass
Span	8.6	8.6	0.0	0.0	Pass
•	*Bias No. 3				

Location:	LWEC L'Anse, Michiga Boiler # 1	in	Calib	ration 1	Project Number: 14464.007.004. Operator: TB Date: 7 Jul 2016			
			Start Ti	me: 17:08				
	THC Method: EPA 25A Span Conc. 10.00 ppm							
	Standard Gas Zero Span	Initial* ppm 0.00 2.54 *Cal No. 1	Drift % 0.0 0.1	Status Pass Pass				

Location:	LWEC L'Anse, Michigan Boiler # 1			ime: 19:30	Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016		
				O₂ d: EPA 3A onc. 21.3 %			
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias Bias % 0.0 12.1	Results Difference % 0.0 -0.1	Error % 0.0 -0.5	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.1 12.1 *Bias No. 4	Calibra Final % 0.0 12.1	ation Drift Difference % -0.1 0.0	Drift % -0.5 0.0	Status Pass Pass	
=			Metho	CO2 d: EPA 3A onc. 16.7 %			
				Results	_		
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	
	Standard Gas	Initial*	Final %	ation Drift Difference %	Drift %	Status	
	Zero Span	0.0 8.6 *Bias No. 4	0.0 8.6	0.0 0.0	0.0 0.0	Pass Pass	

Location:	LWEC L'Anse, Michiga Boiler # 1	an	Calib	ration 1	Project Number: 14464.007.004.000 Operator: TB Date: 7 Jul 2016			
			Start Ti	me: 19:30				
	THC Method: EPA 25A Span Conc. 10.00 ppm							
			Calibra	ation Drift				
	Standard	Initial*	Final	Difference	Drift	-		
	Gas	ppm	ppm	ppm	%	Status		
	Zero	0.00	0.04	0.04	0.4	Pass		
	Span	2.54	2.56	0.02	0.2	Pass		
		*Cal No. 1						

B.7 O₂/CO₂

METHODS AND ANALYZERS

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1

Project Number: 14464.007.004.0001 Operator: TB Date: 6 Jul 2016

File: C:\DATA\LWEC\2016\7-6-16 test day #1.cem Program Version: 2.0, built 4 Dec 2014 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzar Maka Madel 9 Cariel No.	C

Analyzer Make, Model & Serial No. Full-Scale Output, mv Analyzer Range, % Span Concentration, % CO2 EPA 3A, Using Bias Servomex 4900 10000 20.0 16.7

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 6 Jul 2016

Start Time: 08:07

c	,	2	
	-	_	

02
Method: EPA 3A
moulou. Er/tort
Calibration Type: Linear Zero and High Span

Calibration	Standards	
%	Cylinder ID	
11.9	XC016048B	
21.3	SG9168232	
Calibratio	n Results	
Zero	16 mv	
Span, 21.3 %	8121 mv	
Curve Co	pefficients	
Slope	Intercept	
380.5	16	

tandards	
Cylinder ID	
XC016048	
SG9168232	
Results	
-1 mv	
8378 mv	
ficients	
Intercept	
-1	
	Zero and High Span tandards Cylinder ID XC016048 SG9168232 Results -1 mv 8378 mv fficients Intercept

CALIBRATION ERROR DATA

Location:	LWEC L'Anse, Michigan Boiler # 1		Calibration 1	Operator:	14464.007.004.0001 TB 6 Jul 2016
			Start Time: 08:07		
		Slope	O₂ Method: EPA 3A Span Conc. 21.3 % 380.5 Interce	əpt 16.0	
-	Standard % Zero	Result % 0.0	Difference % 0.0	Error % 0.0	Status Pass
-	12.0 21.3	12.2 21.3	0.2 0.0	0.9 0.0	Pass Pass
			CO₂ Method: EPA 3A Span Conc. 16.7 %		
		Slope		ept -1.0	
-	Standard % Zero 8.9 16.7	Result % 0.0 8.7 16.7	Difference % 0.0 -0.2 0.0	Error % 0.0 -1.2 0.0	Status Pass Pass Pass

BIAS

Location:	LWEC L'Anse, Michigan Boiler # 1		Calib	pration 1	Opera	er: 14464.007.004.0 tor: TB ate: 6 Jul 2016
			Start Ti	me: 08:36		
				O2 d: EPA 3A onc. 21.3 %		
			Bias	Results		
	Standard	Cal.	Bias	Difference	Error	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
=	Span	12.2	12.2	0.0	0.0	Pass
			Metho	CO₂ d: EPA 3A onc. 16.7 %		
	2. <u></u>		Bias	Results		
	Standard	Cal.	Bias	Difference	Error	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	8.7	8.6	-0.1	-0.6	Pass

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
	Time	O2 %	CO₂ %		
	09:15	7.0	12.9		
	09:16	6.8	13.3		
	09:17	6.0	13.9		
	09:18	7.2	12.8		
	09:19	8.1	11.8		
	09:20	7.2	12.7		
	09:21	6.4	13.6		
	09:22	7.2	12.8		
	09:23	6.1	13.8		
	09:24	6.9	13.1		
	09:25	9.9	10.1		
	09:26	8.1	11.8		
	09:27	6.7	13.3		
	09:28	7.2	12.8		
	09:29	6.8	13.3		
	09:30	6.9	13.1		
	09:31	7.0	13.0		
	09:32	6.6	13.5		
	09:33	6.9	13.1		
	09:34	6.9	13.1		
	09:35	6.9	13.1		
	09:36	6.7	13.2		
	09:37	7.1	13.0	•	
	09:38	7.2	12.8		
	09:39	6.9	13.2		
	09:40	6.6	13.5		
	09:41	6.3	13.8		
	09:42	6.3	13.8		
	09:43	6.8	13.2		
	09:44	7.0	13.0		
	09:45	6.5	13.6		
	09:46	6.7	13.4		
	09:47	6.9	13.1		
	09:48	6.6	13.4		
	09:49	6.4	13.7		
	09:50	6.3	13.8		
	09:51	6.9	13.1		
	09:52	6.6	13.4		
	09:53	6.3	13.8		
	09:54	6.8	13.2		
	09:55	6.9	13.2		
	09:56	6.9	13.1	$\overline{\mathcal{M}}$	<u>AESTON</u>
		170			

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	Calibration 1			14464.007.004.0001 TB 6 Jul 2016	
-	Time	O2 %	CO2 %			
	09:57	6.2	13.8			
	09:58	6.1	14.0			
	09:59	6.4	13.7			
	10:00	6.6	13.5			
	10:01	7.0	13.1			
	10:02	7.0	13.0			
	10:03	6.5	13.5			
	10:04	5.6	14.3			
	10:05	6.5	13.5			
	10:06	7.4	12.6			
	10:07	7.5	12.4			
	10:08	6.5	13.5			
	10:09	7.1	12.9			
	10:10	7.2	12.8			
	10:11	7.8	12.1			
	10:12	7.6	12.3			
	10:13	7.1	12.9			
	10:14	5.6	14.3			
	10:15	6.2	13.7			
	10:16	7.3	12.7			
	10:17	7.5	12.4			
	10:18	7.3	12.8			
	10:19	8.0	12.1			
	10:20	7.6	12.3			
	10:21	5.7	14.2			
	10:22	7.2	12.8			
	10:23	7.5	12.4			
	10:24	8.1	11.9			
	10:25	7.9	12.0			
	10:26	6.7	13.2			
	10:27	5.8	14.2			
	10:28	7.0	13.0			
	10:29	6.9	13.0			
	10:30	6.5	13.5			
	10:31	7.0	12.9			
	10:32	7.1	13.0			
	10:33	7.1	12.9			
	10:34	7.0	13.2			
	10:35	7.5	12.5	*		
	10:36	7.5	12.6			
	10:37	6.9	13.1			
	10:38	6.0	14.0			
				<u>\</u>	<u>ÆSTON</u>	

007.004.000 016
<u> (</u> N

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	C	alibration	1	Operator:	14464.007.004.000 ⁻ TB 6 Jul 2016
	Time	O2 %	CO2 %		
	11:21	7.3	12.8		
	11:22	7.0	13.2		
	11:23	7.2	12.9		
	11:24	6.7	13.4		
	11:25	6.6	13.4		
	11:26	6.6	13.5		
	11:27	7.0	13.1		
	11:28	6.6	13.5		
	11:29	7.1	13.0		
	11:30	7.7	12.3		
	11:31	7.5	12.5		
	11:32	6.1	13.8		
	11:33	6.2	13.9		
	11:34	7.5	12.5		
	11:35	7.8	12.3		
	11:36	7.8	12.3		
	11:37	6.5	13.4		
	11:38	5.4	14.5		
	11:39	5.2	14.8		
	11:40	7.1	12.9		
	11:41	8.0	12.1		
	11:42	7.8	12.3		
	11:43	7.0	13.0		
	11:44	6.7	13.5		
	11:45	6.8	13.3		
	11:46	6.5	13.6		
	11:47	5.9	14.1		
	11:48	7.3	12.7		
	11:49	7.1	13.0		
	11:50	6.4	13.7		
	11:51	6.2	13.9		
	11:52	7.0	13.1		
	11:53	6.6	13.5		
	11:54	6.2	14.0		
	11:55	6.6	13.5		
	11:56	6.9	13.1		
	11:57	7.0	13.0		
	11:58	7.0	13.1		
	11:59	6.5	13.6		
	12:00	7.0	13.1		
	12:01	6.5	13.6		
	12:02	6.6	13.4	77	
				141	

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	с	alibration	1	Operator:	14464.007.004.0001 TB 6 Jul 2016
	Time	O2 %	CO₂ %		
	12:03	7.1	12.9		
	12:04	7.2	12.9		
	12:05	6.4	13.6		
	12:06	6.9	13.2		
	12:07	6.7	13.4		
	12:08	7.2	12.8		
	12:09	7.0	13.1		
	12:10	7.0	13.1		
	12:11	7.3	12.7		
	12:12	6.9	13.2		
	12:13	7.4	12.7		
	12:14	8.1	11.9		
	12:15	8.0	12.1		
	12:16	7.2	12.9		
	12:17	7.9	12.2		
	12:18	9.5	10.6		
	12:19	10.2	9.9		
	12:20	8.9	11.1		
	12:21	8.8	11.3		
	12:22	9.3	10.7		
	12:23	8.5	11.4		
	12:24	7.1	12.9		
	12:25	7.4	12.7		
	12:26	7.9	12.2		
	12:27	8.2	11.8		
	12:28	7.9	12.3		
	12:29	8.7	11.4		
	12:30	9.0	11.1		
	12:31	8.8	11.3		
	Avgs	7.0	13.0		

RUN SUMMARY

Location:	LWEC L'Anse, Michigan Boiler # 1		Calibration 1	8	Operator:	14464.007.004.0001 TB 6 Jul 2016
		Method Conc. Units	02 EPA 3A %	CO2 EPA 3A %		
		Tim	e: 09:14 to 12	2:31		
		i	Run Averages	5		
			7.0	13.0		
		Pre-	run Bias at 0	8:36		
		Zero Bias	0.0	0.0		
		Span Bias	12.2	8.6		
		Span Gas	11.9	8.9		
		Post	-run Bias at 1	12:35		
		Zero Bias	0.1	0.1		
		Span Bias	12.1	8.6		
		Span Gas	11.9	8.9		
	Averages co	rrected for the	average of th	e pre-run ar	nd post-run	bias
			6.9	13.4		
			No Correction	1		

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Proje	Operator:	14464.007.004.0001 TB 6 Jul 2016							
Method Conc. Units	O2 EPA 3A %	CO₂ EPA 3A %									
Tir	me: 09:35 to 10	:40									
	Run Averages										
	6.8	13.2									
Pre	e-run Bias at 08	3:36									
Zero Bias Span Bias Span Gas	0.0 12.2 11.9	0.0 8.6 8.9									
Pos	st-run Bias at 1	2:35									
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.1 8.6 8.9									
Averages corrected for the	e average of the	e pre-run ar	nd post-run	bias							
	6.7 *No Correction	13.6									

BIAS AND CALIBRATION DRIFT

Location:	LWEC L'Anse, Michig Boiler # 1	an	Calib	pration 1	Open	nber: 14464.007 ator: TB Date: 6 Jul 2016	
			Start Ti	me: 12:35			
				•			
			Methor	O₂ d: EPA 3A			
				onc. 21.3 %			
	Ctow dowd	6-1	Bias Bias	Results Difference	E		
	Standard Gas	Cal. %	Bias %	Difference %	Error %	Status	
	Zero	0.0	0.1	0.1	0.5	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
			0.17				
	Standard	Initial*	Final	ation Drift Difference	Drift		
	Gas	%	~mai %	%	%	Status	
	Zero	0.0	0.1	0.1	0.5	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
_		*Bias No. 1					_
				CO₂ d: EPA 3A			
				onc. 16.7 %			
			opan o	0110. 10.7 78			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.6	Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	
			Calibr	ation Drift			

		Calibra	ation Drift		
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.1	0.1	0.6	Pass
Span	8.6 8.6		0.0	0.0	Pass
	*Bias No. 1				

Client: LWEC ocation: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Project Number: 14464.007.004.000 Operator: TB Date: 6 Jul 2016
	Time	O2 %	CO2 %	
	13:15	6.6	13.4	
	13:16	6.6	13.4	
	13:17	6.5	13.7	
	13:18	7.3	12.7	
	13:19	7.1	13.0	
	13:20	6.0	14.0	
	13:21	6.3	13.7	
	13:22	6.7	13.3	
	13:23	7.5	12.5	
	13:24	7.1	13.0	
	13:25	6.5	13.6	
	13:26	6.1	14.0	
	13:27	6.5	13.5	
	13:28	7.1	13.0	
	13:29	6.6	13.5	
	13:30	6.9	13.2	
	13:31	7.1	13.0	
	13:32	7.3	12.8	
	13:32	6.7	13.3	
	13:34	6.5	13.6	
	13:35	6.7	13.4	
	13:36	6.9	13.4	
	13:30	6.6	13.5	
	13:38	6.7		
	13:39	6.6	13.3 13.4	
	13:40	6.9	13.4	
	13:40	6.7	13.3	· · · · · · · · · · · · · · · · · · ·
	13:41	6.9	13.3	
	13:42			
	13:43	6.8 6.8	13.2 13.3	
	13:44	6.9	13.2	
	13:45			
		6.5	13.6	
	13:47	6.4	13.8	
	13:48	6.8	13.3	
	13:49	7.8	12.2	
	13:50	7.1	12.9	
	13:51	6.9	13.2	
	13:52	6.3	13.8	
	13:53	7.3	12.7	
	13:54	6.7	13.3	
	13:55	7.0	13.1	
	13:56	6.8	13.3	

Number 2

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ci	alibration	1	Operator:	14464.007.004.000 ⁴ TB 6 Jul 2016
	Time	O2 %	CO2 %		
F	13:57	7.3	12.8		
	13:58	7.0	13.1		
	13:59	6.7	13.5		
	14:00	6.4	13.7		
	14:01	6.8	13.2		
	14:02	6.2	13.8		
	14:03	6.9	13.1		
	14:04	7.3	12.8		
	14:05	7.2	12.8		
	14:06	6.6	13.4		
	14:07	6.6	13.5		
	14:08	7.1	13.1		
	14:09	6.6	13.3		
	14:10	6.3	13.8		
	14:11	6.6	13.4		
	14:12	7.5	12.4		
	14:13	8.0	11.9		
	14:14	7.6	12.4		
	14:15	6.5	13.4		
	14:16	6.9	13.1		
	14:17	7.2	12.9		
	14:18	7.3	12.8		
	14:19	6.9	13.2		
	14:20	7.1	13.0		
	14:21	7.4	12.7		
	14:22	7.4	12.7		
	14:23	5.6	14.4		
	14:24	5.6	14.4		
	14:25	8.0	12.0		
	14:26	7.8	12.2		
	14:27	6.7	13.3		
	14:28	5.9	14.0		
	14:29	6.2	13.8		
	14:30	6.8	13.1		
	14:31	7.0	13.1		
	14:32	6.5	13.6		
	14:33	6.7	13.3		
	14:34	6.6	13.6		
	14:35	6.4	13.6		
	14:36	5.8	14.4		
	14:37	6.5	13.6		
	14:38	7.1	13.0	$\overline{\mathcal{M}}$	<u>ÆSTON</u>
		170			

179

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	C	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
	Time	O₂ %	CO₂ %		
	14:39	6.9	13.3		
	14:40	6.3	13.8		
	14:41	6.7	13.3		
	14:42	6.4	13.8		
	14:43	6.3	13.8		
	14:44	6.2	13.9		
	14:45	6.6	13.5		
	14:46	6.6	13.5		
	14:47	6.5	13.5		
	14:48	5.4	14.5		
	14:49	6.9	13.1		
	14:50	7.8	12.3		
	14:51	7.0	12.9		
	14:52	5.4	14.6		
	14:53	5.8	14.3		
	14:54	6.4	14.5		
	14:55				
		6.7	13.5		
	14:56	6.9	13.2		
	14:57	6.2	13.7		
	14:58	6.6	13.5		
	14:59	6.0	14.1		
	15:00	6.4	13.7		
	15:01	6.5	13.6		
	15:02	6.8	13.2		
	15:03	6.1	14.1		
	15:04	6.7	13.2		
	15:05	7.1	13.0		
	15:06	7.5	12.5		
	15:07	6.5	13.5		
	15:08	5.1	14.8		
	15:09	6.2	13.8		
	15:10	7.8	12.2		
	15:11	7.4	12.6		
	15:12	5.8	14.2		
	15:13	6.1	14.0		
	15:14	6.4	13.6		
	15:15	6.4	13.6		
	15:16	6.7	13.3		
	15:17	7.4	12.7		
	15:18	6.1	13.9		
	15:19	6.2	13.8		
	15:20	6.7	13.4	50	
				\v_\	

Number 2

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	Calibration 1		Operator:	14464.007.004.0001 TB 6 Jul 2016
	Time	O2 %	CO₂ %		
	15:21 Avgs	7.2 6.7	12.8 13.3		

.

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	-	Operator:	14464.007.004.0001 TB 6 Jul 2016						
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %								
Time: 13:14 to 15:21										
	Run Averages									
	6.7	13.3								
Pre	e-run Bias at 12	:35								
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.1 8.6 8.9								
	t-run Bias at 18	5:23								
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9								
Averages corrected for the	average of the	pre-run a	nd post-run	bias						
	6.6 *No Correction	13.8								

BIAS AND CALIBRATION DRIFT

Number 3

Location:	LWEC L'Anse, Michigan Boiler # 1		Start Ti Methoo	me: 15:23 O ₂ d: EPA 3A onc. 21.3 %	Project Num Oper E	7.004.0001	
			_	Results			
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias % 0.1 12.1	Difference % 0.1 -0.1	Error % 0.5 -0.5	Status Pass Pass	
			Calibra	ation Drift			
	Standard Gas	Initial* %	Final %	Difference %	Drift %	Status	
	Zero Span	0.1 12.1 *Bias No. 2	0.1 12.1	0.0 0.0	0.0 0.0	Pass Pass	
=			Metho	CO₂ d: EPA 3A onc. 16.7 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	
				ation Drift			
	Standard Gas Zero Span	Initial* % 0.1 8.6 *Bias No. 2	Final % 0.0 8.6	Difference % -0.1 0.0	Drift % -0.6 0.0	Status Pass Pass	

Number 3

Client: LWEC ocation: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
	Time	O2 %	CO₂ %		
- · · · · · · · · · · · · · · · · · · ·	15:53	6.6	13.4		
	15:54	7.4	12.6		
	15:55	8.4	11.5		
	15:56	7.8	12.2		
	15:57	6.4	13.5		
	15:58	6.7	13.3		
	15:59	6.3	13.5		
	16:00	6.0	13.9		
	16:01	8.8	11.2		
	16:02	8.8	11.2		
	16:03	7.9	12.1		
	16:04	6.6	13.3		
	16:05	6.8	13.1		
	16:06	6.3	13.7		
	16:07	7.8	12.1		
	16:08	7.5	12.5		
	16:09	7.7	12.3		
	16:10	7.4	12.6		
	16:11	7.2	12.8		
	16:12	8.8	11.2		
	16:13	5.5	14.4		
	16:14	6.6	13.3		
	16:15	8.1	11.8		
	16:16	6.5	13.4		
	16:17	6.6	13.4		
	16:18	7.8	12.2		
	16:19	7.5	12.5		
	16:20	7.2	12.8		
	16:21	7.2	12.7		
	16:22	7.9	12.0		
	16:23	8.2	11.9		
	16:24	8.2	11.9		
	16:25	7.9	12.1		
	16:26	7.5	12.4		
	16:27	6.7	13.3		
	16:28	7.7	12.2		
	16:29	8.0	12.0		
	16:30	8.1	12.0		
	16:31	9.5	10.7		
	16:32	7.2	12.7		
	16:33	5.7	14.2		
	16:34	5.0	14.9		
				V_V	1.ESTON
		104			

184

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	c	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
	Time	O2 %	CO2 %		
	16:35	8.0	12.0		
	16:36	10.5	9.6		
	16:37	7.8	12.2		
	16:38	6.5	13.5		
	16:39	7.3	12.8		
	16:40	8.0	12.0		
	16:41	8.8	11.2		
	16:42	7.4	12.6		
	16:43	6.8	13.2		
	16:44	6.5	13.5		
	16:45	7.8	12.1		
	16:46	8.1	11.9		
	16:47	7.2	12.6		
	16:48	7.0	13.1		
	16:49	7.9	12.1		
	16:50	8.0	12.0		
	16:51	7.1	12.8		
	16:52	7.4	12.6		
	16:53	7.6	12.6		
	16:54	7.1	13.0		
	16:55	7.5	12.6		
	16:56	7.5	12.5		
	16:57	5.4	14.5		
	16:58	6.9	13.1		
	16:59	8.9	11.1		
	17:00	8.6	11.4		
	17:01	7.0	12.9		
	17:02	6.9	13.2		
	17:02	7.7	12.3		
	17:04	8.5	11.6		
	17:05	8.2	11.9		
	17:06	7.1	12.9		
	17:07	6.6	13.5		
	17:08	8.0			
	17:09	8.8	12.1 11.3		
	17:10 17:11	6.9 5.6	13.1 14.4		
	17:12	6.5	13.6		
	17:13	8.0	12.0		
	17:14	8.3	11.7		
	17:15	8.1	12.1		
	17:16	7.1	12.9	TV1	NEWICKEN N

Number 3

Location:	LWEC L'Anse, Michigan Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
		Time	O2 %	CO2 %		
		17:17	6.8	13.3		
		17:18	6.8	13.4		
		17:19	7.6	12.5		
		17:20	7.1	13.1		
		17:21	6.7	13.5		
		17:22	6.3	13.8		
		17:23	7.3	12.7		
		17:24	8.0	12.1		
		17:25	7.5	12.5		
		17:26	6.7	13.4		
		17:27	6.4	13.7		
		17:28	6.0	14.1		
		17:29	7.7	12.3		
		17:30	7.8	12.3		
		17:31	7.7	12.2		
		17:32	6.1	13.9		
		17:33	6.3	13.8		
		17:34	7.3	12.8		
		17:35	6.9	13.1		
		17:36	6.5	13.6		
		17:37	6.6	13.4		
		17:38	7.1	13.4		
		17:38	7.3			
		17:40	7.3	12.7 12.9		
		17:41	6.4	13.6		
		17:42	6.3	13.8		
		17:43 17:44	6.1	13.9		
			7.0	13.1		
		17:45	6.7	13.3		
		17:46	7.1	13.0		
		17:47	7.1	13.0		
		17:48	7.3	12.8		
		17:49	6.0	14.0		
		17:50	6.7	13.4		
		17:51	7.2	12.8		
		17:52	7.3	12.8		
		17:53	6.5	13.6		
		17:54	6.1	14.0		
		17:55	5.8	14.3		
		17:56	6.4	13.6		
		17:57	8.0	12.0		
		17:58	7.9	12.0		KENTREN
					14	

186

WEU)

Number 3

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.000 TB 6 Jul 2016
	Time	O2 %	CO₂ %		
	17:59	6.8	13.2		
	18:00	6.7	13.4		
	18:01	6.7	13.3		
	18:02	6.6	13.4		
	18:03	6.8	13.3		
	18:04	7.2	12.9		
	18:05	7.3	12.8		
	18:06	6.8	13.2		
	18:07	7.0	13.1		
	18:08	7.3	12.7		
	18:09	7.5	12.5		
	18:10	6.9	13.1		
	18:11	6.8	13.3		
	18:12	6.8	13.3		
	18:13	6.8	13.3		
	18:14	7.0	13.0		
	18:15	7.1	13.0		
	18:16	6.9	13.2		
	18:17	6.8	13.2		
	18:18	7.2	12.8		
	18:19	7.4	12.7		
	18:20	7.2	13.0		
	18:21	7.3	12.7		
	18:22	7.6	12.5		
	18:23	7.0	13.0		
	18:24	6.2	13.9		
	18:25	6.0	13.9		
	18:26	8.2	11.7		
	18:27	7.9	12.0		
	18:28	7.6	12.4		
	18:29	6.4	13.5		
	18:30	6.8	13.2		
	18:31	7.4	12.6		
	18:32	7.8	12.2		
	18:33	6.9	13.2		
	18:34	7.5	12.5		
	18:35	7.0	13.1		
	18:36	6.8	13.2		
	18:37	7.3	12.8		
	18:38	7.8	12.2		
	18:39	7.1	12.9		
	18:40	6.9	13.2	77	
				ĽΛ'	1.ESTON
		107			

	LWEC L'Anse, Michigan				Project Number: 14464.007.004.0001 Operator: TB
Source:	Boiler # 1	Ca	alibration	1	Date: 6 Jul 2016
		Time	O2 %	CO2 %	
		18:41	7.0	13.1	
		18:42	7.5	12.6	
		18:43	7.6	12.6	
		18:44	7.1	12.9	
		18:45	6.8	13.3	
		18:46	7.3	12.8	
		18:47	8.2	11.8	
		18:48	7.6	12.4	
		18:49	7.5	12.6	
		18:50	7.4	12.7	
		18:51	7.6	12.4	
		18:52	7.8	12.3	
		18:53	8.0	12.1	
		18:54	7.1	13.0	
		18:55	7.4	12.6	
		18:56	7.1	13.0	
		18:57	6.9	13.1	
		18:58	6.1	13.8	
		18:59	6.9	13.0	
		19:00	7.6	12.4	
		19:01	7.4	12.7	
		19:02	6.9	13.1	
		19:03	7.3	12.7	
		19:04	7.4	12.7	
		19:05	6.5	13.5	
		19:06	6.7	13.4	
		19:07	6.8	13.2	
		Avgs	7.2	12.8	

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Projec	Operator:	14464.007.004.0001 TB 6 Jul 2016
Method Conc. Unit	O2 EPA 3A ts %	CO₂ EPA 3A %		
٦	Time: 15:52 to 19	:07		
	Run Averages			
	7.2	12.8		
P	Pre-run Bias at 15	5:23		
Zero Bias Span Bias Span Gas	12.1	0.0 8.6 8.9		
P	ost-run Bias at 1	9:09		
Zero Bias Span Bias Span Gas	12.1	0.0 8.6 8.9		
Averages corrected for t	he average of the	e pre-run and	d post-run	bias
	7.1 *No Correction	13.2		

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Proje	Operator:	14464.007.004.0001 TB 6 Jul 2016
Method Conc. Units	0₂ EPA 3A %	CO₂ EPA 3A %		
Tin	ne: 16:21 to 17:	26		
	Run Averages			
	7.5	12.6		
Pre	-run Bias at 15	:23		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9		
Pos	t-run Bias at 19	9:09		
Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9		
Averages corrected for the	average of the	pre-run ar	nd post-run	bias
	7.4 *No Correction	13.0		

BIAS AND CALIBRATION DRIFT

Number 4

Location:	LWEC L'Anse, Michi Boiler # 1	gan	Calib	ration 1	Oper	ber: 14464.007. ator: TB Date: 6 Jul 2016	004.000 ⁻
			Start Ti	me: 19:09		/=	
				O2 d: EPA 3A onc. 21.3 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias % 0.0 12.1	Difference % 0.0 -0.1	Error % 0.0 -0.5	Status Pass Pass	
			Calibr	ation Drift	6		
	Standard Gas	Initial* %	Final %	Difference %	Drift %	Status	
	Zero	0.1	0.0	-0.1	-0.5	Pass	
-	Span	12.1 *Bias No. 3	12.1	0.0	0.0	Pass	=
			Method	CO₂ J: EPA 3A onc. 16.7 %			
			Bias	Results			
	Standard Gas	Cal. %	Bias %	Difference %	Error %	Status	
	Zero Span	0.0 8.7	0.0 8.6	0.0 -0.1	0.0 -0.6	Pass Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero Span	0.0 8.6 *Bias No. 3	0.0 8.6	0.0 0.0	0.0 0.0	Pass Pass	

=

METHODS AND ANALYZERS

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016

File: C:\DATA\LWEC\2016\7-7-16 test day 2.cem Program Version: 2.0, built 4 Dec 2014 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias

Method
Analyzer Make, Model & Serial No.
Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %

CO2 EPA 3A, Using Bias Servomex 4900 10000 20.0 16.7

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016

Start Time: 07:58

~	
	2
-	2

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibration	n Standards	
%	Cylinder ID	
11.9	XC016048B	
21.3	SG9168232	
Calibratio	on Results	
Zero	10 mv	
Span, 21.3 %	8124 mv	
Curve Co	pefficients	
Slope	Intercept	
380.9	10	

Method:	O₂ EPA 3A ar Zero and High Spar	1
Calibration	Standards	
%	Cylinder ID	
8.9	XC016048	
16.7	SG9168232	
Calibratio	on Results	
Zero	11 mv	
Span, 16.7 %	8369 mv	
Curve Co	pefficients	
Slope	Intercept	
499.3	11	

CALIBRATION ERROR DATA

Number 1

Location:	LWEC L'Anse, Michigan Boiler # 1		Calibration 1	Opera	ber: 14464.007.004.000 ator: TB Date: 7 Jul 2016
			Start Time: 07:5	8	
		Slope	O₂ Method: EPA 34 Span Conc. 21.3 380.9 In		-
-	Standard	Result	Difference	Error	
	%	%	%	%	Status
	Zero	0.0	0.0	0.0	Pass
	12.0	12.2	0.2	0.9	Pass
=	21.3	21.3	0.0	0.0	Pass
		Slope	CO ₂ Method: EPA 34 Span Conc. 16.7 499.3 In		
-		0.000			
	Standard %	Result %	Difference %	Error %	Status
	Zero	0.0	0.0	0.0	Pass
	8.9	8.7	-0.2	-1.2	Pass
	16.7	16.7	0.0	0.0	Pass

.

BIAS

Number 1

,

Client: LWEC ocation: L'Anse, Michigan Source: Boiler # 1			Calib	ration 1	Open	ator: 14464.007.00 ator: TB ate: 7 Jul 2016		
			Start Ti	me: 08:08				
			Method	O₂ 1: EPA 3A onc. 21.3 %				
				Results				
	Standard Cal. Gas %		Bias %	Difference %	Error %	Status		
	Zero	0.0	0.1	0.1	0.5	Pass		
_	Span	12.2	12.1	-0.1	-0.5	Pass		
			Method	CO₂ 1: EPA 3A onc. 16.7 %				
			Bias	Results				
	Standard	Cal.	Bias	Difference	Error			
	Gas	%	% %		%	Status		
	Zero	0.0	0.0 8.6	0.0 -0.1	0.0 -0.6		ass ass	

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Project Number: 14464.007.004.00 Operator: TB Date: 7 Jul 2016
	Time	O2 %	CO₂ %	
	08:41	7.8	12.3	
	08:42	7.8	12.4	
	08:43	7.7	12.4	
	08:44	7.7	12.4	
	08:45	6.7	13.3	
	08:46	6.6	13.5	
	08:47	7.2	12.8	
	08:48	7.3	12.7	
	08:49	7.3	12.8	
	08:50	7.1	13.1	
	08:51	6.9	13.3	
	08:52	7.4	12.7	
	08:53	7.4	12.7	
	08:54	7.0	13.1	
	08:55		13.3	
	08:55	6.9	12.4	
		7.7		
	08:57	7.5	12.5	
	08:58	7.1	13.1	
	08:59	5.7	14.2	
	09:00	6.2	13.9	
	09:01	7.8	12.2	
	09:02	8.5	11.6	
	09:03	7.2	12.8	
	09:04	6.4	13.8	
	09:05	6.5	13.6	
	09:06	7.2	12.9	
	09:07	7.8	12.2	
	09:08	7.7	12.4	
	09:09	7.1	12.9	
	09:10	7.0	13.1	
	09:11	6.5	13.6	
	09:12	6.5	13.7	
	09:13	7.1	13.0	
	09:14	7.7	12.3	
	09:15	8.2	12.0	
	09:16	7.7	12.3	
	09:17	7.2	12.8	
	09:18	7.6	12.5	
	09:19	8.1	12.0	
	09:20	7.6	12.5	
	09:21	7.2	12.9	
	09:22	7.9	12.1	
		196		SOLUTIONS

196

Number 1

Client: LWEC .ocation: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.000 TB 7 Jul 2016
	Time	O2 %	CO2 %		
	09:23	7.3	12.8		
	09:24	7.2	13.0		
	09:25	7.1	13.0		
	09:26	8.0	12.0		
	09:27	8.5	11.6		
	09:28	7.7	12.2		
	09:29	6.8	13.3		
	09:30	6.9	13.2		
	09:31	7.7	12.3		
	09:32	7.5	12.6		
	09:33	6.7	13.4		
	09:34	7.4	12.7		
	09:35	7.7	12.2		
	09:36	6.9	13.2		
	09:37	7.1	13.0		
	09:38	7.5	12.6		
	09:39	7.5	12.6		
	09:40				
		7.5	12.7		
	09:41	7.0	13.1		
	09:42	7.4	12.8		
	09:43	7.7	12.4		
	09:44	7.4	12.6		
	09:45	6.9	13.2		
	09:46	6.8	13.3		
	09:47	7.0	13.0		
	09:48	7.2	13.0		
	09:49	7.2	12.9		
	09:50	7.7	12.4		
	09:51	8.1	11.9		
	09:52	8.1	12.1		
	09:53	7.2	12.8		
	09:54	6.7	13.3		
	09:55	8.0	12.0		
	09:56	8.9	11.1		
	09:57	8.8	11.3		
	09:58	7.5	12.5		
	09:59	7.1	13.1		
	10:00	7.6	12.5		
	10:01	7.8	12.3		
	10:02	8.3	11.7		
	10:03	7.1	12.9		
	10:04	6.7	13.4		

WE

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	er: 14464.007.004.0001 or: TB e: 7 Jul 2016	
	Time	O2 %	CO₂ %			
	10:05	7.6	12.4			
	10:06	8.4	11.7			
	10:07	7.6	12.5			
	10:08	6.5	13.6			
	10:09	7.3	12.8			
	10:10	7.1	13.1			
	10:11	7.3	12.7			
	10:12	7.0	13.2			
	10:13	7.7	12.5			
	10:14	7.7	12.4			
	10:15	6.4	13.6			
	10:16	6.9	13.2			
	10:17	7.2	12.8			
	10:18	6.7	13.4			
	10:19	6.4	13.7			
	10:20	7.8	12.3			
	10:21	7.5	12.5			
	10:22	6.8	13.3			
	10:23	6.3	13.9			
	10:24	7.2	12.8			
	10:25	7.5	12.5			
	10:26	7.0	13.2			
	10:27	6.4	13.7			
	10:28	7.1	12.9			
	10:29	7.0	13.1			
	10:30	6.4	13.6			
	10:31	6.6	13.4			
	10:32	7.2	12.8			
	10:33	6.3	13.7			
	10:34	6.1	14.1			
	10:35	6.4	13.7			
	10:36	7.1	12.9			
	10:37	7.1	13.0			
	10:38	6.5	13.6			
	10:39	5.9	14.2			
	10:40	6.5	13.6			
	10:41	7.2	12.9			
	10:42	6.8	13.3			
	10:43	7.2	13.0			
	10:44	6.3	13.7			
	10:45	6.1	14.0			
	10:46	6.9	13.2	\mathbb{W}	ESTON	

Number 1

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1			Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016
	Time	O2 %	CO₂ %	
	10:47	7.5	12.6	
	10:48	6.7	13.3	
	10:49	6.8	13.3	
	10:50	6.2	13.9	
	10:51	7.3	12.7	
	10:52	7.6	12.5	
	10:53	7.4	12.4	
	10:54	7.4	12.7	
	10:55	6.9	13.0	
	Avgs	7.2	12.9	

٠

.

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Proj	Operator:	14464.007.004.0001 TB 7 Jul 2016
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %	-	
Ti	ime: 08:40 to 10	:55		
	Run Averages			
	7.2	12.9		
Pr	re-run Bias at 08	3:08		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9		
Po	st-run Bias at 1	0:57		
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9		
Averages corrected for th	e average of the	e pre-run a	ind post-run	bias
	7.1 *No Correction	13.3		

BIAS AND CALIBRATION DRIFT

Number 2

Location:	: LWEC : L'Anse, Michigan : Boiler # 1		Calib	ration 1	Project Number: 14464.0 Operator: TB Date: 7 Jul 20		
			Start Ti	me: 10:57			
				O₂ d: EPA 3A onc. 21.3 %			
	Standard	Cal.	Bias	Results Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0 12.2	0.1 12.1	0.1 -0.1	0.5 -0.5	Pass Pass	
	Span	12.2	12.1	-0.1	-0.5	Fass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.1	0.1	0.0	0.0	Pass	
=	Span	12.1 *Bias No. 1	12.1	0.0	0.0	Pass	
			Method	CO₂ d: EPA 3A onc. 16.7 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	0	0.0		~ ~	0.0	Deee	

Pass

0.0

0.0

8.6

*Bias No. 1

Span

8.6

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	C	Calibration 1			ber: 14464.007.004.000 ator: TB ate: 7 Jul 2016	
	Time	O2 %	CO₂ %			
	11.01		12.4			
	11:01 11:02	7.7 6.5	13.5			
	11:02	5.8	14.1			
	11:04	7.5	12.4			
	11:05	8.3	11.7			
	11:06	8.0	12.0			
	11:07	7.1	12.9			
	11:08	7.7	12.2			
	11:09	5.7	14.3			
	11:10	6.7	13.2			
	11:10	8.1	11.9			
	11:12	8.7	11.4			
	11:13	8.1	12.1			
	11:14	7.0	13.0			
	11:15	7.7	12.3			
	11:16	7.7	12.4			
	11:17	8.5	11.7			
	11:18	9.0	11.1			
	11:19	6.8	13.1			
	11:20	6.1	13.9			
	11:21	6.9	13.1			
	11:22	7.3	12.8			
	11:23	9.0	11.1			
	11:24	8.3	11.7			
	11:25	6.6	13.4			
	11:26	6.7	13.3			
	11:27	8.9	11.2			
	11:28	9.5	10.7			
	11:29	7.7	12.3			
	11:30	7.3	12.9			
	11:31	7.7	12.4			
	11:32	8.5	11.5			
	11:33	8.0	12.1			
	11:34	7.7	12.3			
	11:35	7.2	12.9			
	11:36	6.5	13.5			
	11:37	6.8	13.2			
	11:38	6.5	13.5			
	11:39	6.0	14.0			
	11:40	7.3	12.8			
	11:41	8.0	12.0			
	11:42	8.5	11.7	M M	Æ STON	
		202			SOLUTIONS	

Client: LWEC ocation: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.0001 TB 7 Jul 2016
	Time	O2	CO ₂		
		%	%		
	11:43	8.5	11.6		
	11:44	7.2	13.0		
	11:45	6.7	13.4		
	11:46	6.8	13.4		
	11:47	7.7	12.4		
	11:48	7.3	12.8		
	11:49	6.9	13.4		
	11:50	7.1	13.1		
	11:51	7.0	13.1		
	11:52	6.3	13.9		
	11:53	6.9	13.2		
	11:54	7.7	12.4		
	11:55	8.3	11.8		
	11:56	7.5	12.6		
	11:57	7.1	13.1		
	11:58	7.5	12.5		
	11:59	7.7	12.3		
	12:00	6.4	13.6		
	12:01	6.6	13.5		
	12:02	7.4	12.8		
	12:03	7.9	12.1		
	12:04	7.3	12.9		
	12:05	7.2	13.0		
	12:06	7.2	12.9		
	12:07	7.5	12.7		
	12:08	8.0	12.1		
	12:09	8.3	11.9		
	12:10	8.6	11.5		
	12:11	6.5	13.5		
	12:12	5.7	14.4		
	12:13	6.4	13.6		
	12:14	7.7	12.3		
	12:15	7.5	12.7		
	12:16	6.9	13.1		
	12:17	7.3	12.8		
	12:18	7.9	12.2		
	12:19	7.6	12.5		
	12:20	7.4	12.8		
	12:21	6.8	13.3		
	12:22	7.0	13.2.		
	12:23	7.2	12.9		
	12:24	7.8	12.3	70	1.ESTON

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ci	alibration	1	Operator:	r: 14464.007.004.0001 r: TB e: 7 Jul 2016	
	Time	O2	CO₂			
		%	%			
	12:25	7.6	12.6			
	12:26	6.4	13.6			
	12:27	6.1	14.0			
	12:28	7.3	12.8			
	12:29	8.4	11.7			
	12:30	8.2	11.9			
	12:31	7.2	12.9			
	12:32	7.0	13.1			
	12:33	7.6	12.5			
	12:34	7.1	13.0			
	12:35	7.7	12.4			
	12:36	7.2	13.0			
	12:37	7.8	12.3			
	12:38	7.6	12.5			
	12:39	7.0	13.1			
	12:40	7.5	12.6			
	12:41	7.3	12.8			
	12:42	7.2	13.0			
	12:43	7.3	12.8			
	12:44	7.9	12.2			
	12:45	8.2	11.9			
	12:46	7.5	12.6			
	12:47	6.4	13.6			
	12:48	6.8	13.3			
	12:49	7.7	12.4			
	12:50	8.2	11.8			
	12:51	7.2	12.9			
	12:52	7.8	12.4			
	12:53	7.1	13.0			
	12:54	7.3	12.9			
	12:55	7.1	13.1			
	12:56	7.3	13.0			
	12:57	7.0	13.2			
	12:58	7.6	12.5			
	12:59	7.7	12.5			
	13:00	7.3	12.8			
	13:01	6.9	13.3			
	13:02	7.2	12.9			
	13:03	6.7	13.4			
	13:04	7.7	12.4			
	13:05	7.6	12.6			
	13:06	7.2	13.1	\sim	<u>ÆST®N</u>	
		204		<u> </u>		

Number 2

Client: L Location: L Source: E	.'Anse, Michigan	Ca	alibration	1	Operator:	14464.007.004.0001 TB 7 Jul 2016
		Time	O ₂	CO₂		
			%	%		
		13:07	7.2	13.0		
		13:08	7.0	13.2		
		13:09	6.9	13.3		
		13:10	7.4	12.7		
		13:11	7.7	12.3		
		13:12	7.0	13.2		
		13:13	7.4	12.8		
		13:14	7.3	12.9		
		13:15	7.0	13.2		
		13:16	6.7	13.5		
		13:17	7.6	12.5		
		13:18	7.7	12.5		
		13:19	7.6	12.6		
		13:20	7.6	12.5		
		13:21	7.1	12.9		
		13:22	6.8	13.3		
		13:22	7.4	12.7		
		13:24	7.7	12.4		
		13:25	8.3	11.7		
		13:26	7.8	12.3		
		13:27	7.5	12.7 12.8		
		13:28	7.4			
		13:29	8.0	12.1		
		13:30	8.6	11.6		
		13:31	7.9	12.2		
		13:32	7.7	12.4		
		13:33	7.2	13.0		
		13:34	7.5	12.7		
		13:35	8.3	11.8		
		13:36	8.2	11.9		
		13:37	7.4	12.8		
		13:38	7.8	12.3		
		13:39	7.8	12.4		
		13:40	7.7	12.5		
		13:41	7.6	12.7		
		13:42	7.4	12.8		
		13:43	8.1	12.1		
		13:44	7.1	12.9		
		13:45	7.2	13.0		
		13:46	8.3	11.7		
	•	13:47	8.4	11.8		
		13:48	7.8	12.4	\sim	<u>AESTON</u>
					50	

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	14464.007.004.0001 TB 7 Jul 2016
	Time	O ₂	CO ₂		
		%	%		
	13:49	7.7	12.5		
	13:50	7.3	12.9		
	13:51	7.7	12.5		
	13:52	8.0	12.2		
	13:53	8.0	12.2		
	13:54	7.9	12.4		
	13:55	7.5	12.6		
	13:56	7.0	13.2		
	13:57	7.1	13.1		
	13:58	7.7	12.4		
	13:59	8.3	11.9		
	14:00	8.1	12.1		
	14:01	7.5	12.8		
	14:02	7.4	12.9		
	14:03	6.7	13.5		
	14:04	7.8	12.3		
	14:05	8.3	11.8		
	14:06	8.0	12.3		
	14:07	7.6	12.7		
	14:08	7.2	13.0		
	14:09	7.8	12.4		
	14:10	7.3	12.9		
	14:11	7.4	12.8		
	14:12	8.1	12.1		
	14:13	7.8	12.5		
	14:14	8.0	12.3		
	14:15	7.3	12.9		
	14:16	7.3	13.0		
	14:17	7.5	12.7		
	14:18	7.5	12.8		
	14:19	7.8	12.3		
	14:20	7.4	12.7		
	14:21	7.1	13.1		
	14:22	7.9	12.3		
	14:23	7.8	12.5		
	14:24	6.9	13.3		
	14:25	7.3	12.9		
	14:26	7.5	12.7		
	14:27	7.4	12.8		
	14:28	7.6	12.6		
	14:29	7.2	13.1		
	14:30	7.3	13.0	\sim	<u>ÆST®N</u>
		•••		20	

Number 2

Location:	LWEC L'Anse, Michigan Boiler # 1	Calibration 1			Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016		
		Time	O2 %	CO2 %			
		14:31	7.2	12.9			
		14:32	6.4	13.7			
		14:33	7.9	12.3			
		14:34	7.8	12.3			
		14:35	6.9	13.3			
		14:36	6.9	13.4			
		14:37	7.3	12.8			
		14:38	7.6	12.6			
		14:39	7.8	12.5			
		14:40	6.7	13.4			
		14:41	6.3	14.0			
		14:42	7.0	13.2			
		14:43	7.5	12.7			
		14:44	7.5	12.7			
		14:45	7.2	13.0			
		14:46	7.6	12.5			
		14:47	7.0	13.0			
		14:48	7.0	13.1			
		14:49	6.7	13.4			
		14:50	7.1	13.1			
		Avgs	7.4	12.7	, ,		

.

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1		Calibration 1	Proj	Operator:	14464.007.004.0001 TB 7 Jul 2016			
	Method Conc. Units	02 EPA 3A %	CO₂ EPA 3A %					
	Tin	ne: 11:00 to 12	:51					
Run Averages								
		7.4	12.7					
Pre-run Bias at 10:57								
	Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9					
Post-run Bias at 14:53								
	Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9					
Averages corrected for the average of the pre-run and post-run bias								
		7.3 *No Correction	13.1					

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Proje	Operator:	14464.007.004.0001 TB 7 Jul 2016					
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %							
Ті	me: 11:35 to 14	:50							
Run Averages									
	7.4	12.7							
Pr	Pre-run Bias at 10:57								
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9							
Po	st-run Bias at 1	4:53							
Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9							
Averages corrected for the	e average of the	e pre-run ar	nd post-run	bias					
	7.3 *No Correction	13.2							

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1		Operator:	14464.007.004.0001 TB 7 Jul 2016					
Method Conc. L		CO₂ EPA 3A %							
	Time: 13:34 to 14	1:39							
Run Averages									
	7.6	12.6							
Pre-run Bias at 10:57									
Zero Bi Span B Span G	ias 12.1	0.0 8.6 8.9							
	Post-run Bias at 1	4:53							
Zero Bi Span B Span G	ias 12.1	0.0 8.6 8.9							
Averages corrected for	or the average of th	e pre-run and	post-run	bias					
	7.5 *No Correction	13.0							

BIAS AND CALIBRATION DRIFT

Number 3

Location:	LWEC L'Anse, Michi Boiler # 1	gan	Calibration 1 Start Time: 14:53		Open	aber: 14464.007 ator: TB Date: 7 Jul 2010	
				O₂ d: EPA 3A onc. 21.3 %			
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias Bias % 0.0 12.1	Results Difference % 0.0 -0.1	Error % 0.0 -0.5	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.1 12.1 *Bias No. 2	Calibra Final % 0.0 12.1	ation Drift Difference % -0.1 0.0	Drift % -0.5 0.0	Status Pass Pass	
	CO2 Method: EPA 3A Span Conc. 16.7 %						
		0.1		Results	-		
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	
	Standard Gas	Initial* %	Final %	ation Drift Difference %	Drift %	Status	
	Zero Span	0.0 8.6 *Bias No. 2	0.0 8.6	0.0 0.0	0.0 0.0	Pass Pass	

=

Location:	LWEC L'Anse, Michigan Boiler # 1	C	alibration	1	Operator:	14464.007.004.000 TB 7 Jul 2016
		Time	O2 %	CO₂ %		
		15:14	6.6	13.6		
		15:15	6.6	13.6		
		15:16	7.5	12.6		
		15:17	7.4	12.8		
		15:18	6.7	13.4		
		15:19	6.4	13.7		
		15:20	7.2	12.9		
		15:21	7.2	13.0		
		15:22	6.9	13.2		
		15:23	6.6	13.5		
		15:24	7.3	12.8		
		15:25	7.6	12.5		
		15:26	7.6	12.7		
		15:27	7.2	13.0		
		15:28	6.9	13.3		
		15:29	7.1	13.1		
		15:30	7.1	13.1		
		15:31	7.3	12.8		
		15:32	7.1	13.2		
		15:33	7.2	13.0		
		15:34	7.2	12.9		
		15:35	7.4	12.7		
		15:36	6.9	13.3		
		15:37	7.0	13.1		
		15:38	7.4	12.7		
		15:39	7.6	12.6		
		15:40	7.1	13.1		
		15:41	6.4	13.7		
		15:42	7.1	13.1		
		15:43	7.7	12.4		
		15:44	7.2	13.0		
		15:45	6.1	13.9		
		15:46	6.6	13.6		
		15:47	7.8	12.2		
		15:48	8.2	11.9		
		15:49	7.1	13.0		
		15:50	6.9	13.4		
		15:51	7.1	13.0		
		15:52	7.9	12.1		
		15:53	7.4	12.8		
		15:54	7.2	12.9		
		15:55	7.0	13.2	\sim	<u>LESTON</u>
			010		<u>v</u>	

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Project Number: 14464.007.004.000 1 Operator: TB Date: 7 Jul 2016
	Time	O2 %	CO2 %	
	15:56	7.0	13.2	
	15:57	7.7	12.4	
	15:58	7.6	12.6	
	15:59	7.4	12.8	
	16:00	7.4	12.8	
	16:01	8.2	11.9	
	16:02	8.0	12.1	
	16:03	7.3	12.8	
	16:04	7.7	12.4	
	16:05	6.7	13.3	
	16:06	7.0	13.1	
	16:07	8.2	11.9	
	16:08	8.7	11.5	
	16:09	8.0	12.2	
	16:10	8.0	12.2	
	16:11	7.7	12.5	
	16:12	7.6	12.6	
	16:13	7.8	12.3	
	16:14	7.7	12.4	
	16:15	8.0	12.1	
	16:16	8.6	11.4	
	16:17	8.7	11.4	
	16:18	8.5	11.7	
	16:19	8.0	12.3	
	16:20	7.1	13.0	
	16:21	7.1	13.1	
	16:22	8.0	12.2	
	16:23	8.3	11.8	
	16:24	8.5	11.6	
	16:25	7.7	12.5	
	16:26	7.8	12.4	
	16:27	7.7	12.7	
	16:28	6.9	13.2	
	16:29	7.5	12.7	
· · · · · ·	16:30	8.2	12.0	
	16:31	8.2	12.0	
	16:32	8.0	12.2	
	16:33	7.3	12.9	
	16:34	7.5	12.8	
	16:35	8.0	12.1	
	16:36	8.3	11.9	
	16:37	7.6	12.6	
		213		

	LWEC L'Anse, Michigan				Project Number: 14464.007.004.0001 Operator: TB	
Source:	Boiler # 1	Ca	alibration	1	Date: 7 Jul 2016	
		Time	O2 %	CO₂ %		
		16:38	7.1	13.2		
		16:39	7.5	12.6		
		16:40	7.6	12.6		
		16:41	8.1	12.0		
		16:42	7.3	12.8		
		16:43	7.4	12.8		
		16:44	7.8	12.4		
		16:45	7.7	12.6		
		16:46	7.6	12.7		
		16:47	7.5	12.8		
		16:48	7.3	13.0		
		16:49	7.3	12.8		
		16:50	7.4	12.8		
		16:51	7.9	12.3		
		16:52	7.4	12.9		
		16:53	7.7	12.6		
		16:54	6.9	13.2		
		16:55	6.3	13.9		
		16:56	6.4	13.7		
		16:57	7.6	12.5		
		16:58	7.7	12.5		
		16:59	7.3	12.9		
		17:00	7.0	13.3		
		17:00	6.8	13.5		
		17:02	6.7	13.6		
		17:02		13.0		
			7.1			
		17:04 Avgs	7.0 7.4	13.4 12.7		

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Calibration 1	Proj	ect Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016							
Method Conc. Units	O₂ EPA 3A s %	CO₂ EPA 3A %								
т	Time: 15:13 to 17:04									
	Run Averages									
	7.4	12.7								
Р	Pre-run Bias at 14:53									
Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9								
Po	ost-run Bias at 1	7:08								
Zero Bias Span Bias Span Gas	11.9	0.0 8.6 8.9	nd post rup bigs							
Averages corrected for the	7.3 *No Correction	13.2	nu post-run bias							

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1 Method	Calibration 1 O ₂ EPA 3A	CO2 EPA 3A	Operator:	14464.007.004.0001 TB 7 Jul 2016						
Conc. Units	%	%								
Т	ime: 15:15 to 17	:04								
Run Averages										
	7.4	12.7								
Pre-run Bias at 14:53										
Zero Bias Span Bias Span Gas	0.0 12.1 11.9	0.0 8.6 8.9								
Po	st-run Bias at 1	7:08								
Zero Bias Span Bias Span Gas	0.1 12.1 11.9	0.0 8.6 8.9								
Averages corrected for th	e average of the	e pre-run a	nd post-run	bias						
	7.3 *No Correction	13.1								

BIAS AND CALIBRATION DRIFT

Location:	LWEC L'Anse, Michig Boiler # 1	gan	Calibration 1 Start Time: 17:08 O ₂ Method: EPA 3A		Oper	aber: 14464.007 ator: TB Date: 7 Jul 2010	
			Span Co	onc. 21.3 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 12.2	Bias % 0.1 12.1	Difference % 0.1 -0.1	Error % 0.5 -0.5	Status Pass Pass	
			Calibr	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero Span	0.0 12.1 *Bias No. 3	0.1 12.1	0.1 0.0	0.5 0.0	Pass Pass	
=							
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.6	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	% 0.0	% 0.0	% 0.0	Status Pass	
	Zero Span	0.0 8.6	8.6	0.0	0.0	Pass	
		*Bias No. 3					

Client: L ocation: L Source: B	'Anse, Michigan	Ca	alibration	1	Operator:	14464.007.004.000 TB 7 Jul 2016
		Time	O ₂	CO ₂		
		Time	%	%		
		17:52	7.6	12.6		
		17:53	8.0	12.1		
		17:54	7.8	12.5		
		17:55	6.9	13.2		
		17:56	7.3	12.9		
		17:57	7.9	12.2		
		17:58	7.7	12.3		
		17:59	7.3	12.8		
		18:00	7.8	12.4		
		18:01	7.8	12.3		
		18:02	7.6	12.6		
		18:03	7.9	12.3		
		18:04	7.8	12.4		
		18:05	7.6	12.6		
		18:06	7.4	12.8		
		18:07	6.9	13.2		
		18:08	7.3	12.8		
		18:09	8.4	11.7		
		18:10	8.2	12.0		
		18:11	6.8	13.2		
		18:12	6.5	13.7		
		18:12	7.7	12.5		
		18:14	8.1	12.2		
		18:15	7.7	12.5		
		18:16	7.1	13.1		
		18:17	6.5	13.7		
		18:18	6.9	13.4		
		18:19	7.7	12.5		
		18:20	8.1	12.1		
		18:21	7.9	12.3		
		18:22	7.3	12.9		
		18:23	6.9	13.3		
		18:24	6.6	13.6		
		18:25	7.3	12.8		
		18:26	7.5	12.7		
		18:27	7.7	12.5		
		18:28	7.4	12.9		
		18:29	6.7	13.4		
		18:30	6.5	13.7		
		18:31	7.2	12.9		
		18:32	7.5	12.7		
		18:33	7.2	12.9	7/7	<u>/ESTON</u>
					V.V.	

Number 4

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Operator:	ber: 14464.007.004.0001 itor: TB ate: 7 Jul 2016	
	Time	O2	CO ₂			
	Time	%	%			
	18:34	6.4	13.6			
	18:35	6.1	14.2			
	18:36	6.7	13.5			
	18:37	7.6	12.5			
	18:38	7.2	13.0			
	18:39	6.6	13.6			
	18:40	6.9	13.3			
	18:41	7.0	13.1			
	18:42	7.2	13.1			
	18:43	7.1	13.1			
	18:44	7.2	13.1			
	18:45	6.9	13.4			
	18:46	6.8	13.5			
	18:47	6.7	13.5			
	18:48	7.4	12.7			
	18:49	7.0	13.2			
	18:50	7.0	13.2			
	18:51	6.9	13.3			
	18:52	7.5	12.5			
	18:53	7.1	13.0			
	18:54	7.4	12.6			
	18:55	7.0	13.2			
	18:56	6.9	13.2			
	18:57	6.9	13.3			
	18:58	7.2	12.9			
	18:59	7.9	12.3			
	19:00	7.1	12.2			
	19:00		12.8			
	19:02	7.3				
		7.7	12.3			
	19:03	7.8	12.4			
	19:04	6.6	13.5			
	19:05	7.4	12.8			
	19:06	7.3	12.8			
	19:07	8.2	11.9			
	19:08	8.7	11.5			
	19:09	8.7	11.6			
	19:10	7.7	12.3			
	19:11	7.4	12.9			
	19:12	7.7	12.5			
	19:13	9.5	10.7			
	19:14	8.8	11.4			
	19:15	8.4	11.7	\sim	<u>LESTON</u>	

Number 4

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1	Ca	alibration	1	Project Number: 14464.007.004.0001 Operator: TB Date: 7 Jul 2016
	Time	O2 %	CO ₂ %	
	19:16	5.7	14.3	
	19:17	4.7	15.2	
	19:18	4.8	15.2	
	19:19	4.9	15.1	
	19:20	6.1	13.9	
	19:21	8.1	11.9	
	19:22	9.5	10.6	
	19:23	8.5	11.6	
	19:24	6.5	13.5	
	19:25	5.9	14.2	
	19:26	8.4	11.6	
	Avgs	7.3	12.8	

RUN SUMMARY

Client: LWEC Location: L'Anse, Michigan Source: Boiler # 1		Calibration 1	Proje	Operator:	14464.007.004.0001 TB 7 Jul 2016
Metho Conc.	od Units	O 2 EPA 3A %	CO₂ EPA 3A %		
	Tim	ne: 17:51 to 19	:26		
		Run Averages			
		7.3	12.8		
	Pre	-run Bias at 17	/:08		
Zero E Span Span	Bias	0.1 12.1 11.9	0.0 8.6 8.9		
	Pos	t-run Bias at 1	9:30		
Zero E Span Span	Bias	0.0 12.1 11.9	0.0 8.6 8.9		
Averages corrected	for the	average of the	e pre-run a	nd post-run	bias
		7.2 *No Correction	13.3		

BIAS AND CALIBRATION DRIFT

Number 5

Location:	LWEC L'Anse, Michig Boiler # 1	gan		ration 1	Oper	aber: 14464.007.004 ator: TB Date: 7 Jul 2016	.0001
			Start Ti	me: 19:30			
				O₂ d: EPA 3A onc. 21.3 %			
	Standard	Cal.	Bias Bias	Results Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	12.2	12.1	-0.1	-0.5	Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.1	0.0	-0.1	-0.5	Pass	
-	Span	12.1 *Bias No. 4	12.1	0.0	0.0	Pass	
			Method	CO₂ d: EPA 3A onc. 16.7 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	8.7	8.6	-0.1	-0.6	Pass	
				ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	-	~ ~	~ ~	~ ~	~ ~		

Pass

-

0.0

.

0.0

8.6

8.6 *Bias No. 4

Span

B.8 OPACITY

IASDATA/LWEC/14464.007.004/EPA 114 LETTER REPORT-LW

												HOD 9
SO	IENT URCE URCE	ADD	RESS		L'anse Boiler I 157 So L'Anse	Wan Numb	den E ber Or Main S	lectric ne itreet			S OI	BSERVATION FORM W.0.# 14464.007.004.0001 DATE 7/6/16
Emis Sour Dista Plum Desc Plum Wata	asion Po toe Heig ance fro te Type tription te Color ar Dropi	oint Des pht: m Obse (Contin of Emis	cription inver: nuous, F slon: (C Start: sent: (Y	~150 God Fugutive oning, F <u>Clas</u> (N)		SA:	Heigh Direct	CLW t Relativ ion from	EC a to Ob Observ ligating	Lag server:	Start Start Start	Her Stack 10 R East wheth End East wheth <u>Can't</u> End <u>Can't</u> Loft End <u>Can't</u> thed. or N(A) Attached
Sky (Wind	t in Plur Conditio Directi Sve Hur	ans: Ion:	re Opec Start: Start: Start:				SCA		P			Amblent Tomporature: Start: 72 F* End: 74 F Wind Speed: Start: 1-3 mph Wet Bulb Temp: Start: 67 F* End: 90 F
Min.	-	15	30	45	Avg	Min		15	30	45	Avg	
0	0	0	0	0	0	30	-	0	0	0	0	
1	0	0	0	0	0	31	0	0	0	0	0	SOURCE SKETCH LAYOUT
2	0	0	0	0	õ	32	0	0	0	0	D	Emission O H North Arrow
3	0	0	0	0	0	33	0	0	0	0	0	Point North Arrow
4	0	0	0	0	0	34	10	0	0	0	0	(Man)
5	0	0	0	0	0	35	0	0	0	0	0	
6	0	0	0	0	0	36	0	0	0	0	0	
7	0	0	0	0	0	37	0	0	0	0	0	sun d
8	0	0	0	0	0	38	0	0	0	0	0	1‴ -♀- 火
9	0	0	0	0	0	38	0	0	0	0	0	Wind Julos
10	0	0	0	0	0	40	0	0	ð	0	0	Wind140°
11	0	0	0	0	0	41	0	0	0	0	0	
12	0	0	õ	0	0	42	0	0	0	0	0	
1936	0	1	_	0		43			0	0	0	Sun Direction Line
14	0	0	0	0	0	44	0	0	0	0	0	Sun Direction Line
15	0	0	0	0	0	45	0	0	0	0	0	
16	0	0	0	0	0	46	0	0	0	0	0	Highest six minute average:
17	0	0	0	0	õ	1000	0	0	0	0	0	nghost sit minute average.
18	0	0	0	0	0		0	0	0	0	0	A six minute average greater than 20% opacity
19	-	0	0	0	0	49	0	0	0	0	õ	occured times.
20	0	0	0	0	0	50	D	0	0	0	ð	A six minute average greater than 40% opacity
21	õ	0	0	0	0	51	0	0	0	0	0	occured O times.
22	0	0	0	0	õ	52	0	0	0	0	0	Opacity Time: Start: 1340 End: 1439
23	0	0	0	0	0	53	0	0	0	0	ð	60-Minute Averge: O
24	0	0	0	0	0	54	0	0	0	0	0	
25	0	o	0	0	0		0	0	0	0	0	Observer's Name: Tyson Belknap
26	0	D	0	0	0	56	D	D	D	0	ð	Certified By: Penn State Continuing Education
27	0	0	0	0	0	57	0	0	0	0	0	Exp. Date: October 18, 2016
28	0	0	0	0	0	58	0	0	0	0	0	Signature: The failt Date: 7-6-16
29	0	0	0	0	0	59	0	0	0	0	0	

EPA MEINUU S	EPA	METHOD	9
--------------	-----	--------	---

VISIBLE EMISSIONS OBSERVATION FORM

CLIENT	
SOURCE	
SOURCE	ADDRESS

L'anse Warden Electric Company Boiler Number One 157 South Main Street L'Anse, MI 49946 W.O.# 14464.007.004.0001 DATE 7/7/16

Emis Soun Dista Plum Deso Plum Wate Plum Point Sky (Wind	sion Po te Heig noe fror e Type: ription o e Color r Dropk e Backy in Ptur Conditio Directi	int Desc ht: n Obse (Contir of Emiss sis Pres ground (ne When ns:	ription: wer: uous, F ilon: (C Start: ent: (Y Descript re Opac Start: Start:	150 4156 ugutive, oning, F <u>Clec</u> 2N) tion: alty was	or Intern anning, Lo 7 Hout NO Start Dotermine 7445	skant) oping, End:		Relativ	<u>e to Ob</u> Observ igating Pluma	Lang. server	Start Start Start	ISO R NU End: NW Corri End: Cont Loft End: Loft Nod. or NUA) Alcohart
Min.	0	15	30	45	Avg	Min,	0	15	30	45	Avg	
0	0	0	0	0	0	30	0	0	0	0	٥	SOURCE SKETCH LAYOUT
1	0	0	0	0	0	31	0	0	0	D	D	
2	0	0	0	0	0	32	0	0	0	0	0	Emission North Arrow
3	0	0	0	0	0	33	0	0	0	0	0	Point
4		0	0	0	0	34	0	0	0	0	0	
5	0	0	0	0	0	35	0	0	0	0		Plume
6	0	0	0	0	0	36 37	0		0	0	0	
8	0	0	0	0	0	37	0	0	0	0	8	
9	0	0	0	0	0	39	0	0	0	0	0	Wind 140°
10	ð	0	0	0	0	40	0	0	0	0	0	
11	0	0	0	0	0	41	0	0	0	0	D	
12		0	0	0	0	42	D	0	0	0	D	1 2
13	0	0	0	0	0	43	ð	0	0	0	0	Sun Direction Line
14	0	0	0	0	0	44	0	0	0	0	0	
15	0	0	0	0	0	45	0	Ò	0	0	0	
16	0	0	0	0	0	46	0	0	0	0	0	Highest six minute average:
17	6	0	٥	0	0	47	0	0	0	0	0	
18	0	0	0	0	0	48	٥	0	0	6	9	A six minute average greater than 20% opacity
19	ð	0	0	0	0	49	0	0	0	0	0	occured times.
20	0	0	0	0	0	50	0		0	0	0	A six minute average greater than 40% opacity
21	0	0	0	0	0	51	0	0	0	0	0	occured times.
22	0	0	0	0	0	52		0	0	9	0	Opacity Time: Start: 0900 End: 0959
23	0	0	0	0	0		0	0	0	٥	0	60-Minute Averge: _O
24	0	0	0	0	D	54	0	0	0	0	0	
25	0	0	0	0	0	55	0	0	0	0	0	Observer's Name: Tyson Belknap
26	0	0	0	0	0	56	0	0	0	0	0	Certified By: Penn State Continuing Education
27	0	0	0	0	0	57	0	0	0	0	0	Exp. Date: October 18, 2016
28	0	0	0	0	0	58	0	0	0	0	0	Signature: Date:
29	0	0	ð	0	D	59	0	0	0	0	0	

EPA METHOD 9

VISIBLE EMISSIONS OBSERVATION FORM

SO	ENT URCE URCE	ADD	RESS		L'anse Boiler M 157 So L'Anse,	lumb uth M	er On Itain S	e	Comp	апу		W.O.# <u>14464.007.004.0001</u> DATE <u>7-7-/6</u>
Emis Sour Dista Piun	sion Po ce Helgi ince fror ie Type:	int Desk ht: Contin	ruption ruption	450 Ugutive,	A or Intern	(ttent)	Height Direct	Relativ	e to Ob Observ	server: er:	de/High Los Start: Start:	<u>BO</u> t <u>North</u> End: <u>North</u> <u>Cent</u> End: <u>Cent</u>
Plum Wate Plum Point	ie Color Ir Dropk ie Backç I In Plum	sts Pres ground (we When	Start: sent: (Y Descript	in) ion: ity was	A/0 Start Determine	End	<u></u> 51	/nec	Plume		Start Not. Detac <u>S ky</u>	Loft End: Loft had. or NVA) <u>Attach</u> Background Color <u>Grey / hop</u> ; fe
Wind	Conditio Directio Eve Hum	on; 1	Start: Start Start	83	54	End: End: End:	- 4	77%	-17	8		Ambient Temperature: Start: <u>63</u> F* End: <u>64</u> F* Wind Speed: Start: <u>7+5* mph</u> End: <u>7-5* mph</u> Wet Bulb Temp: Start: <u>60</u> F* End: <u>60</u> F*
Min.	0	15	30	45	Avg	Min.	0	115	30	45	Aug	Wet Bulb Temp: Start 60 F* End: 60 F*
0	0	0	0	0	0	30	0	0	0	0	Avg	
1	0	0	0	0	0	31	0	0	0	0	0	SOURCE SKETCH LAYOUT
2	0	0	0	0	0	32	0	0	0	0	0	
	0	0	0	0	0		0	0	0	0	0	Emission O H North Arrow
3	0	0	0	ð	-	33	0	0	and the same	0		Point
4	0	_	0	_	0	34			0		0	
5	-	0	-	0	0	35	0	0	0	0	0	Plume
6	0	0	0	0	0	36	0	0	0	0	0	
7	0	0	0	0	0	37	0	0	0	0	0	Sun
8	0	0	0	0	Ô	38	0	0	0	0	0	
9	0	0	0	0	0	39	0	0	0	0	0	Wind
10	0	0	0	0	0	40	0	0	0	0	0	
11	0	0	0	0	0	41	0	0	0	0	0	
12	0	0	0	0	0	42	0	0	0	0	0	₩ 1
13	0	0	0	0	0	43	0	0	0	0	0	Sun Direction Line
14	0	0	0	0	0	44	0	0	0	0	0	
15	0	0	0	0	0	45	0	0	0	0	0	
16	0	0	0	0	0	46	0	0	0	0	0	Highest six minute average:
17	0	0	0	0	0	47	0	0	0	0	0	
18	0	0	0	õ	0	48	0	0	0	0	0	A six minute average greater than 20% opacity
19		0	0	õ	0	49	0	0		0	0	occured Otimes.
20	0	0	0	0	0	50	0	0	0	0	0	
2001	1	0	0	0	0	51	0	0	00	0	0	A six minute average greater than 40% opacity
21	0	0	0	0	0	1.00	Sec. 1	0			0	accured times.
22	0	1000			COURT IN THE REAL PROPERTY INTERNAL PROPERTY INT	52	0		0	0	International Internation	Opacity Time: Start 1530 End: 1629
23		0	0	0	0	53	0	0	0	0	0	60-Minute Averge:
24	0	0	0	0	0	54	0	0	0	0	0	
25	0	0	0	0	0	55	0	0	0	0	0	Observer's Name: Tyson Belknap
26	0	0	0	0	0	56	0	0	0	0	0	Certified By: Penn State Continuing Education
27	0	0	0	0	0	57	0	0	0	0	0	Exp. Date: October 18, 2016
28	0	0	0	0	0	58	0	0	0	0	0	Signature: Tree Bate: 7-7-16
29	0	0	0	0	0	59	0	0	0	0	0	

APPENDIX C BOILER OPERATING DATA

IASDATA/LWEC/14464.007.004/EPA 114 LETTER REPORT-LW

.

	61 I I	PHOCESS OPERATING DATA LOG SHEET FOR EMISSIONS TESTING	T SNORS T	ONUS	The	1 Ag	XIC.		Geten	2	91-9	4557	t open	+ tan				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 III	DEVERY 15 MM	ITES: STAF	IT 15 MIN	BA TEST, A	ND CONTINUE	S 15 MINAP	TER TEBY	3									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- [6]	-		R	EL STORAG	R BULDING					TDF BIN		Main Bett	Oxygan	n Levela	Productio	PO Ra	tee
Mathe accord Constrained Sector Rector Rector Sector Name Manual Manual <t< th=""><th>m ni</th><th>100 200</th><th></th><th>- 22</th><th></th><th></th><th></th><th></th><th>100</th><th>Screw</th><th>Totaliter</th><th>Ŧ</th><th>Main Fuel bet</th><th>BOILER 02</th><th>BTACK 00, Frem CEM</th><th>STEAMING</th><th>-1</th><th>NIN N</th></t<>	m ni	100 200		- 22					100	Screw	Totaliter	Ŧ	Main Fuel bet	BOILER 02	BTACK 00, Frem CEM	STEAMING	-1	NIN N
Twing C Twing <	1.135	Ruft Thes Totalizer	VIDIN	F		PECIFY UNITS	R.R.T.		A.	ANDEAS			Totalizer	S. Inpactity	S. (specify	1000	V	Ò
	L-l-		t	T													11	П
Matrix No. Matrix No. Matrix No. No. <t< td=""><td>1.1.</td><td>Cart and</td><td></td><td>-</td><td>der-</td><td>1.4</td><td></td><td>H</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td></t<>	1.1.	Cart and		-	der-	1.4		H									11	
Mixty All Mixty Mixto	101	11101	25	+	92.99	2.1	12		-	0.0	1.14		57741	2.6	1.4	192.000		12.14
	1.8	101.04	23	-	76.8/	1	14.7	× 1	-	-	25.0		199.45	100	2.3	195,000	2	1203
Constrain International Sectional Constrain Sectional Constrain Sectional	2	103.00	1	1	65'10	11	20.0		-	000	10.40		20272	0.0	22	10,040		12/4
	in la	145,14	*		196.99	n	alle	1.1	-	20	16.30		29.24	5.6	4.4	A2.000		12.09
	ale	13.74	-	t	66'80	T	-	- E		-	10 KK	Í	215.84	101	a di	193000	1	*
60233 1 60233 1 60233 1 60233 1 60233 1 60233 1 7 <td>أحط</td> <td>10/02</td> <td>1</td> <td>t</td> <td>107.99</td> <td>11</td> <td>107</td> <td>121</td> <td></td> <td>0.00</td> <td>10,56</td> <td></td> <td>CU NOT</td> <td>200</td> <td>200</td> <td>111 100</td> <td>1</td> <td>17.30</td>	أحط	10/02	1	t	107.99	11	107	121		0.00	10,56		CU NOT	200	200	111 100	1	17.30
(1) (1) (2) <th(2)< th=""> <th(2)< th=""> <th(2)< th=""></th(2)<></th(2)<></th(2)<>	ыk	107.53	11		Pol.99	E 1	\$7.6			3	1608		PWSN'	6.6	2.0	171/41	11	9.0
(10) (1) (10)	ale	19/21	10	-	100 000	1	3	10		20	11.30		10.55	101	12	193000	1	4
Main II I	hal	114.67	11		6430	E 1	iv.	2.1		0.2	11.74		74.487	2.6	63	19.Tool	E	22
Allow Allow <th< td=""><td>ole.</td><td>11467</td><td>11</td><td>1</td><td>19.25</td><td>1</td><td>*</td><td></td><td></td><td>30</td><td>11.74</td><td></td><td>279.42</td><td>8.8</td><td>2.5</td><td>194,000</td><td>11</td><td>8</td></th<>	ole.	11467	11	1	19.25	1	*			30	11.74		279.42	8.8	2.5	194,000	11	8
HT32 II Ht33 II II Ht33 II Ht33 II II Ht33 Ht33 Ht33 <td>inh</td> <td>Lette</td> <td>1</td> <td>tt</td> <td>Se No</td> <td>12</td> <td>**</td> <td></td> <td></td> <td>50</td> <td>12.90</td> <td></td> <td>22,285</td> <td>114</td> <td>280</td> <td>(1)/000</td> <td>11</td> <td>15.99</td>	inh	Lette	1	tt	Se No	12	**			50	12.90		22,285	114	280	(1)/000	11	15.99
1133 11 1233 11 25 134 14 15 14 <t< td=""><td>del</td><td>75'LN</td><td>1</td><td>t</td><td>AL.M.</td><td></td><td>21</td><td>11</td><td>-</td><td>. 20</td><td>A.M.</td><td></td><td>285.36</td><td>1</td><td>7.2</td><td>13000</td><td>1</td><td>2</td></t<>	del	75'LN	1	t	AL.M.		21	11	-	. 20	A.M.		285.36	1	7.2	13000	1	2
(1) (1) <td>ale</td> <td>10.98</td> <td>1</td> <td>-</td> <td>136.361</td> <td>1 1</td> <td>100</td> <td></td> <td>-</td> <td>80</td> <td>1306</td> <td></td> <td>14002</td> <td></td> <td>a's</td> <td>(Name</td> <td>r t</td> <td>11.11</td>	ale	10.98	1	-	136.361	1 1	100		-	80	1306		14002		a's	(Name	r t	11.11
(56.6) (1)<	ي ال	14.21	"	t	110.20		10	1	Ļ		100		17er	1	207	12000		
(58) (1) (56.4) (2) (5.9) <th(5.9)< th=""> <th(5.9)< th=""> (5.9)</th(5.9)<></th(5.9)<>	ini.	100 100	1		13445	11	19	121		0	1270		27.67		27	19 tear	1	1211
Mill Mill <th< td=""><td></td><td>10.00</td><td>1</td><td>1</td><td>195.21</td><td>10</td><td>10</td><td>1.1</td><td></td><td>1.0</td><td>15.9%</td><td></td><td>CAND.</td><td>1</td><td>42</td><td>(Place</td><td>5</td><td>10</td></th<>		10.00	1	1	195.21	10	10	1.1		1.0	15.9%		CAND.	1	42	(Place	5	10
main 11 risky for risky for risk for <thris< th=""> ris <thris< th=""></thris<></thris<>	1	10 Million	1.11	-	14-24/	9		ч		- No	- Chile	-	112.00	1	4.4	1,0000	q	1
1958 15 16.3 1.44 15 1.44 15 1.44 15 1.44 15 1.44 15 1.44 15 1.44 15 1.44 15 1.44 15 1.44 1.5 1.44 15 1.44 1.5 1.5 1.44 1.5 1	1.	10.00	1	+	12.2	99		1	-		CY48		Ed line	1	200	1000	1	124
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	المنا	145.65	ą		16.2h		1	1.1		2	N 33		351.04	1	200	/13cm	90	200
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.	10.021		1				() I-			1.1			1.1				C 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ي الم	I VOC)	29	1	THE SAL	-	10	- e -		200		1	20.02	0.0	14	196000	I.a.	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.	1900/	2		12 5 4	1 21	AV CO						20.24	10.7	100	19000	4	*
Sec. bit Dial	l-	C.7 06/	0	-	107 33							T	12 84.8	A GA		04000	ť	2010
Constr II Th St P K II R <t< td=""><td>lin.</td><td>150.67</td><td>2</td><td>-</td><td>171 14</td><td></td><td>3</td><td></td><td></td><td>14</td><td>100</td><td></td><td>1. 1. 1.</td><td>1012</td><td>4</td><td>000120</td><td>ľ</td><td></td></t<>	lin.	150.67	2	-	171 14		3			14	100		1. 1. 1.	1012	4	000120	ľ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	150.67		T	12.111	9				20	1.0		7.00.00	L'av	207	1 Paren	1	2161
Ref of the state It Tailof ID Ref of the state Id Ref of the state R	lul	109000	1 11	1	171.14	10	100	1.1.1		80	¥		12.142	1.01	TE	174040	1	1200
R53.5 ID C12.5 A Match ID Ka	ial.	154.39	11		171.14	10	10r			20	192		dellar.	10.4	1.4	Allen.	1	100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	بالملا	15-151	10		Chr.Pf	a	10/			Zo.	16.20		40%	25	26	107600	1	01.71
Internal R Internal	4	160.41	10	-	11.24		104.			8.0	たら		96.314	2.9	12	184	2	17.06
(10.1%) 1 (10.1%) (10.1%)	والمن	140.42	50	1	1.00.10	8	109.3			8,0	17.36		425.51	7.9	7.4	187	2	10
160-32 1 10 14554 7 110-35 7 86 12.66 44317 14 2 16 160-32 11 14554 7 112.35 10 86 18.01 1455 14 161.26 10 14554 7 12.35 10 80 18.46 145280 2.7 160 190	al.	100 42		T	82.60	N	101.3	- 12	-	200	12.68	Ì	417.60	· 0.01	2.5	141	17.00	8
10.0.1.4 10 172.55 7 10.133 10 8.0 16.04 14.731 14. 160 16.1.20 10 195.54 9 10.235 16 8.0 16.25 14.25 14.75 16.0	d.	100 24		1	1 22.22	-	110.7		-	8.0	17.60		433.77	14.2	1%	T	17.17	2
167.30 10 145.54 9 112.35 10 80 10.44 452.30 2.7 6.0 190	din.	10.92	2	T	20.00	, .	10.11	£	+	000	10.01		New Y	1.4	1.6	T	d.	
	1.4	167.70	10	1	1 15.34	σ.	112.35	1		48	10.94	Ī	452.00	4.7	6.0	T	19.11	Ļ
	1	***		-				-					and the second s			t		

2

20124			TWE	and the second	en al se
			Spark Sate	ž	130000000
		T	P Fleid 3 Outlet)	Secondary mA	
			and the second second	Secondary KV	BRANESSESSESSESSESSESSESSESSESSESSESSESSESS
			Primary	Veltage	orano most and the set of the set
			Spart.	BPW	0 0mm/0000-20-200-200000000000000000000000
			Canter)	Becondary mA	THE STREET SERVICE SERVICES
	turdo			Secondary KV	nannararanna ar
	Sent		Publicary	Veljage	
	(134		Spart Spart	M	->25-1-100-11/10021
	AL D		ESP Field 1 (niet)	Becondary mA	GEREAGEREACTIC TERESCORES TRANS
	Jone of			Secondary kV	anderstanderstarter and and and an and an and an and and an
	1.44		Primary	Voltage	Sale says of the same state of some state and the same same state
	21-16		Flue Gas. Temp	Predp Gase Out	75556777555555555555555555555555555555
	0-0		8	lbhmmbhu	ALLER DONNER DON BARBARS SCREET SAFERE
T		T	OPACITY	*	0-7
ALCO S	69	CNDEDE	1835 15 60 19 c)	TIME (core military time) 800	
PROCESS OPERATING DATA LOG B	ates 64	S-MECUM	22		
SS OPER		BUILDA	550	DATE	7462016 7462016
ROCE		LOWEN		Plant	

	-							end of lot lost west						7					
CDW TOTALIZER/RAIL TIES	RECLAIMER #1	/6.72	20.06	37-15	-	35.50		76.23	57.03		r								Be (Prant oper)
7/6/2016 RAIL TIES TOTALIZER	RECLAIMER #3	101.14	02.201	105.14	107.54		02 241		129,00										-16 Terry Studen
VOOD CHIPS TOTALIZER	RECLAIMER #2	62.49	102.99		/	ŀ	04 801	4 4 0 1 8 0	/28.28										7-6-
TIME		0900	2750	1000	1014	10.55	AD 24	200	1315	-									1. Constrained and the second seco

ł;

									-			5	0								
Introduction Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	DARN	1010	TRY 15 MIN	UTES: STA	RT 15 MI	N 84 TEST,	AND CON	TINUE 16		11	8		1	T							
Bur find	Stop Time	-			ľ	UEL STORA	GE BUILD	SNE						T		CINNE	in Levels	Prode	ction Rates	-	+
	1926	e. 50 .	Bin #1 Fuel In place	Rakes	1. All 1.	Bin #2 Fuel In place	and Break	HAL		Ratu Speed	Ē	Borea		Hate Of		BOLER 02		5	NW BI		
	TINE	1	1.1	SPECIFY		1.12	RECIEN		RUR Thes Totalizer	SPECIFY		ALCIN				Alteredry			Ĩ	*	*
	100		C0/1-	101		-70.13	0	ľ	94.91	10/		51	15.8	T	174.92		22	1	L.	1	ļ
	10	Ĩ.	1.33	E I		70.13			96.35			8	2.00		181.00		AUA	19/00	1	l.,	
	3		12.82	1	1	70.13			26.35			200	2.00		185.29		8.1	19/00			
	8		1967	T	T	27/22	1	Î	86.75			000	Re's	T	122.687		4.9	0120		4	-
	10		D'ante	Ľ	Ī	20105	1		101.01	ŀ		-	2.00	Ì	No. No.			180	I	1	
	100		6/ 180	11	1	20.02			108.53	£.		0	990		240.92]	+	100	1		
	ä		51.50	1		76.465			106.54				10.10		35.91			1940	1	L	
	-		25.09	1		\$1.95		-	(C.40)	2		-	10.36		33.164			1946			
	P F		21.15	1	1	3.2	1		C NOV			200	45.00		W fee		_	1916			
	22		Sec.	T		No.	1	Ť	CONO.	Ŧ	I	-	120	Ì	Joke-			PLU I		1	
	1	I.	10000	Ľ	Ť	26.16	E.	ľ	14600	9		-	00'11	T	14.00		1 al	10 60	1	1	
	F	L	60.35	n		20.26			m18.	11		4	11.4		CE ION			1960	1		1
	Ŧ		Acx	n	-	Se.C.	1	1	00			-	1.66		57.70	10.6		114			
	1		12.64	٦	1	96.46	T	1	d	9		-	11.85		a65.70	1vol		/ NSeu	Π	ľ	n
	194		N PS	Т	Ť	100	1	Ĩ	nit	1		20	100	T	12.020	1	1	1940	1		1
	1230		2.05	Ľ	Î	Se As	F	T	42		T	A	1000	I	74776			12/180	1	1	1
	124		SS-12	f 1	Π	80	Ľ	Ī	T 1			2	VC. 51		10.000	10.5		1950			Ļ
	8		16.97			Sa.14			with.			20	14.24		YL.MC	194	Ц	11.60			1
	122		100.00	1	T	12.20	1	T	12/21	1		~	der	Ì	50198	101	7.1	005% /			
	ž		61.14	Т	T	122 22.	Т	T	145.20	1		-	144	T	1000	1	6's	10.00	1	-	
	140		14/14	M		10.00	01		11.94			-	18.82		WE W	L	1.7	1940			
Title Image Image <th< td=""><td>2</td><td></td><td>N.66</td><td>1</td><td>1</td><td>13.50</td><td>9</td><td></td><td>W.U.</td><td>11</td><td></td><td>*</td><td>New</td><td></td><td>-Wer</td><td></td><td>02</td><td>Canal Canal</td><td></td><td></td><td></td></th<>	2		N.66	1	1	13.50	9		W.U.	11		*	New		-Wer		02	Canal Canal			
	213		ALC: N	1	T	10.00	9	1	11.40	1		0.0	0157		36.125		2.0	1950	4	1	
	199		1.1CL	Ŧ	T	100.00	2	T	N Gr	1		0	1210	İ	Chart I]	1	And A land	1	1	1
Res D Intelline D <thd< th=""> <thd< th=""> <thd< th=""> D<td>101</td><td></td><td>2005</td><td>f</td><td>1</td><td>to the</td><td>0</td><td>I</td><td>10.00</td><td>1</td><td>Í</td><td>0</td><td>CNC.</td><td>t</td><td>Contra L</td><td></td><td></td><td>1100</td><td>L</td><td>ļ</td><td>1</td></thd<></thd<></thd<>	101		2005	f	1	to the	0	I	10.00	1	Í	0	CNC.	t	Contra L			1100	L	ļ	1
Rev D Table Rev State Rev Total Rev Tot	163	L	65.55		T	101 101	0		144%	1		0	12.2	t	100.40			17.67	1	1	1
Rev. C Mail Constrained	164		66.99	11		123.621	M		19.241			-	15.00		361.66			19100		L	
Ref. II Ref. R	1	8	and a	1	-	1640	1		16.30	1		2	15.60		34.17			130			
Ref 1 Control of the contro of the control of the control of the control of the cont			える	1	T	1- W	1		14.9	1		4	Ars'		OC/2E			18180			
State 1 Mark 6 Mark State Mark 6 Mark 6 1	1		1	1	t	201.20	Ŧ	T	2-20	1		-	Real .	T	377.11	105	2.9	/2360			
mark D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	Ě	19	AL MA		T	1.10 M	T	T	0100	+		-	140	t	ALL DE	Carl and	22	11/50	1	ľ	1
Amile District District <thdistrict< th=""> <thdistrict< th=""> <thd< td=""><td>F</td><td></td><td>The car</td><td></td><td>T</td><td>10.000</td><td>Ľ</td><td>T</td><td>07002</td><td>1</td><td></td><td>t</td><td>ALL IN</td><td>t</td><td>APARA L</td><td>000</td><td>1.5</td><td>Cant</td><td>1</td><td>ļ</td><td>Ţ</td></thd<></thdistrict<></thdistrict<>	F		The car		T	10.000	Ľ	T	07002	1		t	ALL IN	t	APARA L	000	1.5	Cant	1	ļ	Ţ
(mo. d) (d)	F		Por al	9		02.201	•	-	CT SAV	1		-	10.02	T	104.17	00	107	19500	121 1	1 92	1
Image 13 193700 17.10 19.25 8 17.25 9.12 17.10 11.0 <	Ē.	-	H-007	-		149.70	n	Ī	67 kh1			-	1.41.6		108.80	4:4	11	19500	10.01	5 40.5	50 -
10-55 12 145-35 12-55 1	No.	8	100.04	2	77	149,10:	М	1	AVS1	2		-	17.36:		413.13	10.2	0.0	14765	17.10	0.12 0	74
1158 11 149.0 0 151.30 16 8 18.00 19.4 2.0 180.00 17.05 19.4 1 114.40 16 150.0 0 110.0 10 8 18.00 19.4 1.0 180.00 17.0 32.5 1 1114.0 19 16.1 180.0 0 8 18.05 18.05 19.7 10 180.00 17.0 32.5 1 1114.0 19 16.1 16.0 10.1 18.05 17.0 180.00 17.0 17.0 17.0 17.0 17.0 17.0 17.0	2	2	10.11	12	1	144.101			137.20	14		2	17.561		P C. 022	0.0	6.7	19300	20 17.14	96	31 15
114 10 10 10 10 10 00 0 0 0 0 0 0 0 0 0			\$501		1	149-19-1		1	151.34	1		-	17.30		421.20	10.1	2.0	193.000	20.71 0	44 -	1410
11920 16 158-16 7 19130 15 8 1631 238.65 18.7 7.6 13836 17.17 11120 15 1 12130 19 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10	-			-	1	199.201	- 1	1	EE UST	٦		59	19.02		25.52	9.4	1.2	748 741	1247	\$0.	1
11.140 10 1.02.40 49 1.64.40 10 8 18.43 47.1 4.0 3.000 17.20 1.14140 10 1.62.40 49 1.64.44 10 8 18.43 45.74 0.5 3.0 19400 17.20		2	116.371	2	-	10.07	1	1		2		1	15.31		20.924	10.4	0.7	193300		8.4.8	22
1442 19 1.22.30 49 1.24.35 10 5 18.43 10 2.3 10 10.10			N. TH		T	101-061	-1	ľ		I		1	0.40	1	41-52-19	4.7	97	202012		924	26
12/10 12/10 12/10 12/10 12/10 12/10 12/10 12/10 12/10 12/10	1		1 2 5 1		Ť	120-2	T	T		1		ľ	North I	t	12-2-13	10.4	1.7	00000	7	12	22
	18	2 8	ALC: NO	Ì	T	11-10	1	Î	141.00		1	-	101.01		10.721	0.0	2.0	2461	-	884	41 0

÷.,

(1)

Coar of Power Boller-Operation Loo-Rev 7 For Tester 1) (2020 07-07-06-16

1/10/2018

Rouse Roker (DH)

Section of the local division of the local d		
đ	Ē	

Cock of Power Boles-Costating Los-Rey 7 For Tasta(1) (D02) 07-07-16

232

t

PROCESS OPERATING DATA LOG SI

ł

7/8/2016

			Redeinen	CAP T T T	- 2 (0/) TEST													
Phank Ofer.)		CDW TOTALIZER/RAIL TIES	RECLAIMER #1	6977	8 5 61													
Terry Lundrall (Phank Open)	7/7/2016	RAIL TIES TOTALIZER	RECLAIMER #3	76.35	76,35													
1	DATE:	WOOD CHIPS TOTALIZER	RECLAIMER #2	7. 13	61.01													
	LWEC	TIME	1 4 90	1980														

233

The second secon

ŧ	Ties & Ties	Ground	VESTORES					-						-	-	 															
È	Wood C	Chip	BILA	-																	1										
	Samples From FAF - Wood Chips & Ties	2	una di	-					l								 													 	
20	Sample	Truck	numper																										-		
	o Plant		SW4							ļ.,					-						And a local division of the local division o										
	ct Loads to	Chips	1631				+	-		. 			1									-									
any	Samples From Direct Loads to Plant	Wood Chips	1 1981	ľ	Ţ		··†	Ť	Î	-		Î			1		Î												1		
ic Comp	Samples		Source	T	Ť			1	ľ	ľ				-	ľ	1	ľ												1	1	
Warden Electric Co Fuel Moisture Testing			Avg	1			34	29-15	22-2	-		-		-						1.					-						
L'Anse Warden Electric Company Fuel Moisture Testing	into Plant	Railroad Ties	1est 2	2000	12270	27	\$	J	1	1						T	ſ					1								1	
L'Ans		11	Iest I	222	202	26.0	2	25.0	1000				T				-						and the second s							-	
	Samples From Main Fuel Belt		Avg				4.5	10 T	1417						Ī			-						+							
	Samples I	Wood Chips	ICK Z	1000	25.02	37.40	17	8.07						I		Ī								1					1	T	
			Test 1	122	191	40.3	4	126	10.												1										
			Crew		T		-	-	Ţ		1				-		1							-	Î		-		Î	+	T
	Apr	2016	Late Crew	91/10//0	91/20/20	07/04/16	07/05/16	01/00/10	07/08/16	07/09/16	07/10/16	91/11/10	07/12/16	01/21/10	91/51/20	07/16/16	91/11/10	07/18/16	07/19/16	07/20/16	07/11/16	07/22/16	01/23/10	07/24/16	07/25/16	07/26/16	07/27/16	07/28/16	07/29/16	07/30/16	01/31/10

L'Anse Warden Electric Company, LLC **USEPA 114 Compliance Testing** Fuel Feed Rates

7/6/2016

Bin	Contents	Start Tons	End Tons	Delta Tons	Start Time	End Time	Delta Time	Min/60	Delta Time (Hrs)	Tons/Hr
1	RR Ties	16.72	112.35	95.63	00:6	19:07	10:07	0.116667	10.12	9.5
2	Wood Chips	92.49	195.56	103.07	00:6	20:08	11:08	0.133333	11.13	6.9
m	RR Ties	101.14	160.42	59.28	00:6	19:07	10:07	0.116667	10.12	5'5

ons/Hr RR Ties (Wet) 15.3	Tons/Hr Wood Chips (Wet) 9.3	Tons/Hr RR Ties (Wet) Tons/Hr Wood Chips (Wet) RR Ties to Wood Chips Ratio (Wet) 15.3 9.3 9.3 1.65
wg RR Ties Moisture	Avg Wood Chips Moisture	Ivg RR Ties Moisture Avg Wood Chips Moisture RR Ties to Wood Chips Ratio (Dry)
30.56%	46.33%	2.14

7/7/2016

Bin	Contents	Start Tons	End Tons	Delta Tons	Start Time	End Time	Delta Time	Min/60	Delta Time (Hrs)	Tons/Hr
1	RR Ties	17.85	119.35	101.5	8:27	19:35	11:08	0.133333	11.13	9.1
2	Wood Chips	70.13	158.65	88.52	8:27	20:10	11:43	0.716667	11.72	7.6
3	RR Ties	96.35	164.02	67.67	8:27	19:36	11:09	0.15	11.15	6.1

ns/Hr RR Ties (Wet)	Tons/Hr Wood Chips (Wet)	ons/Hr RR Ties (Wet) Tons/Hr Wood Chips (Wet) RR Ties to Wood Chips Ratio (Wet)
15.2	7.6	2.01
g RR Ties Moisture	Avg Wood Chips Moisture	Avg RR Ties Moisture Avg Wood Chips Moisture RR Ties to Wood Chips Ratio (Dry)
29.07%	42.45%	2.48

Moisture contents from laboratory analysis results. RR Ties = Railroad Ties Hr/Hrs = Hour/Hours Min = Minutes Avg = Average Notes: % = Percent

APPENDIX D LABORATORY REPORTS

- D.1 PM, Metals, HCl, and Cl₂
- D.2 PCDD/PCDF and Cresol Isomers
- D.3 SSAS

D.1 PM, METALS, HCI AND CI2

.

Your Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2016/07/19 Report #: R4071890 Version: 3 - Final

CERTIFICATE OF ANALYSIS

4

MAXXAM JOB #: 86E1777 Received: 2016/07/08, 20:00

Sample Matrix: Stack Sampling Train # Samples Received: 25

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
Extractable Condensables (M202)	5	2016/07/12	2016/07/18	BRL SOP-00118	EPA 202 m
Non Extractable Condensibles (M202)	5	2016/07/13	2016/07/18	BRL SOP-00118 / BRL SOP- 00109	EPA 202 m
Halogens in NaOH Impinger	5	2016/07/12	2016/07/12	BRL SOP-00108	EPA 26A m
Hydrogen Halides in H2SO4 Imp.	6	2016/07/11	2016/07/11	BRL SOP-00108	EPA 26A m
Metals B.H. in H2O2/HNO3 Imp.(6020A)	1	2016/07/12	2016/07/14	BRL SOP-00103 / BRL SOP- 00102	EPA M29/CARB 436 m
Metals in Combined Train (6020A)	4	2016/07/12	2016/07/14	BRL SOP-00103/ BRL SOP- 00102	EPA M29/CARB 436 m
Metals F.H. in Filter + Rinses (6020A)	1	2016/07/12	2016/07/14	BRL SOP-00103/ BRL SOP- 00102	EPA M29/CARB 436 m
>10um Particulates in Rinse	з	2016/07/13	2016/07/15	BRL SOP-00109	EPA M201A/OTM-027 m
2.5-10um Particulates in Rinse	3	2016/07/13	2016/07/15	BRL SOP-00109	EPA M201A/OTM-027 m
2.5 um Particulates on Filter	4	N/A	2016/07/12	BRL 50P-00109	EPA M201A/OTM-027 m
<2.5um Particulates in Rinse	3	2016/07/13	2016/07/15	BRL 50P-00109	EPA M201A/OTM-027 m
Particulates/Acetone Rinse (M5/315/M201)	5	2016/07/13	2016/07/14	BRL 50P-00109	EPA 5/315 m
Particulates/Filter (M5/315/NJATM1/M201)	4	N/A	2016/07/12	BRL 50P-00109	EPA 5/315/NJATM1 m
Final Volume of Acetone Probe Rinse	5	N/A	2016/07/14	BRL 50P-00109	
Final Volume of Acetone Probe Rinse	Э	N/A	2016/07/15	BRL SOP-00109	
Volume of Sulfuric Acid Impinger	5	N/A	2016/07/11		
Volume of Sodium Hydroxide Impinger	5	N/A	2016/07/12		
Weight of Solvent from Impingers	5	N/A	2016/07/18		
Weight of Water from Impingers	5	N/A	2016/07/18		

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 18

Maxiam Analytics International Corporation o/a Maxiam Analytics 6740 Campuballo Road, Mitobauga, Ontario, USN 208 Tel: (2022) 817-5708 Tell-Free: 800-563-6266 Fas: (905) 817-5770 www.maxiam.ca

Your Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

Attention:Ken Hill Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2016/07/19 Report #: R4071890 Version: 3 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: 86E1777 Received: 2016/07/08, 20:00

Encryption Key

Hitter.sur-

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: Clohrson@maxxam.ca Phone# (905)817-5769

Maxiam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 18

Maxwam Analytics International Corporation o/a Maware Analytics 6740 Careacterile Road, Mississaga, Ontario, LSN 218 Tel. (203) 817-5700 Tell-Tree: 800 565-6365 fax: (202) 817-5777 www.maxarr.co.

Maxxam Job N: B6E1777 Report Date: 2016/07/19 Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

EPA M201A - PARTICULATES (STACK SAMPLING TRAIN)

Maxxam ID		CRF934	CRF936	CRF937	CRF950	1.		
Sampling Date		2016/07/07	2016/07/07	2016/07/07	2016/07/07			
	UNITS	M201A- 58	M201A- R2	M201A- R3	M201A- R4	RDL	MDL	QC Batch
> 10 Particulate Weight in Acetone Rinse	mg	N/A	5,3	3.1	3.6	0.5	0.1	4576454
< 2.5 Particulate Weight in Acetone Rinse	mg	N/A	6.5	3.0	3.6	0.5	0.5	4576393
2.5 - 10 Particulate Weight in Acetone Rinse	mg	N/A	2,4	2.7	4.4	0.5	0.5	4576450
< 2.5 Particulate Weight on Filter	mg	0.80	1.00	<0.30	<0.30	0.30	0.30	4574320
Acetone Rinse Volume	mi	N/A	120	160	140	1	1	4576399
Acetone Rinse Volume (10)	mi	N/A	70	81	85	1	N/A	4576399
Acetone Rinse Volume (2.5 - 10)	ml	N/A	100	66	140	1	N/A	4576399
Acetone Rinse Volume (2.5)	mi	N/A	190	200	210	1	N/A	4576399
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
N/A = Not Applicable								

Page 3 of 18

Maxam Analytics international Corporation o/a Maxaam Analytics 0740 Composello Road, Maximuga, Ontario, USN 2(1 Tel: (105) 017-5700 Tell-Free: 800-563-6266 Fax: (505) 817-5777 www.maxam.ca

Maxxam Job #: 86E1777 Report Date: 2016/07/19 Weston Solutions Inc Client Project #: 14454.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

EPA M202 CONDENSIBLE PM (STACK SAMPLING TRAIN)

Maxxam ID		CRF938	CRF939	CRF941	CRF942	CRF951			
Sampling Date		2016/07/07	2016/07/07	2016/07/07	2016/07/07	2016/07/07			
	UNITS	M202-58	M202- BT	M202- R2	M202- R3	M202- R4	RDL	MDL	QC Batch
Weight	В	200	280	240	290	260	0.1	0.1	4574709
Weight of Solvent	g	130	120	120	120	130	0.1	N/A	4574699
Inorganic Condensibles	mg	2.4	3.2	8.8	22	20	0.5	0.1	4576561
Organic Condensibles	mg	<1.0	2.6	2.8	3.6	1.7	1.0	0.20	4574675
RDL = Reportable Detectio	n Limit				Al	8	8. R	 3 	d
QC Batch = Quality Control	Batch								
N/A = Not Applicable									

Page 4 of 18

Manam Analytics International Corporation o/a Massam Analytics 0740 Campebolic Road, Massauga, Ontario, USN 218 Tel: (905) 857-5700 Tell Free: 800 563 6266 Fee: (905) 817-5777 www.massam.ca

Maxiam Job #: B6E1777 Report Date: 2016/07/19 Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

EPA M26A HYDROGEN HALIDES AND HALOGENS (STACK SAMPLING TRAIN)

Maxxam ID		CRF920	CRF921	CRF922	CRF923	CRF923	1	ğ	
Sampling Date		2016/07/07	2016/07/07	2016/07/07	2016/07/06	2016/07/06			
	UNITS	M26A- SB H25O4	M26A- SB DI	M26A- SB NAOH	M26A- R1 H25O4	M26A- R1 H2SO4 Lab-Dup	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	225	163	N/A	612	N/A	1	1	4572990
Sodium Hydroxide Volume	ml	N/A	163	168	N/A	N/A	1	1	4575109
Chlorine	νg	N/A	<1200	<1200	N/A	N/A	1200	130	4575114
Hydrochloric Acid	ug	<250	<250	N/A	8200	8200	250	75	4573698

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		CRF924	CRF925	CRF926	CRF926	CRF927			
Sampling Date		2016/07/06	2016/07/07	2016/07/06	2016/07/06	2016/07/06	1		
	UNITS	M26A- R2 H2504	M26A- R3 H2504	M26A- R1 NAOH	M26A- R1 NAOH Lab-Dup	M26A- R2 NAOH	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	562	563	N/A	N/A	N/A	1	1	4572990
Sodium Hydroxide Volume	Im	N/A	N/A	295	N/A	308	1	1	4575109
Chlorine	ug	N/A	N/A	<1200	<1200	<1200	1200	130	4575114
Hydrochloric Acid	ug	8800	7400	N/A	N/A	N/A	250	75	4573698

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		CRF933			
Sampling Date		2016/07/07	2		
	UNITS	M26A- R3 NAOH	RDL	MDL	QC Batch
Sodium Hydroxide Volume	ml	313	1	1	4575109
Chlorine	ug	<1200	1200	130	4575114

Page 5 of 18

Maxware Analytics International Corporation o/a Maware Analytics 6740 Camarbella Road, Mississaga, Ostaria, LSN 218 Tel. (205) 817-5700 Tell Free: 800 563-6256 Fax: (205) 817-5777 www.maxware.ca

Maxxam Job #: 86E1777 Report Date: 2016/07/19 Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

EPA M29 METALS (COMBINED TRAIN)

Maxam ID		CRF943	CRF944	CRF944	CRF945	CRF946			i
Sampling Date		2016/07/07	2016/07/06	2016/07/06	2016/07/07	2016/07/07			2
	UNITS	M5/29- 58	M5/29- R1	M5/29- R1 Lab-Dup	M5/29- R2	M5/29- R3	RDL	MDL	QC Batch
Combined Train Arsenic (As)	ug	<0.80	<0.80	<0.80	0.93	0.95	0.80	0.080	4578442
Combined Train Lead (Pb)	ug	0.50	8.18	8.05	7.12	7.95	0.40	0.040	4578442
Combined Train Manganese (Mn)	ug	1.8	11.6	11.6	20.8	20.8	1.5	0.10	4578442
Combined Train Nickel (Ni)	ug	2.0	9.8	10.0	5.1	6.0	1.0	0.20	4578442
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Dup	olicate								

Page 6 of 18 Maxim Analytics International Corporation o/a Maxim Analytics 6740 Composelle Road, Maximuga, Ontario, USN 218 Tel. (905) 817-5700 Tell-Free: 800-565-6265 Fax: (905) 817-5777 www.maxam.co

Maxxam Job #: 86E1777 Report Date: 2016/07/19 Weston Solutions Inc Client Project II: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

EPA M5 PARTICULATE MATTER (PM)

		CRF943	CRF944	CRF945	CRF946	0.00	3 - T	
Sampling Date		2016/07/07	2016/07/05	2016/07/07	2016/07/07	S	1	
	UNITS	M5/29- 5B	M5/29- R1	M5/29- R2	M5/29- R3	RDL	MDL	QC Batch
Acetone Rinse Particulate Weight in Acetone Rinse	mg	1.0	4.4	6.7	4.5	0.5	0.1	4576378
Front Half Particulate Weight on Filter	mg	0.50	2.00	7.00	4.90	0.30	0.060	4574313
Acetone Rinse Volume	mi	160	140	180	190	1	1	4576379

Page 7 of 18

Manuary Analytics International Corporation o/w Manuary Analytics 6740 Campobello Road, Mississage, Ontario, LSN 218 Tel. (503) 827-5700 Tell-Free: 880-563-6286 Fee: (903) 817-5777 www.masuary.cm

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Maxxam ID	1 - N	CRF934	CRF947		201	8 - S
Sampling Date		2016/07/07			1.1	
	UNITS	M201A- 5B	AUDIT-SSAS205-PEA1941	RDL	MDL	QC Batch
Acetone Rinse Particulate Weight in Acetone Rinse	mg	0.6	N/A	0.5	0.1	4576378
Acetone Rinse Volume	ml	120	N/A	1	1	4576379
Hydrochloric Acid	ug	N/A	39	0.50	0.15	4573698
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
N/A = Not Applicable						

Page 8 of 18 Maxiam Analytics International Corporation w/s Maxiam Analytics 6749 Campobello Issad, Mississinge, Ontario, LSN 218 Tel: (905) 817-5700 Tell-Free: 800-503-6205 Fax: (905) 817-5777 www.maxiam.ca

12

3

Weston Solutions Inc Client Project #: 14454.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Maxxam ID		CRF948	CRF949	· · · · · · · · · · · · · · · · · · ·		
Sampling Date				1		£
	UNITS	AUDIT-SSAS205-PEA1945	AUDIT-55A5205-PEA1948	RDL	MDL	QC Batch
Front Half Arsenic (As)	ug	21.8	N/A	0.80	0.080	4578361
Front Half Lead (Pb)	ug	22.2	N/A	0.40	0.040	4578361
Front Half Manganese (Mn)	ug	11.8	N/A	1.5	0.10	4578361
Front Half Nickel (Ni)	ug	22.7	N/A	1.0	0.20	4578361
Back Half Arsenic (As)	ug	N/A	0.563	0.0020	0.00040	4578356
Back Half Lead (Pb)	ug	N/A	1.20	0.0010	0.00040	4578356
Back Half Manganese (Mn)	ug	N/A	0.538	0.0020	0.00048	4578356
Back Half Nickel (Ni)	Ug	N/A	1.16	0.0020	0.00048	4578356
RDL = Reportable Detection I						
QC Batch = Quality Control B N/A = Not Applicable	atch					

Page 9 of 18

Maxwarn Analytics International Corporation w/a Maxwarn Analytics 6740 Composed to Read, Montoreuga, Ontario, LSN 213 Tel: (505) 817-5700 Tell-Free: 800-503-6256 Fac: (505) 813-5777 www.maxwarn.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	CRF920 M26A- SB H2SO4 Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2S0	04 Imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4572990	N/A	2016/07/11	LangLe	
Maxxam ID: Sample ID: Matrix:	CRF921 M26A- SB DI Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Halogens in NaOH Imping	jer -	IC/SPEC	4575114	2016/07/12	2016/07/12	Ann-Marie	Stern
Hydrogen Halides in H2SC	04 Imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4572990	N/A	2016/07/11	Lang Le	
Volume of Sodium Hydro	the second s		4575109	N/A	2016/07/12	Lang Le	
Maxxam ID: Sample ID: Matrix:	CRF922 M26A- SB NAOH Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Halogens in NaOH Imping	ogens in NaOH Impinger		4575114	2016/07/12	2016/07/12	Ann-Marie	Stern
Volume of Sodium Hydro	xide Impinger		4575109	N/A	2016/07/12	Lang Le	
Maxxam ID: Sample ID: Matrix:	CRF923 M26A- R1 H2SO4 Stack Sampling Train					Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H250	24 Imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4572990	N/A	2016/07/11	LangLe	
Maxxam ID: Sample ID: Matrix:	CRF923 Dup M26A- R1 H25O4 Stack Sampling Train					Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Betch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2S	D4 Imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie	Stern
	CRF924 M26A- R2 H2SO4 Stack Sampling Train					Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Hydrogen Halides in H250	04 imp.	Instrumentation IC/SPEC	Batch 4573698	Extracted 2016/07/11	Date Analyzed 2016/07/11	Analyst Ann-Marie	Stern

Page 10 of 18

Maxam Analytics International Corporation o/a Maxam Analytics 6740 Campobello Road, Missiounga, Ontario, LSN 218 Tel: (905) 817-5700 Tell-Free: 800-563-6266 Fac: (805) 817-5777 www.maxam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Sample ID:	CRF925 M26A- R3 H25O4 Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SO	4 Imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie	Stern
Volume of Sulfuric Acid Im	pinger		4572990	N/A	2016/07/11	Lang Le	
Sample ID:	CRF926 M26A- R1 NAOH Stack Sampling Train	8				Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
alogens in NaOH Impinger		IC/SPEC	4575114	2016/07/12	2016/07/12	Ann-Marie	Stern
Volume of Sodium Hydrox	ide Impinger		4575109	N/A	2016/07/12	Lang Le	
Maxxam ID: Sample ID: Matrix:	CRF926 Dup M26A- R1 NAOH Stack Sampling Train					Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Halogens in NaOH Impinge	sr	IC/SPEC	4575114	2016/07/12	2016/07/12	Ann-Marie	Stern
Sample ID:	CRF927 M26A- R2 NAOH Stack Sampling Train					Collected: Shipped: Received:	2016/07/06 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Halogens in NaOH Impings	er .	IC/SPEC	4575114	2016/07/12	2016/07/12	Aon-Marie	Stern
Volume of Sodium Hydrox			4575109	N/A	2016/07/12	Lang Le	
Sample ID:	CRF933 M26A- R3 NAOH Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Halogens in NaOH Impings	¥	IC/SPEC	4575114	2016/07/12	2016/07/12	Ann-Marie	Stern
Volume of Sodium Hydrox	ide Impinger		4575109	N/A	2016/07/12	Lang Le	
	CRF934 M201A- SB Stack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
2.5 um Particulates on Filt	er	BAL	4574320	N/A	2016/07/12		9100
And an of the state of the state of the state			the second second		manual and and	Brenda Moore	
Particulates/Acetone Rinse	the second s	BAL	4576378	2016/07/13	2016/07/14	Farag Fara	8

Page 11 of 18

Maxware Analytics International Corporation o/a Maxware Analytics 6740 Campobelle Road, Mississinga, Dintario, LSN 218 Tel: (905) 817-5700 Tel-Tree: 800-563-6265 Fax: (905) 817-5777 www.maxware.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Maxxam ID: CRF936 Sample ID: M201A- R2 Matrix: Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
>10um Particulates in Rinse	BAL	4576454	2016/07/13	2016/07/15	Farag Farag
2.5-10um Particulates in Rinse	BAL	4576450	2016/07/13	2016/07/15	Farag Farag
2.5 um Particulates on Filter	BAL	4574320	N/A	2016/07/12	Brenda Moore
<2.5um Particulates in Rinse	BAL	4576393	2016/07/13	2016/07/15	Farag Farag
Final Volume of Acetone Probe Rinse		4576399	N/A	2016/07/15	Farag Farag
Maxxam ID: CRF937 Sample ID: M201A- R3 Matrix: Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
>10um Particulates in Rinse	BAL	4576454	2016/07/13	2016/07/15	Farag Farag
2.5-10um Particulates in Rinse	BAL	4576450	2016/07/13	2016/07/15	Farag Farag
2.5 um Particulates on Filter	BAL	4574320	N/A	2016/07/12	Brenda Moore
<2.5um Particulates in Rinse	BAL	4576393	2016/07/13	2016/07/15	Farag Farag
Final Volume of Acetone Probe Rinse		4576399	N/A	2016/07/15	Farag Farag
Matrix: Stack Sampling Train					Received: 2016/07/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Test Description Extractable Condensables (M202)	Instrumentation BAL	Batch 4574675	Extracted 2016/07/12	Date Analyzed 2016/07/18	Analyst Muhammad M Rahman
Extractable Condensables (M202)	and all and the second s				
Extractable Condensables (M202)	BAL	4574675	2016/07/12	2016/07/18	Muhammad M Rahman
Non Extractable Condensibles (M202)	BAL	4574675 4576561	2016/07/12 2016/07/13	2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers	BAL BAL	4574675 4576561 4574699	2016/07/12 2016/07/13 N/A	2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train	BAL BAL	4574675 4576561 4574699	2016/07/12 2016/07/13 N/A	2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped:
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description	BAL BAL	4574675 4576561 4574699 4574709	2016/07/12 2016/07/13 N/A N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description	BAL BAL	4574675 4576561 4574699 4574709 Batch	2016/07/12 2016/07/13 N/A N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 Date Analyzed	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202)	BAL BAL Instrumentation BAL	4574675 4576561 4574699 4574709 Batch 4574675	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12	2016/07/18 2016/07/18 2016/07/18 2016/07/18 Date Analyzed 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202)	BAL BAL Instrumentation BAL	4574675 4576561 4574699 4574709 Batch 4574675 4576561	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13	2016/07/18 2016/07/18 2016/07/18 2016/07/18 Date Analyzed 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers	BAL BAL Instrumentation BAL BAL	4574675 4576561 4574699 4574709 Batch 4574675 4576561 4574699	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13 N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxoxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Non Extractable Condensables (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxoxam ID: CRF941 Sample ID: M202- R2 Matrix: Stack Sampling Train	BAL BAL Instrumentation BAL BAL	4574675 4576561 4574699 4574709 Batch 4574675 4576561 4574699	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13 N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Solvent from Impingers Weight of Water from Impingers Weight of Water from Impingers Weight of Water from Impingers Weight of Water from Impingers Test Description Test Description	BAL BAL Instrumentation BAL BAL	4574675 4576561 4574709 4574709 Batch 4574675 4576561 4574699 4574709	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13 N/A N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxoxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Weight of Solvent from Impingers Weight of Solvent from Impingers Weight of Water from Impingers Weight of Water from Impingers Weight of Water from Impingers Weight of Water from Impingers Test Description Extractable Condensables (M202) R2 Matrix: Stack Sampling Train Test Description Extractable Condensables (M202)	BAL BAL Instrumentation BAL BAL BAL Instrumentation	4574675 4576561 4574709 4574709 Batch 4574675 4576561 4574699 4574709 8atch	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13 N/A N/A N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman
Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: CRF939 Sample ID: M202- BT Matrix: Stack Sampling Train Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Weight of Water from Impingers Weight of Water from Impingers	BAL BAL Instrumentation BAL BAL Instrumentation BAL	4574675 4576561 4574709 4574709 Batch 4574675 4576561 4574699 4574709 Batch Batch	2016/07/12 2016/07/13 N/A N/A Extracted 2016/07/12 2016/07/13 N/A N/A N/A	2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18 2016/07/18	Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman

Page 12 of 18

Marwam Analytics International Corporation c/a Massam Analytics 6740 Campabello Road, Ministranga, Ontario, 15N 218 Tel: (905) 817-5700 Tell-Freet 800 565-6266 Fax: (905) 817-5777 www.massam.4a

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	CRF942 M202- R3 Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Extractable Condensables	(M202)	BAL	4574575	2016/07/12	2016/07/18	Muhammad M Rahman
Non Extractable Condensi	and a local distance of the local distance o	BAL	4576561	2016/07/13	2016/07/18	Muhammad M Rahman
Weight of Solvent from In	pingers	Copied for	4574599	N/A	2016/07/18	Muhammad M Rahman
Weight of Water from Im	pingers		4574709	N/A	2016/07/18	Muhammad M Rahman
Maxxam ID: Sample ID: Matrix:	CRF943 M5/29- SB Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals in Combined Train	(6020A)	ICP1/MS	4578442	2016/07/12	2016/07/14	Nan Raykha
Particulates/Acetone Rine	e (M5/315/M201)	BAL	4576378	2016/07/13	2016/07/14	Farag Farag
Particulates/Filter (M5/3)	S/NJATM1/M201)	BAL	4574313	N/A	2016/07/12	Brenda Moore
Final Volume of Acetone I	Probe Rinse		4576379	N/A	2016/07/14	Farag Farag
Sample ID: Matrix: Test Description	M5/29- R1 Stack Sampling Train	Instrumentation	Batch	Extracted	Date Analyzed	Shipped: Received: 2016/07/08 Analyst
Metals in Combined Train	(6020A)	ICP1/MS	4578442	2016/07/12	2016/07/14	Nan Raykha
Particulates/Acetone Rins	- is an inser is anothing	BAL	4576378	2016/07/13	2016/07/14	Farag Farag
	e (MS/315/MI201)		101.001.0			
Particulates/Filter (M5/31		BAL	4574313	N/A	2016/07/12	Brenda Moore
Particulates/Filter (M5/3) Final Volume of Acetone	15/NJATM1/M201)	BAL		N/A N/A	2016/07/12 2016/07/14	Brenda Moore Farag Farag
	IS/NJATM1/M201) Probe Rinse		4574313			2011/22/07/07
Final Volume of Acetone Maxxam ID: Sample ID: Matrix:	S/NJATM1/M201) Probe Rinse CRF944 Dup M5/29- R1		4574313			Farag Farag Collected: 2016/07/06 Shipped:
Final Volume of Acetone Maxicam ID: Sample ID:	IS/NJATM1/M2D1) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train		4574313 4576379	N/A	2016/07/14	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08
Final Volume of Acetone I Maxxam ID: Sample ID: Matrix: Test Description Metals in Combined Train Maxxam ID: Sample ID:	IS/NJATM1/M2D1) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train	Instrumentation ICP1/MS	4574313 4576379 Batch	N/A Extracted	2016/07/14 Date Analyzed	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08 Analyst
Final Volume of Acetone I Maxxam ID: Sample ID: Matrix: Test Description Metals in Combined Train Maxxam ID: Sample ID: Matrix:	IS/NJATM1/M201) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train (6020A) CRF945 M5/29- R2	Instrumentation ICP1/MS	4574313 4576379 Batch	N/A Extracted	2016/07/14 Date Analyzed	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08 Analyst Nan Raykha Collected: 2016/07/07 Shipped:
Final Volume of Acetone I Maxxam ID: Sample ID: Matrix: Test Description Metals in Combined Train Maxxam ID: Sample ID: Matrix:	IS/NJATM1/M201) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train (6020A) CRF945 M5/29- R2 Stack Sampling Train	Instrumentation ICP1/MS	4576379 4576379 Batch 4578442	N/A Extracted 2016/07/14	2016/07/14 Date Analyzed 2016/07/14	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08 Analyst Nan Raykha Collected: 2016/07/07 Shipped: Received: 2016/07/08
Final Volume of Acetone I Maxxam ID: Sample ID: Matrix: Test Description Maxxam ID: Sample ID: Matrix: Test Description	IS/NUATM1/M201) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train (6020A) CRF945 M5/29- R2 Stack Sampling Train	Instrumentation ICP1/MS	4574313 4576379 Batch 4578442 Batch	N/A Extracted 2016/07/14 Extracted	2016/07/14 Date Analyzed 2016/07/14 Date Analyzed	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08 Analyst Nan Raykha Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst
Final Volume of Acetone I Maxxam ID: Sample ID: Matrix: Test Description Metals in Combined Train Maxxam ID: Sample ID: Matrix: Test Description Metals in Combined Train	IS/NUATM1/M201) Probe Rinse CRF944 Dup M5/29- R1 Stack Sampling Train (6020A) CRF945 M5/29- R2 Stack Sampling Train (6020A) is (M5/315/M201)	Instrumentation ICP1/MS Instrumentation ICP1/MS	4574313 4576379 Batch 4578442 Batch 4578442	N/A Extracted 2016/07/14 Extracted 2016/07/12	2016/07/14 Date Analyzed 2016/07/14 Date Analyzed 2016/07/14	Farag Farag Collected: 2016/07/06 Shipped: Received: 2016/07/08 Analyst Nan Raykha Collected: 2016/07/07 Shipped: Received: 2016/07/08 Analyst Nan Raykha

Page 13 of 18

Maxian Analytics International Corporation o/o Maxiam Analytics 6740 Campobello Road, Mississaga, Ontario, USN 218 Tel. (205) 817-5700 Tell Free: 850-565-6256 Fax: (205) 817-5777 www.maxiam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	CRF946 M5/29- R3 Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08	
Test Description	5 F265-1101	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals in Combined Train	(6020A)	ICP1/MS	4578442	2016/07/12	2016/07/14	Nan Raykha	
Particulates/Acetone Rins	se (M5/315/M201)	BAL	4576378	2016/07/13	2016/07/14	Farag Farag	
Particulates/Filter (M5/3)	15/NJATM1/M201)	BAL	4574313	N/A	2016/07/12	Brenda Moore	
Final Volume of Acetone	Probe Rinse	30.	4576379	N/A	2016/07/14	Farag Farag	
Maxxam ID: Sample ID: Matrix:	CRF947 AUDIT-S5AS205-PEA Stack Sampling Train					Collected: Shipped: Received: 2016/07/08	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H250	04 imp.	IC/SPEC	4573698	2016/07/11	2016/07/11	Ann-Marie Stern	
Maxxam ID: Sample ID: Matrix:	CRF948 AUDIT-SSAS205-PEA Stack Sampling Train					Collected: Shipped: Received: 2016/07/08	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals F.H. in Filter + Rin	ses (6020A)	ICP1/MS	4578361	2016/07/12	2016/07/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	CRF949 AUDIT-SSAS205-PEA Stack Sampling Train					Collected: Shipped: Received: 2016/07/08	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals 8.H. in H2O2/HN0	23 Imp.(6020A)	ICP1/MS	4578356	2016/07/12	2016/07/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	CRF950 M201A- R4 Stack Sampling Train					Collected: 2016/07/07 Shipped: Received: 2016/07/08	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
	se	BAL	4576454	2016/07/13	2016/07/15	211 C 200 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	
		BAL	4576450	2016/07/13	2016/07/15	Farag Farag	
and an excellent of the local second s	and a construction of the	BAL	4574320	N/A	2016/07/12	Brenda Moore	
<2.5um Particulates in Ri	nse	BAL	4576393	2016/07/13	2016/07/15	Farag Farag	
Final Volume of Acetone			4576399	N/A	2016/07/15		
Test Description >10um Particulates in Rin 2.5-10um Particulates in 2.5 um Particulates on Fi <2.5 um Particulates in Ri Final Volume of Acetone	Rinse Iter nse	BAL BAL BAL	4576454 4576450 4574320 4576393	2016/07/13 2016/07/13 N/A 2016/07/13	2016/07/15 2016/07/15 2016/07/12 2016/07/15	A STATUTE AND A ST	
Maxxam ID: Sample ID: Matrix:	M202- R4					Collected: 2016/07/07 Shipped: Received: 2016/07/08	
Test Description	4 13 6 31	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Extractable Condensable	The second s	BAL	4574675	2016/07/12	2016/07/18	Muhammad M Rahman	
Non Extractable Condens		BAL	4576561	2016/07/13	2016/07/18	Muhammad M Rahman	_
Weight of Solvent from In	mpingers		4574699	N/A	2016/07/18	Muhammad M Rahman	
Weight of Water from Im			407 4033	N/A	2016/07/18		

Page 14 of 18

Maxam Analytics International Corporation o/s Massam Analytics 6740 Campobello Road, Mastanaga, Ontario, LSN 218 Tel: (905) 837-5700 Tell-Free: 800-563-6366 Fee: (905) 837-5777 www.na.com.ce

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

GENERAL COMMENTS

FILTERS : Untared filters were received.	
Sample CRF936-01 : LFT Loose filter material in the petri dish	
Sample CRF937-01 : LFT Loose filter material in the petri dish	
Sample_CRF938-01 : ORGANIC EXTRACTION : Whitish residue found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.	
Sample_CRF939-01 : ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION : Whitish residue found in Teflon dish.	
Sample CRF941-01 : ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION : Brownish residue found in Tefion dish.	
Sample CRF942-01 : ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION : Yellowishresidue found in Teflon dish.	
Sample CRF944-01 : LFT Loose filter material in the petri dish	
Sample_CRF945-D1 : LPC _ Loose particulate material in the petri dish LFT _ Loose filter material in the petri dish	
Sample CRF946-01 : LPC Loose particulate material in the petri dish LFT Loose filter material in the petri dish	
Sample_CRF947-01 : Audit reported in mg/l	
Sample CRF950-01 : LFT Loose filter material in the petri dish DE Edges of the filter are frayed FT Filter torn	8
Sample_CRF951-01 : ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION : Brownish residue found in Teflon dish. EPA M29 METALS (COMBINED TRAIN)	
Metals in Combined Train (6020A): Post digestion duplicate and spike were done on sample CRF944. ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)	
Metals B.H. in H2O2/HNO3 Imp.(6020A): Data for this sample is reported in ug/mL	
Results relate only to the items tested.	

Page 15 of 18

Massam Analytics International Corporation or A Massam Analytics 6740 Composello Read, Mississaga, Ontario, USN 218 Tel (965) 817-5780 Toli Free: 800-565-6268 Fax: (905) 817-5777 www.magxam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
4573698	A_S	Matrix Spike(CRF923)	Hydrochloric Acid	2016/07/11		94	%	80-120
\$573698	A_S	Spiked Blank	Hydrochloric Acid	2016/07/11		102	%	90-110
1573698	A_S	Method Blank	Hydrochloric Acid	2016/07/11	<250		ug	
4573698	AS	RPD - Sample/Sample Dup	Hydrochloric Acid	2016/07/11	0.69		%	20
1574675	MOR	Spiked Blank	Organic Condensibles	2016/07/18		92	96	70 - 130
1574675	MOR	Method Blank	Organic Condensibles	2016/07/18	<1.0		mg	
4575114	A.S	Matrix Spike(CRF926)	Chlorine	2016/07/12		102	%	80 - 120
4575114	A.S	Spiked Blank	Chlorine	2016/07/12		101	%	90 - 110
1575114	AS	Method Blank	Chlorine	2016/07/12	<1200		ug	
\$75114	A.S.	RPD - Sample/Sample Dup	Chlorine	2016/07/12	NC		%	20
\$76378	FF	Method Blank	Acetone Rinse Particulate Weight in Acetone	2016/07/14	<0.5		mg	
1576393	FF	Method Blank	< 2.5 Particulate Weight in Acetone Rinse	2016/07/15	<0.5		mg	
1576450	FF	Method Blank	2.5 - 10 Particulate Weight in Acetone Rinse	2016/07/15	<0.5		mg	
1576454	FF	Method Blank	> 10 Particulate Weight in Acetone Rinse	2016/07/15	<0.5		mg	
\$76561	MOR	Method Blank	Inorganic Condensibles	2016/07/18	<0.5		mg	
1578356	NR	Spiked Blank	Back Half Arsenic (As)	2016/07/14		101	%	85 - 11
			Back Half Lead (Pb)	2016/07/14		105	56	85 - 11
			Back Half Manganese (Mn)	2016/07/14		103	%	85 - 11
			Back Half Nickel (Ni)	2016/07/14		101	%	85 - 11
4578356	NR	Spiked Blank DUP	Back Half Arsenic (As)	2016/07/14		99	96	85 - 11
	1.000	19491510080100002101	Back Half Lead (Pb)	2016/07/14		107	36	85 - 11
			Back Half Manganese (Mn)	2016/07/14		101	56	85 - 11
			Back Half Nickel (Ni)	2016/07/14		102	%	85 - 11
1578356	NR	RPD	Back Half Arsenic (As)	2016/07/14	2.1		56	20
	-		Back Half Lead (Pb)	2016/07/14	0.49		%	20
			Back Half Manganese (Mn)	2016/07/14	2.0		96	20
			Back Half Nickel (Ni)	2016/07/14	0.33		%	20
4578356	NR	Method Blank	Back Half Arsenic (As)	2016/07/14	<0.0020		Ug	
10403554	0.08		Back Half Lead (Pb)	2016/07/14	<0.0010		ug	
			Back Half Manganese (Mn)	2016/07/14	<0.0020		ug	
			Back Half Nickel (Ni)	2016/07/14	<0.0020		ug	
4578361	NR	Spiked Blank	Front Half Arsenic (As)	2016/07/14	0.0000000000	100	56	85 - 11
			Front Half Lead (Pb)	2016/07/14		102	%	85 - 119
			Front Half Manganese (Mn)	2016/07/14		99	%	85 - 11
			Front Half Nickel (Ni)	2016/07/14		100	56	85 - 11
4578361	NR	Spiked Blank DUP	Front Half Arsenic (As)	2016/07/14		99	56	85 - 11
0.000000000		100000000000000000000000000000000000000	Front Half Lead (Pb)	2016/07/14		103	96	85 - 11
			Front Half Manganese (Mn)	2016/07/14		99	%	85 - 11
			Front Half Nickel (Ni)	2016/07/14		100	76	85 - 11
4578361	NR	RPD	Front Half Arsenic (As)	2016/07/14	0.40		%	20
	-		Front Half Lead (Pb)	2016/07/14	1.2		%	20
			Front Half Manganese (Mn)	2016/07/14	0.093		56	20
			Front Half Nickel (Ni)	2016/07/14	0.51		56	20
4578361	NR	Method Blank	Front Half Arsenic (As)	2016/07/14	<0.80		ug	25 A
	1000		Front Half Lead (Pb)	2015/07/14	<0.40		Ug	
			Front Half Manganese (Mn)	2016/07/14	<1.5		Ug	
			Front Half Nickel (Ni)	2016/07/14	<1.0		Ug	
4578442	NR	Matrix Spike(CRF944)	Combined Train Arsenic (As)	2016/07/14	-	97	%	70 - 130
			Combined Train Lead (Pb)	2016/07/14		104	56	70 - 130
			Combined Train Manganese (Mn)	2016/07/14		100	%	70 - 13
			Combined Train Nickel (Ni)	2016/07/14		100	%	70 - 13
4578442	NR	Matrix Solke DUD/CREDAN	Combined Train Nickel (Ni) Combined Train Arsenic (As)	2016/07/14		95	76	70 - 130
43/0442	u"u	matrix spike por(citra44)	Combined Train Lead (Pb)	2016/07/14		95 104	76	
			combined fram tead (Pb)	2010/07/14		104	76	70 - 13

Page 16 of 18

Maxiam Analytics International Corporation o/a Maxiam Analytics 6740 Composed to Boad, Minimurga, Ontario, LSN 318 Tel: (905) 817-5760 Toll-Free: 800 563-6266 Fae: (905) 817-5770 www.maxam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date	6703625 A	%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Combined Train Manganese (Mn)	2016/07/14		99	%	70-130
			Combined Train Nickel (NI)	2016/07/14		100	%	70-130
4578442	N_R	MS/MSD RPD	Combined Train Arsenic (As)	2016/07/14	2.1		%	20
	_		Combined Train Lead (Pb)	2016/07/14	0		%	20
			Combined Train Manganese (Mn)	2016/07/14	1.0		%	20
			Combined Train Nickel (Ni)	2016/07/14	1.0		%	20
4578442	N_R	Spiked Blank	Combined Train Arsenic (As)	2016/07/14		98	%	85 - 115
	11037403		Combined Train Lead (Pb)	2016/07/14		100	%	85 - 115
			Combined Train Manganese (Mn)	2016/07/14		98	%	85 - 115
			Combined Train Nickel (Ni)	2016/07/14		99	%	85-115
4578442	N_R	Spiked Blank DUP	Combined Train Arsenic (As)	2016/07/14		100	%	85-115
		8	Combined Train Lead (Pb)	2016/07/14		105	%	85 - 115
			Combined Train Manganese (Mn)	2016/07/14		101	96	85 - 115
			Combined Train Nickel (Ni)	2016/07/14		102	%	85 - 115
4578442	N_R	RPD	Combined Train Arsenic (As)	2016/07/14	2.6		%	20
	000000		Combined Train Lead (Pb)	2016/07/14	4.3		%	20
			Combined Train Manganese (Mn)	2016/07/14	3.5		%	20
			Combined Train Nickel (Ni)	2016/07/14	2.8		%	20
4578442	N_R	Method Blank	Combined Train Arsenic (As)	2016/07/14	<0.80		ug	
	-533		Combined Train Lead (Pb)	2016/07/14	<0.40		ug	
			Combined Train Manganese (Mn)	2016/07/14	<1.5		ug	
			Combined Train Nickel (Ni)	2016/07/14	<1.0		ug	
4578442	N_R	RPD - Sample/Sample Dup	가장을 잘 가 듣는 것 같은 것 이 것을 알 것 같아요. 한 동안 정신 가운데요. 이는	2016/07/14	NC		%	20
			Combined Train Lead (Pb)	2016/07/14	1.6		96	20
			Combined Train Manganese (Mn)	2015/07/14	0.67		96	20
			Combined Train Nickel (Ni)	2016/07/14	2.0		96	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement,

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Page 17 of 18

Massam Analytics International Corporation o/a Massam Analytics 6740 Campobello Read, Ministeraga, Ontario, USN 218 Tel (965) 837-5760 Toli Free: 800-563-6265 Fax: (905) 837-5777 www.massam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

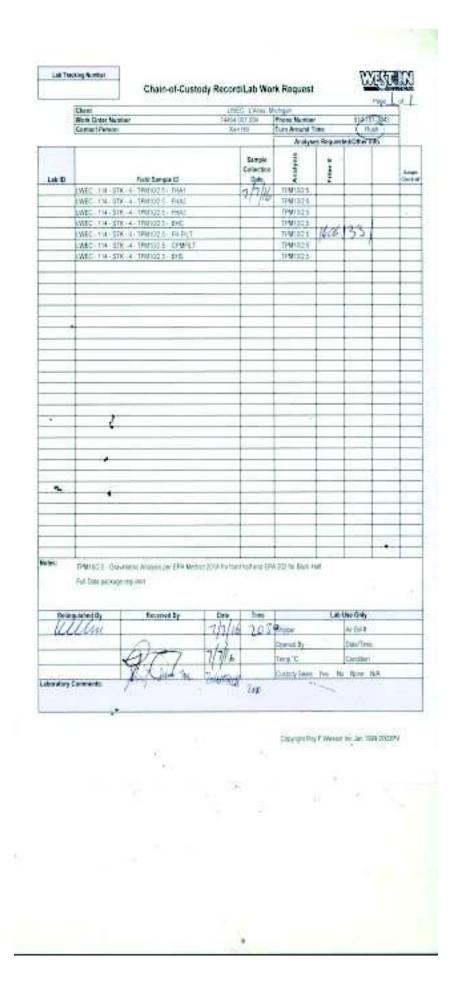
Bunda Moore

Brenda Moore, Team Lead

Tanle 0

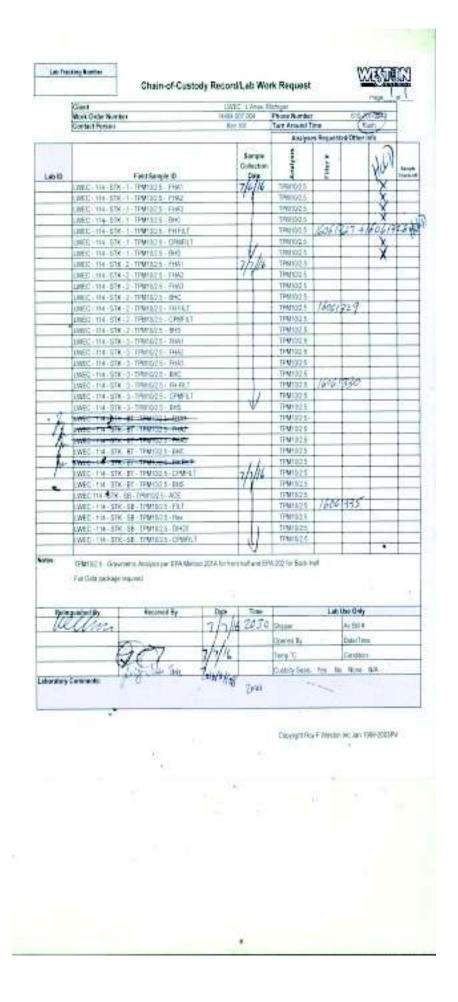
Frank Mo, B.Sc., Inorganic Lab. Manager

Ralph Siebert, Operations Manager - Inorganic Analyses

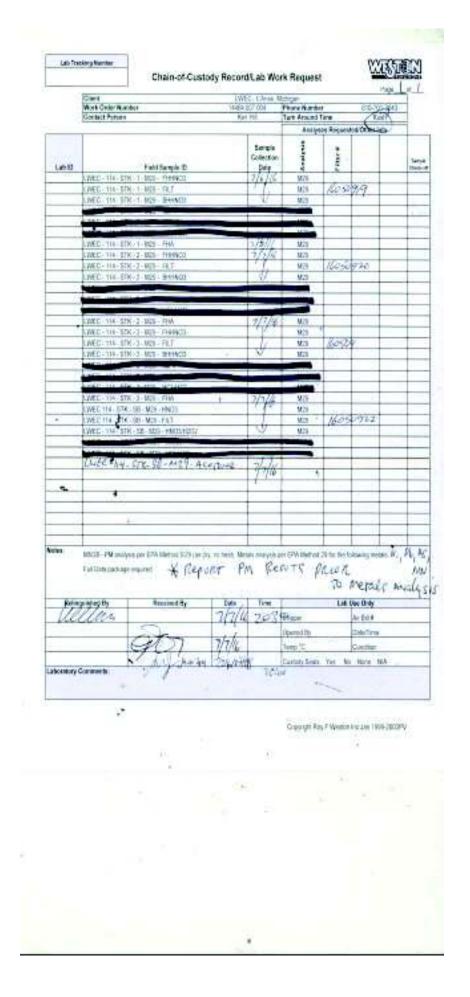

Maxiam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 18 of 18

Maxuum Analytics International Corporation u/a Masoam Analytics 6740 Campabello Road, Mississiaga, Ontario, LSN 218 Tel. (905) 827-5760 Toll Free: 800-563-6256 fee: (905) 827-5777 www.reasoam.co


Lab 10 U U U U U U U U U U U U U U U U U U U	Net Code Number and State Former International Former International State of International State of International International State of International International State of International International State of International International State of International State International State of International State of International State International State of International State of International State International State of International State of International State of International State of International State International State of International State of In	- M25A - M4DH - M25A - 102004 - M25A - M4CH - 825A - M4CH - 825A - M4CH	114	NE CANA A SUCCAL Security Contention 7/2/16	Phana Namber Tern Arisant Term Katigatan Recja	Columnation Office 7 Star	
	HEG 114 STM 1 HEG 114 STM 1 HEG 114 STM HEG 114 STM HEG 114 STM HEG 114 STM HEG 114 STM HEG 114 STM HEG 114 STM 1 HEG 114 STM 1 HEG 114 STM 1	MXA (CSO) (M2A MCH (M2A MCH (M2A (CSO) (M2A (M2A)) (M2A (M2A) (M2A (M2A)) (M2A) (M2A (M2A)) (M2A (M2A)) (M2A (M2A)) (M2A)) (M2A (M2A)) (M2A)) (M2A (M2A)) (M2A)) (M2A (M2A)) (M2A)) (M2A)) (M2A (M2A)) (Collection	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
					-		-
*	•						
H	1958 – Critecten in Chilos <u>2-50 –</u> re el Cata pachago rea	NIGH AN IN	Analise Lacepte Agencies de l'Are	n dekom mo th g. Mat-	9-9	w stas	
Printe	tin	termetty LSS V	17	16 203 16 203 14 710 ⁴		ak Uac Ordy Av put A Solution Countien No. Agong No.A	
	2	×.,		×	Carryte free Filler	ana ina jiw 1944-2970*	4)

Page 1 of 4



Page 2 of 4

257

Page 3 of 4

D.2 PCDD/PCDF AND CRESOL ISOMERS

Your Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2016/07/27 Report N: R4083058 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6E1667 Received: 2016/07/08, 20:00

Sample Matrix: Stack Sampling Train # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
SVOCs in MM5 SamplingTrain (EPA0010)	5	2016/07/11	2016/07/18	BRL SOP-00200	EPA 8270D/M0010 m
Dioxins/Furans in Air (Method 23)	5	2016/07/11	2016/07/19	BRL SOP-00404	EPA M23/23A m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Encryption Key

Print Print

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: Clohnson@maxxam.ca Phone# (905)817-5769

Maxiam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 19

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

Maxxam ID		CRF656	CRF661	CRF687	CRF688	CRF689			
Sampling Date		2016/07/07	2016/07/07	2016/07/06	2016/07/06	2016/07/07	1		
	UNITS	M23/0010 - SB	M23/0010 - BT	M23/0010 - R1	M23/0010 - R2	M23/0010 - R3	RDL	MDL	QC Batch
2-Methylphenol	ug	<5	<5	<5	<5	<5	5	1	4572741
3 & 4-methylphenol	ug	<5	<5	<5	<5	<5	5	1	4572741
Surrogate Recovery (%)									
2,4,6-Tribromophenol	56	113	119	117	109	113	N/A	N/A	4572741
2,6-Dibromo-4-fluorophenol (FS)	%	98	104	98	95	97	N/A	N/A	4572741
2-Fluorobiphenyl	%	106	111	107	109	104	N/A	N/A	4572741
2-Fluorophenol	%	96	105	107	106	102	N/A	N/A	4572741
D10-Pyrene (FS)	%	114	119	123	120	114	N/A	N/A	4572741
D14-Terphenyl	%	113	119	124	118	118	N/A	N/A	4572741
D5-Nitrobenzene	56	102	109	103	102	101	N/A	N/A	4572741
D5-Phenol	%	105	114 (1)	115 (1)	112	110	N/A	N/A	4572741

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 2 of 19

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF656							
Sampling Date		2016/07/07				TOXIC EQUIN	ALENCY	# of	
	UNITS	M23/0010 - SB	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	Pg	<3.7	3.7	30	6.0	1.00	3.70	N/A	4583299
1,2,3,7,8-Penta CDD *	PB	<3.2	3.2	30	6.0	1.00	3.20	N/A	4583299
1,2,3,4,7,8-Hexa CDD *	Pg	<3.4	3.4	30	6.0	0.100	0.340	N/A	4583299
1,2,3,6,7,8-Hexa CDD *	pg	<3.4	3.4	30	6.0	0.100	0.340	N/A	4583299
1,2,3,7,8,9-Hexa CDD *	PB	<3.0	3.0	30	6.0	0.100	0.300	N/A	4583299
1,2,3,4,6,7,8-Hepta CDD *	PS	<3.9	3.9	30	9.0	0.0100	0.0390	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDD *	Pg	11.2	3.5	300	9.0	0.000300	0.00336	N/A	4583299
Total Tetra CDD *	Pg	<7.7 (1)	7.7	30	N/A	N/A	N/A	0	4583299
Total Penta CDD *	PE	<8.7 (1)	8.7	30	N/A	N/A	N/A	0	4583299
Total Hexa CDD *	PS	<19 (1)	19	30	N/A	N/A	N/A	0	4583299
Total Hepta CDD *	Pg	<3.9	3.9	30	N/A	N/A	N/A	0	4583299
2,3,7,8-Tetra CDF **	PE	<3.3	3.3	30	6.0	0.100	0.330	N/A	4583299
1,2,3,7,8-Penta CDF **	PB	<3.7	3.7	30	6.0	0.0300	0.111	N/A	4583299
2,3,4,7,8-Penta CDF **	PB	<3.7	3.7	30	6.0	0.300	1.11	N/A	4583299
1,2,3,4,7,8-Hexa CDF **	Pg	<3.6	3.6	30	6.0	0.100	0.360	N/A	4583299
1,2,3,6,7,8-Hexa CDF **	pg	<3.3	3.3	30	6.0	0.100	0.330	N/A	4583299
2,3,4,6,7,8-Hexa CDF **	Pg	<3.6	3.6	30	6.0	0.100	0.360	N/A	4583299
1,2,3,7,8,9-Hexa CDF **	Pg	<3.9	3.9	30	6.0	0.100	0.390	N/A	4583299
1,2,3,4,6,7,8-Hepta CDF **	Pg	<3.1	3.1	30	9.0	0.0100	0.0310	N/A	4583299
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.8	3.8	30	6.0	0.0100	0.0380	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDF **	PB	<3.6	3.6	300	15	0.000300	0.00108	N/A	4583299
Total Tetra CDF **	Pg	<3.3	3.3	30	N/A	N/A	N/A	0	4583299
Total Penta CDF **	Pg	<3.7	3.7	30	N/A	N/A	N/A	0	4583299
Total Hexa CDF **	PB	<3.6	3.6	30	N/A	N/A	N/A	0	4583299
Total Hepta CDF **	PB	<3.4	3.4	30	N/A	N/A	N/A	0	4583299
TOTAL TOXIC EQUIVALENCY	Pg	N/A	N/A	N/A	N/A	N/A	11.0	N/A	N/A
Surrogate Recovery (%)	- 22	v		1	i			u);	
C13-1234678 HeptaCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Page 3 of 19

Maxiam Analytics International Corporation o/a Maxiam Analytics 6740 Earstobelle Road, Mitobauge, Ordario, USN 218. Tel. (505) 817-5700 Tell-Pres: 800-563-6186 Par. (505) 817-5777 www.maxiam.in

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam (D		CRF656							
Sampling Date		2016/07/07		2.6		TOXIC EQUIN	ALENCY	# of	ĉ
	UNITS	M23/0010 - SB	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	1%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDD *	56	106	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDF **	%	109	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234789 HeptaCDF **	%	101	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDD *	%	100	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDF **	%	106	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDF **	%	110	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123789 HexaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-23478 PentaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDF **	%	105	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-Octachlorodibenzo-p-Dioxin	%	95	N/A	N/A	N/A	N/A	N/A	N/A	4583299
CI37-2378 TetraCDD *	%	106	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Page 4 of 19

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF661				1			
Sampling Date		2016/07/07		19-14		TOXIC EQUIV	ALENCY	# of	
	UNITS	M23/0010 - BT	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	Pg	<3.9	3.9	30	6.0	1.00	3.90	N/A	4583299
1,2,3,7,8-Penta CDD *	pg	<3.8	3.8	30	6.0	1.00	3.80	N/A	4583299
1,2,3,4,7,8-Hexa CDD *	pg	<3.5	3.5	30	6.0	0.100	0.350	N/A	4583299
1,2,3,6,7,8-Hexa CDD *	Pg	<3.6	3.6	30	6.0	0.100	0.360	N/A	4583299
1,2,3,7,8,9-Hexa CDD *	Pg	<3.2	3.2	30	6.0	0.100	0.320	N/A	4583299
1,2,3,4,6,7,8-Hepta CDD *	PE	<4.1	4.1	30	9.0	0.0100	0.0410	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDD *	PE	26.0	3.7	300	9.0	0.000300	0.00780	N/A	4583299
Total Tetra CDD *	Pg	<7.4 (1)	7.4	30	N/A	N/A	N/A	0	4583299
Total Penta CDO *	pg	<8.5 (1)	8.5	30	N/A	N/A	N/A	0	4583299
Total Hexa CDD *	pg	<19(1)	19	30	N/A	N/A	N/A	0	4583299
Total Hepta CDD *	Pg	<4.8 (1)	4.8	30	N/A	N/A	N/A	0	4583299
2,3,7,8-Tetra CDF **	PS	<3.9	3.9	30	6.0	0.100	0.390	N/A	4583299
1,2,3,7,8-Penta CDF **	Pg	<3.1	3.1	30	6.0	0.0300	0.0930	N/A	4583299
2,3,4,7,8-Penta CDF **	Pg	<3.1	3.1	30	6.0	0.300	0.930	N/A	4583299
1,2,3,4,7,8-Hexa CDF **	PE	<3.7	3.7	30	6.0	0.100	0.370	N/A	4583299
1,2,3,6,7,8-Hexa CDF **	PS	<3.4	3.4	30	6.0	0.100	0.340	N/A	4583299
2,3,4,6,7,8-Hexa CDF **	PS	<3.7	3.7	30	6.0	0.100	0.370	N/A	4583299
1,2,3,7,8,9-Hexa CDF **	PE	<4.1	4.1	30	6.0	0.100	0.410	N/A	4583299
1,2,3,4,6,7,8-Hepta CDF **	PS	<2.8	2.8	30	9.0	0.0100	0.0280	N/A	4583299
1,2,3,4,7,8,9-Hepta CDF **	PS	<3.4	3.4	30	6.0	0.0100	0.0340	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDF **	PE	<3.6	3.6	300	15	0.000300	0.00108	N/A	4583299
Total Tetra CDF **	PE	<3.9	3.9	30	N/A	N/A	N/A	0	4583299
Total Penta CDF **	P8	<3.1	3.1	30	N/A	N/A	N/A	0	4583299
Total Hexa CDF **	PS	<3.7	3.7	30	N/A	N/A	N/A	0	4583299
Total Hepta CDF **	PE	<3.1	3.1	30	N/A	N/A	N/A	0	4583299
TOTAL TOXIC EQUIVALENCY	PE	N/A	N/A	N/A	N/A	N/A	11.7	N/A	N/A
Surrogate Recovery (%)						· · · · · · · · · · · · · · · · · · ·			
C13-1234678 HeptaCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Page 5 of 19

Mansam Analytics International Corporation o/a Maxian Analytics 6740 Campobelle Road, Missistanga, Omario, USN 218 Tel: (905) 817-5780 Tol: Fine: 800-569-6266 Fax: (905) 817-5777 www.maxiam.cs

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF661							
Sampling Date		2016/07/07				TOXIC EQUIN	ALENCY	# of	1
	UNITS	M23/0010 - BT	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDD *	%	113	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234789 HeptaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDF **	%	112	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDD *	%	90	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDF **	%	109	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123789 HexaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-23478 PentaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDD *	%	92	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDF **	%	101	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-Octachlorodibenzo-p-Dioxin	%	94	N/A	N/A	N/A	N/A	N/A	N/A	4583299
CI37-2378 TetraCDD *	%	106	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Page 6 of 19

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF687							
Sampling Date		2016/07/06				TOXIC EQUIN	ALENCY	# of	9
	UNITS	M23/0010 - R1	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg	6.9 (1)	3.9	30	6.0	1.00	6.90	N/A	4583299
1,2,3,7,8-Penta CDD *	PE	14.3	3.7	30	6.0	1.00	14.3	N/A	4583299
1,2,3,4,7,8-Hexa CDD *	Pg	5.8 (1)	4.0	30	6.0	0.100	0.580	N/A	4583299
1,2,3,6,7,8-Hexa CDD *	Pg	10.6	4.1	30	6.0	0.100	1.06	N/A	4583299
1,2,3,7,8,9-Hexa CDD *	pg	14.2	3.6	30	6.0	0.100	1.42	N/A	4583299
1,2,3,4,6,7,8-Hepta CDD *	PE	30.6	3.9	30	9.0	0.0100	0.306	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDD *	PS	95.9	3.5	300	9.0	0.000300	0.0288	N/A	4583299
Total Tetra CDD *	PS	150	3.9	30	N/A	N/A	N/A	9	4583299
Total Penta CDD *	PE	208	3.7	30	N/A	N/A	N/A	12	4583299
Total Hexa CDD *	PE	110	3.9	30	N/A	N/A	N/A	5	4583299
Total Hepta CDD *	PS	80.7	3.9	30	N/A	N/A	N/A	2	4583299
2,3,7,8-Tetra CDF **	PS	<23 (2)	23	30	6.0	0.100	2.30	N/A	4583299
1,2,3,7,8-Penta CDF **	PE	3.8	3.6	30	6.0	0.0300	0.114	N/A	4583299
2,3,4,7,8-Penta CDF **	PE	4.0	3.5	30	6.0	0.300	1.20	N/A	4583299
1,2,3,4,7,8-Hexa CDF **	Pg	5.2	3.8	30	6.0	0.100	0.520	N/A	4583299
1,2,3,6,7,8-Hexa CDF **	PS	<3.5	3.5	30	6.0	0.100	0.350	N/A	4583299
2,3,4,6,7,8-Hexa CDF **	PE	<3.9	3.9	30	6.0	0.100	0.390	N/A	4583299
1,2,3,7,8,9-Hexa CDF **	P8	<4.2	4.2	30	6.0	0.100	0.420	N/A	4583299
1,2,3,4,6,7,8-Hepta CDF **	PS	6.0	3.4	30	9.0	0.0100	0.0600	N/A	4583299
1,2,3,4,7,8,9-Hepta CDF **	PS	<4.1	4.1	30	6.0	0.0100	0.0410	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDF **	PE	<7.9 (3)	7.9	300	15	0.000300	0.00237	N/A	4583299
Total Tetra CDF **	PB	78.6	3.3	30	N/A	N/A	N/A	9	4583299
Total Penta CDF **	PS	17.0	3.5	30	N/A	N/A	N/A	4	4583299
Total Hexa CDF **	PS	10.2	3.8	30	N/A	N/A	N/A	2	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / Ratio - Isotopic ratio adjusted to meet theoretical

(2) RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

(3) EMPC / DPE - Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

Page 7 of 19

Mension Analytics International Corporation o/a Manuam Analytics 6740 Compose to Road, Mississinga, Ontario, USN 218 Tel. (205) 817-5700 Tell Pres: 800-563-6256 Fas. (203) 817-5777 www.manuam.cu

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxam ID		CRF687							
Sampling Date		2016/07/06		3 - 3		TOXIC EQUIN	ALENCY	# of	
	UNITS	M23/0010 - R1	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Hepta CDF **	PB	10.4	3.7	30	N/A	N/A	N/A	2	4583299
TOTAL TOXIC EQUIVALENCY	PB	N/A	N/A	N/A	N/A	N/A	30.0	N/A	N/A
Surrogate Recovery (%)						the second second			
C13-1234678 HeptaCDD *	96	97	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234678 HeptaCDF **	8	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDD *	%	107	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDF **	%	101	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234789 HeptaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDD *	%	99	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDF **	%	118	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDF **	%	111	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123789 HexaCDF **	%	105	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-23478 PentaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDF **	8	105	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-Octachlorodibenzo-p-Dioxin	8	96		N/A	N/A	N/A	N/A	N/A	4583299
Cl37-2378 TetraCDD *	%	105	-	N/A		N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

CDD = Chloro Dibenzo-p-Dioxin

Page 8 of 19

Maxaam Analytica International Corporation o/a Maxaam Analytica 6740 Campobello Road, Maximuaga, Ontario, USM 203 Tel: (903) 817-5789 Tel: Free: 900 562 6266 Fee: (905) 813-5777 www.maxaam.co

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF688		n n					
Sampling Date		2016/07/06		8-1		TOXIC EQUIN	ALENCY	# of	
	UNITS	M23/0010 - R2	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	PB	4.7 (1)	4.1	30	6.0	1.00	4.70	N/A	4583299
1,2,3,7,8-Penta CDD *	PB	9.3	3.9	30	6.0	1.00	9.30	N/A	4583299
1,2,3,4,7,8-Hexa CDD *	Pg	5.6	3.3	30	6.0	0.100	0.560	N/A	4583299
1,2,3,6,7,8-Hexa CDD *	PS	12.6	3.3	30	6.0	0.100	1.26	N/A	4583299
1,2,3,7,8,9-Hexa CDD *	Pg	12.9	2.9	30	6.0	0.100	1.29	N/A	4583299
1,2,3,4,6,7,8-Hepta CDD *	Pg	81.5	3.8	30	9.0	0.0100	0.815	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDD *	PS	238	3.7	300	9.0	0.000300	0.0714	N/A	4583299
Total Tetra CDD *	Pg	56.6	4.1	30	N/A	N/A	N/A	6	4583299
Total Penta CDD *	pg	96.6	3.9	30	N/A	N/A	N/A	9	4583299
Total Hexa CDD *	PB	91.8	3.2	30	N/A	N/A	N/A	6	4583299
Total Hepta CDD *	PS	162	3.8	30	N/A	N/A	N/A	2	4583299
2,3,7,8-Tetra CDF **	Pg	10.7	3.5	30	6.0	0.100	1.07	N/A	4583299
1,2,3,7,8-Penta CDF **	PB	<3.9	3.9	30	6.0	0.0300	0.117	N/A	4583299
2,3,4,7,8-Penta CDF **	PB	<3.9	3.9	30	6.0	0.300	1.17	N/A	4583299
1,2,3,4,7,8-Hexa CDF **	PS	5.4	4.0	30	6.0	0.100	0.540	N/A	4583299
1,2,3,6,7,8-Hexa CDF **	PB	<3.7	3.7	30	6.0	0.100	0.370	N/A	4583299
2,3,4,6,7,8-Hexa CDF **	pg	<4.0	4.0	30	6.0	0.100	0.400	N/A	4583299
1,2,3,7,8,9-Hexa CDF **	PB	<4.4	4.4	30	6.0	0.100	0.440	N/A	4583299
1,2,3,4,6,7,8-Hepta CDF **	PS	7.7	3.1	30	9.0	0.0100	0.0770	N/A	4583299
1,2,3,4,7,8,9-Hepta CDF **	PE	<3.8	3.8	30	6.0	0.0100	0.0380	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDF **	PB	<15 (2)	15	300	15	0.000300	0.00450	N/A	4583299
Total Tetra CDF **	PB	30.2	3.5	30	N/A	N/A	N/A	5	4583299
Total Penta CDF **	PB	<3.9	3.9	30	N/A	N/A	N/A	0	4583299
Total Hexa CDF **	pg	5.4	4.0	30	N/A	N/A	N/A	1	4583299
Total Hepta CDF **	PB	17.1	3.4	30	N/A	N/A	N/A	2	4583299
TOTAL TOXIC EQUIVALENCY	PB	N/A	N/A	N/A	N/A	N/A	22.2	N/A	N/A

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / Ratio - Isotopic ratio adjusted to meet theoretical

(2) EMPC / DPE - Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

Page 9 of 19

Maxaam Analytics International Corporation (4) Maxaam Analytics G710 Campobello Road, Missionaga, Ontaria, (5N 2LI Tel: (202) 817-5703 Tell-Free: 800 563-6266 Fee: (802) 817-5777 www.measam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF688		1		1		1	
Sampling Date		2016/07/06				TOXIC EQUIV	ALENCY	# of	
	UNITS	M23/0010 - R2	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)			6	8 A		9 62		99	92.
C13-1234678 HeptaCDD *	%	105	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234678 HeptaCDF **	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDD *	%	110	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234789 HeptaCDF **	%	107	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDD *	%	106	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDF **	%	84	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDF **	%	120	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123789 HexaCDF **	%	112	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-23478 PentaCDF **	1%	90	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDF **	%	114	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-Octachlorodibenzo-p-Dioxin	%	102	N/A	N/A	N/A	N/A	N/A	N/A	4583299
CI37-2378 TetraCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Page 10 of 19

Weston Solutions inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxxam ID		CRF689				6			
Sampling Date		2016/07/07		1	- 8	TOXIC EQUIV	ALENCY	# of	1
	UNITS	M23/0010 - R3	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	PB	5.9 (1)	4.0	30	6.0	1.00	5.90	N/A	4583299
1,2,3,7,8-Penta CDD *	PB	8.8	4.2	30	6.0	1.00	8.80	N/A	4583299
1,2,3,4,7,8-Hexa CDD *	Pg	<4.0	4.0	30	6.0	0.100	0.400	N/A	4583299
1,2,3,6,7,8-Hexa CDD *	Pg	5.6	4.0	30	6.0	0.100	0.560	N/A	4583299
1,2,3,7,8,9-Hexa CDD *	PB	6.8	3.6	30	6.0	0.100	0.680	N/A	4583299
1,2,3,4,6,7,8-Hepta CDD *	PB	17.2	3.6	30	9.0	0.0100	0.172	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDD *	PS	53.1	3.6	300	9.0	0.000300	0.0159	N/A	4583299
Total Tetra CDD *	PE	69.7	4.0	30	N/A	N/A	N/A	7	4583299
Total Penta CDD *	PB	90.2	4.2	30	N/A	N/A	N/A	9	4583299
Total Hexa CDD *	PB	51.5	3.8	30	N/A	N/A	N/A	4	4583299
Total Hepta CDD *	PS	40.7	3.6	30	N/A	N/A	N/A	2	4583299
2,3,7,8-Tetra CDF **	Pg	12.0	3.7	30	6.0	0.100	1.20	N/A	4583299
1,2,3,7,8-Penta CDF **	PB	<3.5	3.5	30	6.0	0.0300	0.105	N/A	4583299
2,3,4,7,8-Penta CDF **	PB	3.7	3.5	30	6.0	0.300	1.11	N/A	4583299
1,2,3,4,7,8-Hexa CDF **	PB	3.8	3.6	30	6.0	0.100	0.380	N/A	4583299
1,2,3,6,7,8-Hexa CDF **	pg	<3.3	3.3	30	6.0	0.100	0.330	N/A	4583299
2,3,4,6,7,8-Hexa CDF **	PB	<3.6	3.6	30	6.0	0.100	0.360	N/A	4583299
1,2,3,7,8,9-Hexa CDF **	PB	<4.0	4.0	30	6.0	0.100	0.400	N/A	4583299
1,2,3,4,6,7,8-Hepta CDF **	Pg	3.4 (1)	2.7	30	9.0	0.0100	0.0340	N/A	4583299
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.3	3.3	30	6.0	0.0100	0.0330	N/A	4583299
1,2,3,4,6,7,8,9-Octa CDF **	pg	<3.8	3.8	300	15	0.000300	0.00114	N/A	4583299
Total Tetra CDF **	PB	30.5	3.7	30	N/A	N/A	N/A	5	4583299
Total Penta CDF **	Pg	7.5	3.5	30	N/A	N/A	N/A	2	4583299
Total Hexa CDF **	pg	3.8	3.6	30	N/A	N/A	N/A	1	4583299
Total Hepta CDF **	PE	3.4	3.0	30	N/A	N/A	N/A	1	4583299
TOTAL TOXIC EQUIVALENCY	PB	N/A	N/A	N/A	N/A	N/A	20.5	N/A	N/A
Surrogate Recovery (%)									
C13-1234678 HeptaCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / Ratio - Isotopic ratio adjusted to meet theoretical

Page 11 of 19

Massam Analytics International Corporation o/a Massam Analytics 6746 Composello Road, Mastanaga, Ontario, LSN 318 Tel. (905) 817-5770 Toll-Free: 800-563-6366 Fax: (805) 817-5777 www.microarm.cs

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Maxam ID	8 13	CRF689		2.3	()				3- 11-
Sampling Date		2016/07/07				TOXIC EQUIN	ALENCY	# of	4 60
	UNITS	M23/0010 - R3	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	108	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123478 HexaCDF **	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-1234789 HeptaCDF **	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDD *	%	113	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123678 HexaCDF **	%	118	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-12378 PentaCDF **	%	115	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-123789 HexaCDF **	%	114	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-23478 PentaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-2378 TetraCDF **	%	113	N/A	N/A	N/A	N/A	N/A	N/A	4583299
C13-Octachlorodibenzo-p-Dioxin	%	103	N/A	N/A	N/A	N/A	N/A	N/A	4583299
CI37-2378 TetraCDD *	56	104	N/A	N/A	N/A	N/A	N/A	N/A	4583299

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Page 12 of 19

Manuary Analytics International Corporation o/a Manuary Analytics 6740 Compose to Road, Manuarya, Ontario, USN 21.8 Tel. (2005) 817-5700 Tell Fore: R00 568-6266 Fore; (905) 817-5777 www.manuary.co

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

TEST SUMMARY

Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic Dioxins/Furans in Air (Method 23) MRMS/MS 4583299 2016/07/11 2016/07/19 Owen Costly Maxxam ID: Sample ID: Matrix: CRF661 Stack SamplingTrain Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/18 Udija Tomic Maxcam ID: CRF687 Sample ID: M23/0010 - R1 Matrix: Stack Sampling Train Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic SVOCs in MAK SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic SVOCs in MAK SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Costly Maxcam ID:	Sample ID: M	RF656 23/0010 - SB ack Sampling Train					Collected: Shipped: Received:	2016/07/07 2016/07/08
Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: Sample ID: Matrix: Stack SamplingTrain (EPA0010) Instrumentation GC/MS Batch Extracted Date Analyzed Analyst Uoxins/Furans in Air (Method 23) Instrumentation Matrix: Batch Extracted Date Analyzed Analyst Uoxins/Furans in Air (Method 23) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Maxcam ID: SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Maxcam ID: SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udigs Tomic Dioxins/Furans in Air (Method 23) Instrumentation Matrix: Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udigs Tomic SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Maxcam ID: SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Maxcam ID: CRF688 Instrumentation Batch Extracted Date Analyzed Analyst SVOCs	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Maxxam ID: CRF661 Sample ID: Z015/07/07 Matrix: Stample ID: M23/0010 - BT Matrix: Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF687 Sample ID: M23/0010 - R1 Matrix: Stack Sampling Train Collected: 2016/07/06 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/18 Lidija Tomic Maxcam ID: CRF688 Sample ID: M23/0010 - R3 Extracted Date Analyzed Analyst	SVOCs in MM5 SamplingTrain	(EPA0010)	GC/MS	4572741	2016/07/11	2016/07/18	Lidija Tom	ic
Sample ID: M23/0010 - BT Matrix: Shipped: Stack Sampling Train Shipped: Received: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS Sampling Train (EPA0010) GC/MS 4572741 2016/07/18 Udija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Costy Maxoam ID: CRF687 Collected: 2016/07/06 Shipped: Shipped: Received: 2016/07/06 Souces in MMS Sampling Train Instrumentation Batch Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS Sampling Train (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic Diouns/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Costy Maxoam ID: CRF688 Sampling Train Collected: 2016/07/06 Shipped: Shipped: 2016/07/06 SvOCs in MMS Sampling Train (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19	Dioxins/Furans in Air (Methor	d 23)	HRMS/MS	4583299	2016/07/11	2016/07/19	Owen Cos	by
SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udja Tomic Dioxins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF687 Sample ID: M23/0010 - R1 Matrix: Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udja Tomic Diouins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/18 Udja Tomic Diouins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF688 Sample ID: M23/0010 - R2 Keceived: 2016/07/106 Shipped: Received: 2016/07/18 Udja Tomic Diouins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/18 Udja Tomic SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udja Tomic Diouins/Furans in Air (Method 23) HRM5/MS 4583299 2016/07/11 2016/07/18 Udja Tom	Sample ID: M	23/0010 - BT					Shipped:	
Dissing/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF687 Sample ID: M23/0010 - R1 Matrix: Stack Sampling Train Collected: 2016/07/06 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Diouins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/18 Lidija Tomic Maxxam ID: CRF688 Sample ID: M32/0010 - R2 Matrix: Stack Sampling Train Collected: 2016/07/06 Shipped: Matrix: Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) MRMS/MS 4583299 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) MRMS/MS 4583299	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Maxxam ID: CRF687 M23/0010 - R1 Matrix: Collected: 2016/07/06 Shipped: Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxing/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF688 Sample ID: Instrumentation Batch Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampiling Train Stack Sampling Tra	SVDCs in MM5 SamplingTrain	(EPA0010)	GC/MS	4572741	2016/07/11	2016/07/18	Lidija Tom	lic 🗇
Sample ID: M23/0010 - R1 Matrix: Shipped: Stack Sampling Train Shipped: Received: Shipped: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Masxam ID: CRF688 Sample ID: M23/0010 - R2 Matrix: Stack Sampling Train Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Udija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Matrix: Stack SamplingTrain MXS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Masxam ID: CRF689 Sample ID:	Dioxins/Furans in Air (Methor	d 23)	HRMS/MS	4583299	2016/07/11	2016/07/19	Owen Cos	by
SVDCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxoxam ID: CRF688 Sample ID: M23/0010 - R2 Matrix: Stack Sampling Train Collected: 2016/07/06 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/18 Lidija Tomic SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Collected: 2016/07/07 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741	Sample ID: M	23/0010 - R1				Ŭ.	Shipped:	mandelandland
Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxoxam ID: CRF688 Sample ID: M23/0010 - R2 Matrix: Stack Sampling Train Collected: 2016/07/06 Shipped: Received: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/19 Owen Cosby Maxoxam ID: CRF689 Sample ID: MRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxoxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Collected: 2016/07/07 Shipped: Received: 2016/07/07 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS SamplingTrain Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic <td>and the second se</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Contraction of the local division of the loc</td> <td></td>	and the second se						Contraction of the local division of the loc	
Maxxam ID: CRF688 Sample ID: M23/0010 - R2 Matrix; Collected: 2016/07/06 Shipped: Received: Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/M5 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/M5 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Collected: 2016/07/07 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Collected: 2016/07/07 Shipped: Received: 2016/07/08 Shipped: Received: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	The state of the second s	and the second se	and a second	Contraction of the American Street, St	and the second se	and the second s		and the second
Sample ID: M23/0010 - R2 Matrix: Shipped: Shipped: Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS Sampling Train CRF689 Source 2016/07/11 2016/07/19 Owen Cosby Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Dioxins/Furans in Air (Metho	d 23)	HRMS/MS	4583299	2016/07/11	2016/07/19	Owen Cos	by
SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Sample ID: M23/0010 - R3 Matrix: Stack Sampling Train Extracted Date Analyzed Analyst Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVOCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Sample ID: M	23/0010 - R2					Shipped:	
Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby Maxxam ID: CRF689 Collected: 2016/07/07 Shipped: Shipped: Received: 2016/07/07 Matrix: Stack Sampling Train Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Maxxam ID: CRF689 Collected: 2016/07/07 Sample ID: M23/0010 - R3 Shipped: Received: 2016/07/08 Matrix: Stack Sampling Train Received: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	SVOCs in MM5 SamplingTrain	(EPA0010)	GC/MS	4572741	2016/07/11	2016/07/18	Lidija Tom	ic
Sample ID: M23/0010 - R3 Shipped: Matrix: Stack Sampling Train Received: 2016/07/08 Test Description Instrumentation Batch Extracted Date Analyzed Analyst SVDCs in MMS SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Dioxins/Furans in Air (Methor	d 23)	HRMS/MS	4583299	2016/07/11	2016/07/19	Owen Cos	by
SVDCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Sample ID: M	23/0010 - R3					Shipped:	1.000 STORE 1.000
SVDCs in MM5 SamplingTrain (EPA0010) GC/MS 4572741 2016/07/11 2016/07/18 Lidija Tomic	Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dioxins/Furans in Air (Method 23) HRMS/MS 4583299 2016/07/11 2016/07/19 Owen Cosby	provide the state of the state	(EPA0010)	GC/MS	4572741	2016/07/11			ic .
	and the second se		HRMS/MS	4583299	2016/07/11			

Page 13 of 19

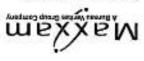
Massam Analytics International Corporation s/s Massam Analytics 6740 Composality Read, Ministrange, Ontario, USN 218 Tel: (985) 617-5700 Tell Free: 880-563-6266 Fax: (905) 817-5777 www.massam.cs

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

GENERAL COMMENTS

Results relate only to the items tested.

Page 14 of 19 Maxiam Analytics International Corporation o/b Maxiam Analytics 6740 Camastello Road, Mississauga, Ontario, USN 218 Tel. (905) 817-5700 Tell-Free: 800-568-6266 Fax: (905) 817-5777 www.maxiam.co


Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	
4572741	LTO	Spiked Blank	2,4,6-Tribromophenol	2016/07/18		113	%	24 - 121
			2-Fluorobiphenyl	2016/07/18		107	%	30 - 115
			2-Fluorophenol	2016/07/18		53	%	30 - 130
			2-Methylphenol	2016/07/18		102	%	N/A
			3 & 4-methylphenol	2016/07/18		109	%	N/A
			D14-Terphenyl	2016/07/18		111	%	18 - 137
			D5-Nitrobenzene	2016/07/18		102	%	23 - 120
			D5-Phenol	2016/07/18		100	%	24 - 113
4572741	LTO	Spiked Blank DUP	2,4,6-Tribromophenol	2016/07/18		113	%	24 - 121
			2-Fluorobiphenyl	2016/07/18		109	%	30 - 115
			2-Fluorophenol	2016/07/18		41	%	30 - 130
			2-Methylphenol	2016/07/18		92	%	N/A
			3 & 4-methylphenol	2016/07/18		102	%	N/A
			D14-Terphenyl	2016/07/18		112	%	18 - 137
			D5-Nitrobenzene	2016/07/18		103	%	23 - 120
		1. Sec. 1. Sec	DS-Phenol	2016/07/18		101	%	24-113
4572741	LTO	RPD	2-Methylphenol	2016/07/18	9.4		%	50
			3 & 4-methylphenol	2016/07/18	7.2		%	50
4572741	LTO	Method Blank	2,4,6-Tribromophenol	2016/07/18		111	%	24 - 121
			2-Fluorobiphenyl	2016/07/18		110	%	30 - 115
			2-Fluorophenol	2016/07/18		80	%	30 - 130
			2-Methylphenol	2016/07/18	<		ug	
			3 & 4-methylphenol	2016/07/18	<5		ug	
			D14-Terphenyl	2016/07/18		126	%	18-137
			DS-Nitrobenzene	2016/07/18		104	%	23 - 120
			DS-Phenoi	2016/07/18		100	%	24 - 113
4583299	OBC	Spiked Blank	C13-1234678 HeptaCDD	2016/07/19		93	%	25 - 130
			C13-1234678 HeptaCDF	2016/07/19		99	%	25 - 130
			C13-123678 HexaCDD	2016/07/19		97	%	40 - 130
			C13-123678 HexaCDF	2016/07/19		94	%	40 - 130
			C13-12378 PentaCDD	2016/07/19		89	%	40 - 130
			C13-12378 PentaCDF	2016/07/19		104	36	40 - 130
			C13-123789 HexaCDF	2016/07/19		100	%	40 - 130
			C13-2378 TetraCDD	2016/07/19		89	%	40 - 130
			C13-2378 TetraCDF	2016/07/19		99	%	40 - 130
			C13-Octachlorodibenzo-p-Dioxin	2016/07/19		94	%	25 - 130
			2,3,7,8-Tetra CDD	2016/07/19		106	*	80 - 140
			1,2,3,7,8-Penta CDD	2016/07/19		105	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2016/07/19		112	%	80 - 140
			1,2,3,6,7,8-Hexa CDD	2016/07/19		112	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2016/07/19		112	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDD	2016/07/19		96	*	80 - 140
			1,2,3,4,6,7,8,9-Octa CDD	2016/07/19		102	36	80 - 140
			2,3,7,8-Tetra CDF	2016/07/19		104	%	80 - 140
			1,2,3,7,8-Penta CDF	2016/07/19		99	%	80 - 140
			2,3,4,7,8-Penta CDF	2016/07/19		97	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2016/07/19		114	*	80 - 140
			1,2,3,6,7,8-Hexa CDF	2016/07/19		108	*	80 - 140
			2,3,4,6,7,8-Hexa CDF	2016/07/19		125	*	80 - 140
			1,2,3,7,8,9-Hexa CDF	2016/07/19		120	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2016/07/19		100	*	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2016/07/19		101	*	80 - 140
			1,2,3,4,6,7,8,9-Octa CDF	2016/07/19		105	×	80 - 140
			1212141011012-0C08 CDL	2010/07/13		105	7	00.14

Page 15 of 19

Maxiam Analytics International Corporation o/s Maxiam Analytics 6780 Computerio Road, Missionaya, Ontaria, (SN 2).8 Tel: (905) 817-5700 Tell-Free: 800.563 6266 Fas: (905) 817-5777 www.maxiam.ca

7301338 :# dol mexx6M 72\70\8105 :sis0 hoqs8

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

(0'ТИОС)ТЯОЧЭЯ ЗОИАЯU22A YTIJAUD

10011 30	2TIM11	% %	SudeV	916Q besulenA	16formened	80AT 30	tini	OA/QC
CC Limits		Recovery	auteV	bezylenA Pristorator	Parameter Photopy Haranov	QC Type QC Type	Tini	40168 995592
52 - 130 52 - 130	%	96 176		5076/01/19 5076/01/19	C13-1534678 HeptaCDF C13-1234678 HeptaCDD	Spiked Blank DUP	OBC	6622858
OET - OP	%	96 oc		5076/01/16	CT3-T53618 H6X9CDD			
DET - OP	%	26		5010/01/10	C13-123678 HexaCDF			
40-130	%	26		6T/20/9T0Z	C13-12378 PentaCDD			
40 - 130	%	SOT		5076/07/19	C13-12378 PentaCDF			
40 - T30	96	104		2016/07/19	C13-123789 HexaCD#			
40 - 130	96	06		61/20/9102	C13-2378 TetraCDD			
40 - J30	%	τοτ		6T/L0/9T0Z	C13-2378 TetraCDF			
DET - SZ	%	126		6T/L0/9T0Z	nixoiO-q-osnediboroldstaO-ELC			
80 - 140	%	SOT		51/20/9102	OOD staT-8,7,6,5			
80 - T40	%	10 6		5076/07/19	1,2,3,7,8-Penta CDD			
80-140	%	211		6T/20/9T0Z	1,2,3,4,7,8-Hexa CDD			
80 - T40	%	60T		51/20/9102	I,2,3,6,7,8-Hexa CDD			
80 - T40	%	STI		6T/20/9T0Z	000 6x9H-0,8,7,E,2,1			
041 - 08	%	96		51/20/9102	I,2,3,4,6,7,8,7,8,7,0D			
80 - 140	%	001		6T/L0/9T0Z	I,2,3,4,6,7,8,9-Octa CDD			
80 - 140	%	SOT		6T/20/9T0Z	2,3,7,8-Tetra CDF			
80 - T40	%	66		6T/20/9T0Z	1,2,3,7,8-Penta CDF			
80 - T40	%	86		6T/20/9T0Z	2,3,4,7,8-Penta CDF			
00+T-08	%	ZTI		51/20/9102	1,2,3,4,7,8-Hexa CDF			
80 - 140	%	τττ		5076/01/16	1,2,3,6,7,8-Hexa CDF			
80-140	%	SZI		51/20/9102	2,3,4,6,7,8-Hexa CDF			
80 - T40	%	8TT		5076/07/19	1,2,3,7,8,9-Hexa CDF			
80 - T40	%	τοτ		6T/L0/9T0Z	TCD stgsH-B,7,3,4,E,2,1			
90 - T40	%	TOT		51/20/9102	1,2,3,4,7,8,9-Hepta CDF			
0+T - 08	%	104		5T/L0/9T0Z	1,2,3,4,6,7,8,9-Octa CDF			
50	%		NC	5T/20/9T0Z	000 ettaT-8,7,8,2	048	OBC	667685
0Z	%		NC	5T/L0/9T0Z	DDD etne9-8,7,6,5,1			
50	%		NC	6T/L0/9T0Z	1,2,3,4,7,8+Hexa CDD			
σz	%		DN	6T/20/9T0Z	T,2,3,6,7,8-Hexa CDD			
50	56		ON	51/20/9102	1,2,3,7,8,9-Hexa CDD			
50	%		NC	5T/20/9T0Z	I,2,3,4,6,7,8-Hepta CDD			
50	%		ON	6T/L0/9T0Z	T,2,3,4,6,7,8,9-Octa CDD			
50	%		ON	6T/20/9T0Z	Retraction 2,3,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7			
OZ	%		NC	6T/20/9T0Z	T,Z,Z,F,etta CDF			
SO	56		NC	51/20/9102	2,3,4,7,8-Penta CDF			
50	56		NC	5T/L0/9T0Z	1,2,3,4,7,8-Hexa CDF			
50	%		ON	6T/L0/9T0Z	1,2,3,6,7,8-Hexa CDF			
50	56		DN	6T/L0/9T0Z	2,3,4,6,7,8-Hexa CDF			
07	56		ON	61/20/9102	1,2,3,7,8,9-Hexa CDF			
OZ	%		NC	5076/07/19	1,2,3,4,6,7,8-Hepta CDF			
50	*		NC	51/20/9102	1,2,3,4,7,8,9-Hepta CDF			
50	*	10	NC	51/20/9102	1,2,3,4,6,7,8,9-Octs CDF			
DET - SZ	*	26		6T/20/9T0Z	CT3-TT34678 HepteCDD	Method Blank	080	667885
DET - SZ	56	ZOT		6T/20/9T0Z	CT3-T534678 HepterCDF			
0ET - 0P	5	96		51/20/9102	CT3-T53678 HexaCDD			
40-130	% %	105		61/20/9102	CT3-T53678 HexaCDF			
40-130		56		51/20/9102	C13-15378 PentaCDD			
40-130	% %	TTT		6T/20/9T0Z 6T/20/9T0Z	CT3-153288 Hex9CDE CT3-15328 beut9CDE			
40-130	*	26 66		5076/01/16	CT3-5378 TetraCDD			
DCT Ob		201		50/20/9T07	C13-2378 TetraCDF			

Page 16 of 19

az muzatin wew 1778-718 (208) sel 8868-688-098 wei 860 7072-718 (208) 167 815 824 pisatio (2000 ageneration (2000 and the solution of a soluti

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS QCL	imits
	C13-Octachlorodibenzo-p-Dioxin 2,3,7,8-Tetra CDD	2016/07/19 2016/07/19	<3.5,	96 % 25 - P8	
			EDL=3.5		
	1,2,3,7,8-Penta CDD	2016/07/19	<3.2, EDL=3.2	PS	
	1,2,3,4,7,8-Hexa CDD	2016/07/19	<4.0, EDL=4.0	PE	
	1,2,3,6,7,8-Hexa CDD	2016/07/19	<4.1, EDL=4.1	Pg	
	1,2,3,7,8,9-Hexa CDD	2016/07/19	<3.6, EDL=3.6	PE	
	1,2,3,4,6,7,8-Hepta CDD	2016/07/19	<3.2, EDL=3.2	PS	
	1,2,3,4,6,7,8,9-Octa CDD	2016/07/19	<3.9, EDL=3.9	PB	
	Total Tetra CDD	2016/07/19	<7.3, EDL=7.3 (1)	PØ	
	Total Penta CDD	2016/07/19	<5.5, EDL=5.5 (1)	Pg	
	Total Hexa CDD	2016/07/19	<15, EDL=15 (1)	PE	
	Total Hepta CDD	2016/07/19	<3.2, EDL=3.2	Pg	
	2,3,7,8-Tetra CDF	2016/07/19	<4.1, EDL=4.1	PB	
	1,2,3,7,8-Penta CDF	2016/07/19	<2.9, EDL=2.9	Pg	
	2,3,4,7,8-Penta CDF	2016/07/19	<2.9, EDL=2.9	Pg	
	1,2,3,4,7,8-Hexa CDF	2016/07/19	<3.4, EDL=3.4	pg	
	1,2,3,6,7,8-Hexa CDF	2016/07/19	<3.1, EDL=3.1	pg	
	2,3,4,6,7,8-Hexa CDF	2016/07/19	<3.4, EDL=3.4	PB	
	1,2,3,7,8,9-Hexa CDF	2016/07/19	<3.7, EDL=3.7	PB	
	1,2,3,4,6,7,8-Hepta CDF	2016/07/19	<1.6, EDL=1.6	PS	
	1,2,3,4,7,8,9-Hepta CDF	2016/07/19	<1.9, EDL=1.9	pg	
	1,2,3,4,6,7,8,9-Octa CDF	2016/07/19	<2.9, EDL=2.9	Bđ	
	Total Tetra CDF	2016/07/19	<4.1, EDL=4.1	pg	
	Total Penta CDF	2016/07/19	<2.9, EDL=2.9	PS	
	Total Hexa CDF	2016/07/19	<3.4, EDL=3.4	PS	

Page 17 of 19

Maxiam Analytics International Corporation o/a Nexum Analytics 6740 Campobello Scad, Ministraaga, Ontario, LSN 318 Tel: (505) E17-5700 Toll Free: 820-563-6386 Fax: (505) E17-5777 www.maxiam.ca

Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			Total Hepta CDF	2016/07/19	<1.7, EDL=1.7		PB	
Duplicat	te: Pair	ed analysis of a sep	parate portion of the same sample. Used t	to evaluate the variance in the	measurement.			
Spiked E accuracy		blank matrix samp	le to which a known amount of the analy	te, usually from a second source	e, has been ad	ded. Used to e	valuate	method
Method	Blank:	A blank matrix cor	taining all reagents used in the analytical	procedure. Used to identify la	boratory contai	mination.		
Surroga	te: Ap	ure or isotopically l	abeled compound whose behavior mirror	s the analytes of interest. Used	i to evaluate ex	traction efficie	ency.	
10000000		RPD): The duplicate e or both samples •	RPD was not calculated. The concentrations Sx RDL).	on in the sample and/or duplica	ate was too low	to permit a re	liable R	PD
(1) FMP	C / ND	- Peak detected d	oes not meet ratio criteria and has resulte	d in an elevated detection limi	i i			

EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Page 18 of 19

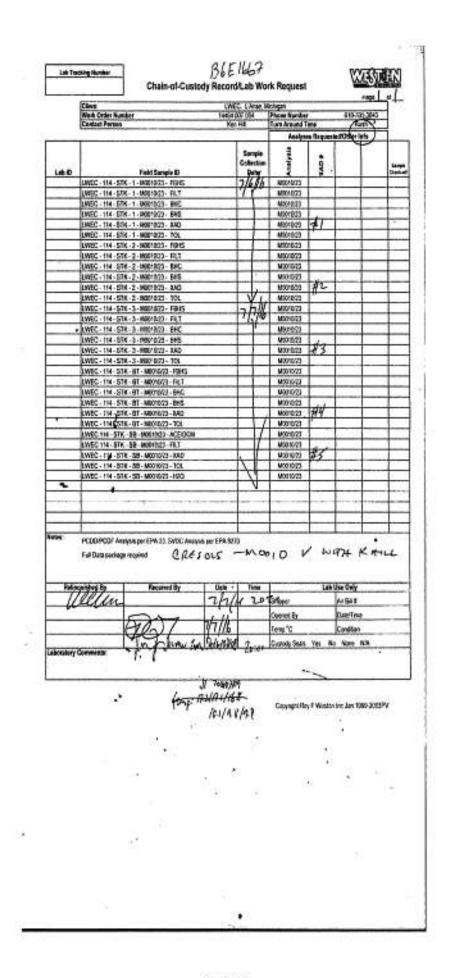
Weston Solutions Inc Client Project #: 14464.007.004 Site Location: LWEC, L'ANSE, MICHIGAN

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

aven

Karen Nicol, Supervisor, Semi-Volatiles


Kay Shaw

Kay Shaw, Č. Chem, Sr Scientific Specialist, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 19 of 19

Maxam Analytics International Corporation o/a Maxom Analytics 6740 Campabello Road, Mississanga, Ontario, 15N 218 Tel: (905) 817 5740 Tell Free: 800 565 6206 Fax: (905) 817-5777 www.missiann.ca

Page 1 of 1

D.3 SSAS

APPENDIX E FUEL SAMPLE RESULTS

- E.1 Stack Test Samples
- E.2 15-Day Pretest Samples

E.1 STACK TEST SAMPLES

_
10
<u> </u>
5
<u> </u>
5
5
Ĕ
iii ii
~
N

					L'Anse Warden	Compliance T	L'Anse Warden Compliance Testing - Master Data Compilation Table	r Data Compila	tion Table	
		elameS	Samole		Moisture	Sulfur	fur	Chlorine	ine	Comments
Revision	Sample ID:	Date	Time	Lab No.	(D3173)	As Received	Moist. Free	As Received	Moist. Free)
					wt %	wt %	wt %	mg/kg	mg/kg	
Revl	Run 1A Woodchips	7/6/16	1236	T1601194-001	46.70	0.01	0.03	<48	<48	
Revl	Run 1A RR Tie	7/6/16	1238	T1601194-002	31.59	0.09	0.14	66	26	
Rev1	Run 1A TDF	7/6/16	1240	T1601194-003	12.31	1.59	1.82	378	431	
Revl	Run 1A Combined Fuel	7/6/16	1228	T1601194-004	32.11	0.09	0.13	35	52	
Rev1	Run 1B Woodchips	7/6/16	1444	T1601194-005	45.40	0.02	0.04	62	114	
Rev1	Run 1B RR Tie	7/6/16	1447	T1601194-006	29.55	0.11	0.16	72	102	
Rev1	Run 1B TDF	7/6/16	1449	T1601194-007	7.51	1.59	1.72	574	621	
Revl	Run 1B Combined Fuel	7/6/16	1454	T1601194-008	30.61	0.13	0.19	46	66	
Rev1	Run 2A Woodchips	7/6/16	1800	T1601194-009	46.88	0.01	0.02	<48	<48	
Revl	Run 2A RR Tie	7/6/16	1802	T1601194-010	30.53	0.11	0.15	55	79	
Rev1	Run 2A TDF	7/6/16	1804	T1601194-011	9.88	1.69	1.87	382	424	
Revl	Run 2A Combined Fuel	7/6/16	1808	T1601194-012	27.62	0.16	0.22	60	83	
Revl	Run 2B Woodchips	2/2/16	1030	T1601194-013	46.47	0.02	0.04	<48	<48	
Revl	Run 2B RR Tie	2/2/16	1032	T1601194-014	31.03	0.12	0.18	65	94	
Revl	Run 2B TDF	2/2/16	1034	T1601194-015	12.41	1.58	1.81	398	455	
Revl	Run 2B Combined Fuel	2/2/16	1036	T1601194-016	34.42	0.06	0.10	41	62	
Revl	Run 3A Woodchips	2/2/16	1421	T1601194-017	43.44	0.02	0.03	<54	<54	
Revl	Run 3A RR Tie	2/2/16	1423	T1601194-018	29.03	0.11	0.16	53	74	
Revl	Run 3A TDF	2/2/16	1425	T1601194-019	5.49	1.71	1.81	424	449	
Revl	Run 3A Combined Fuel	2/2/16	1429	T1601194-020	36.73	0.05	0.08	44	69	
Revl	Run 3B Woodchips	7/7/16	1617	T1601194-021	41.11	0.01	0.02	<48	<48	
Revl	Run 3B RR Tie	7/7/16	1619	T1601194-022	26.88	0.10	0.13	61	83	
Rev1	Run 3B TDF	7/7/16	1621	T1601194-023	11.33	1.86	2.10	384	433	
Revl	Run 3B Combined Fuel	7/7/16	1625	T1601194-024	29.30	0.10	0.15	46	65	
Revl	Run 3C Woodchips	2/2/16	1852	T1601194-025	38.76	0.07	0.12	<48	<48	
Revl	Run 3C RR Tie	2/2/16	1854	T1601194-026	29.36	0.09	0.12	56	79	
Revl	Run 3C TDF	2/2/16	1856	T1601194-027	5.75	1.85	1.96	479	509	
Revl	Run 3C Combined Fuel	7/7/16	1900	T1601194-028	29.21	0.10	0.15	54	76	

Rpt-L'Anse Warden Compliance Testing Compilation Master (2).xls, 8/4/2016

> Page 1 of 1 296

Service Request No:T1601194

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA 114 Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory July 11, 2016 For your reference, these analyses have been assigned our service request number T1601194.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

in theyard

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 \$73 1061 | FAX +1 520 \$73 1063 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 12

Service Requ	est:T1601194
--------------	--------------

Client:	L'Anse Warden Electric Co., LLC
Project:	USEPA 114 Compliance Testing

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1601194-001	Run 1A Woodchips	7/6/2016	1236
T1601194-002	Run 1A RR Tie	7/6/2016	1238
T1601194-003	Run 1A TDF	7/6/2016	1240
T1601194-004	Run 1A Combined Fuel	7/6/2016	1228
T1601194-005	Run 1B Woodchips	7/6/2016	1444
T1601194-006	Run 1B RR Tie	7/6/2016	1447
T1601194-007	Run 1B TDF	7/6/2016	1449
T1601194-008	Run 1B Combined Fuel	7/6/2016	1454
T1601194-009	Run 2A Woodchips	7/6/2016	1800
T1601194-010	Run 2A RR Tie	7/6/2016	1802
T1601194-011	Run 2A TDF	7/6/2016	1804
T1601194-012	Run 2A Combined Fuel	7/6/2016	1808
T1601194-013	Run 2B Woodchips	7/7/2016	1030
T1601194-014	Run 2B RR Tie	7/7/2016	1032
T1601194-015	Run 2B TDF	7/7/2016	1034
T1601194-016	Run 2B Combined Fuel	7/7/2016	1036
T1601194-017	Run 3A Woodchips	7/7/2016	1421
T1601194-018	Run 3A RR Tie	7/7/2016	1423
T1601194-019	Run 3A TDF	7/7/2016	1425
T1601194-020	Run 3A Combined Fuel	7/7/2016	1429
T1601194-021	Run 3B Woodchips	7/7/2016	1617
T1601194-022	Run 3B RR Tie	7/7/2016	1619
T1601194-023	Run 3B TDF	7/7/2016	1621
T1601194-024	Run 3B Combined Fuel	7/7/2016	1625
T1601194-025	Run 3C Woodchips	7/7/2016	1852
T1601194-026	Run 3C RR Tie	7/7/2016	1854
T1601194-027	Run 3C TDF	7/7/2016	1856
T1601194-028	Run 3C Combined Fuel	7/7/2016	1900

	ADDRESS 3860 S. Palo Verde Road, Suite 302, T PHONE +1 520 573 1061 FAX +1 520 573 1063 ALS Group	0 S. Palo Ven 1 573 1061 F	se Road, Sulte AX +1 520 57	302, Tucson 3 1063	acson, AZ 85714	2			5	Work Order No.:	der	202	unition 114 Complement Tag		-	Prince 1 or 2	
Project Manager:	JR Richardson	u							8	Bill to:		Midge Axley	txley				
	L'Anse Warden Electric Company, LLC	fen Electri	c Company,	LLC					0	Company:		L'Anse	L'Anse Warden Electric Company, LLC	Compan	N, LLC		
Address:	157 South Main Street	Aain Stree	+						A	Address:		P.O. Box 695	x 695	100000			
City, State ZiP:	L'Anse, MI 49946	9946							0	City, State ZIP:	SIP	White P	White Pine, MI 49971				
Email:	Ir.richardson@pmpowergroup.com	@pmpower	group.com	Phone:	906.885.7187	85.7	87		ū	Emailt		midge-a	midge axley@pmpowergroup.co Phone: 906.885.7400	00.000	hone:	06.885.7400	
Project Name:	USEPA 114 Compliance Testing	Complianc	te Testing							REQU	IESTEI	REQUESTED ANALYSIS	VSIS			TAT	
Project Number:						-			-		-	-				Noutine	
P.O. Number:					_		_			_	_					1.11	. ARC
ie:	Jed Chrestensen, Mannik Smith Group	nsen, Man	nik Smith G	roup		-										Next Day *	. AR
	SAMPLE	SAMPLE RECEIPT		+		_			2	-	_					-Vied E	
Temperature ('C):		Temp	Temp Blank Present		_	3	-	10	330	000	_					6 Day	
Received Intact:	Yes	No N/A	-	Wet Ice / Blue Ice		1283		-00		- Inc		-		_		* Please call for	allf
Cooler Custody Seals:	tes Yes	No N/A	-	Total Containers:	_	W.	1.10	290		-	_	-				availability.	Illiv.
Sample Custody Seals:	S: Yes	No N/A	A		53	TZA	-	W.			_					Rush charges	age
		1					102.1354	rza - la	1000	1.000						will apply. Due Date:	: 같음:
Sample Identification	ion Matrix	k Date	ed Sampled	9	0- 0f Coi	bninð qa P. snutaio	r, anutelo	doT, Tot	toT ,Tot	T ,aninoli				- 67			
		_			-	+	+	ns	+		-			_	_	Comments	ST
Run 1A Woodchips		7/6/16		9	-	-			-	Ĵ	-			-	0	Copy report to	
Run 1A RR Tie	Solid	7/6/16	16 12:38	88	-	××			×	×	_						
Run 1A TDF	Solid	7/6/16	16 12:40	0	1	×	×	×	-	×	1	810) 1			-		
Run 1A Combined Fuel Solid	Fuel Solid	7/6/16	16 12:28	8	-	XX		1.2	×	×	_			_	-		
Run 1B Woodchips	ips Solid	7/6/16	16 14:44	4	-	XX			×	×							
Run 1B RR Tie	Solid	7/6/16	14:47	12	1	XX	_		×	×							
Run 1B TDF	Solid	2//9//2	14:49	61	1	×	×	×	-	×					_		
Run 18 Combined Fuel	Fuel Solid	7/6/16	14:54	4	-	x x			××	-					_		
Run 2A Woodchips	ips Solid	21/9/16	16 18:00	00	-	XX			x x	-	_				_		
Run 2A RR Tie	Solid	7/6/16	16 18:02	12	1	XX		1	×	×	-				_		
														Τ	Addia	Additional Methods Available thon Request	sp
		RELINQ	RELINQUISHED BY	X									RECEIVED BY	BY			
Print Name	ne	-	Signature			Date/Time	Time			Prin	Print Name			Signature		Date/Time	in a
JED CHREFENIEN	lev l		1 AN		31-8-6		13:40		UPS -	869 425 1016455 J 21, 944 7014 20 00	BESS	5610461	Cyndd	- Views	4	0433	
								1					nu	and 1 1			

Chain of Custody

	PHONE +1	3860 S. P 520 573	alo Verde R 1061 FAX	ADDRESS 3860 S. Palo Verde Road, Sulte 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063 ALS Group	Z, Tucson, 1063	AZ 857	<u>*</u>			-	Work Order No.:	der N	IO.: UNEDA TH CAN				
Project Manager: []	JR Richardson	uospu								٣	Bill to:		Midge Axley	~			
Client Name: 1	L'Anse W	Varden I	Electric C	L'Anse Warden Electric Company, LLC	C					0	Company:	100	L'Anse War	L'Anse Warden Electric Company, LLC	npany, LL	U	
Address:	157 South Main Street	th Main	Street	120-221					1	4	Address:		P.O. Box 695	5	1000		
City, State ZIP: 1	L'Anse, MI 49946	WI 4994	9							0	City, State ZIP:	ili	White Pine, MI 4997	MI 49971			
Emailt	r.richards	son@pr	Ir.richardson@pmpowergroup.com	up.com	Phone:	906.885.7187	85.7	87		m	Email:		midge.axlev	midge.axiev@pmpowergroup.cd Phone: 906.885.7400	.co Phone	906.885.740	0
Project Name: 1	USEPA 1	14 Com	USEPA 114 Compliance Testing	esting							REQUI	STEL	REQUESTED ANALYSIS	1000		TAT	E
1							-	_		-	-				_	C Routine	e
P.O. Number:								_					_			22.2	Same Day *
ie:	led Chre	stenser	. Mannik	led Chrestensen. Mannik Smith Group	an	-		_			1		_			DI Next	Next Day *
	SAMI	SAMPLE RECEIPT	EIPT								-					3 Day*	
Temperature (C):	F		Temp Bla	Temp Blank Present			1		10	2.25	9504					6 Day	
Received Intact:	~	Yes No	A/A	Wet Ice / Blue Ice	Blue Ice		128	202	-00		5/04				_	* Please call for	Call F
Cooler Custody Seals:	T	Yes No	A/N 0	Total Containers:	tainers:		I WU	1.045	290		105					availability.	bility.
Sample Custody Seals:	F	Yes No				\$10	IZA.	0.021	MI		Vda	_				Rush charge	large
Sample Identification		Maurix	Date	Time	0) 421 0) 421	riesnoo 1	- listoT , en	· Total ·	2A - listoT ,	2A - lasoT ,	- Total -					Due Date:	Date
							Prep C		, while?		רעופעו					Comments	lents
Run 2A TDF	So	Solid	7/6/16	18:04		-	×	×	×		×	_				Copy report to	
Run 2A Combined Fuel Solid	Fuel So	18d	7/6/16	18:08		-	××			×	×						
Run 2B Woodchips		Solid	7/7/16	10:30		-	XX			×	×						
Run 2B RR Tie		Solid	21/1/16	10:32		-	××			×	×						
Run 28 TDF	So	Solid	7/7/16	10:34		-	×	×	×		×						
Run 2B Combined Fuel		Solid	2/7/16	10:36		-	××			×	×		_				
Run 3A Woodchips		Solid	2/7/16	14:21		-	××			×	×						
Run 3A RR Tle		Solid	7/7/16	14:23		-	XX			×	×						
Run 3A TDF	So	Solid	7/7/16	14:25		-	×	×	×		×						
Run 3A Combined Fuel Solid	Fuel So	lid	31/1/16	14:29		-	XX	_		×	X						
		+													AVA	Additional Methods Available Upon Request	ods
		REL	SINGNIS	RELINQUISHED BY	111					-	A PARTICULAR DE LA PARTICIPACIÓN DE LA PARTICIPACI		N LONG	RECEIVED BY	-		1.20
Print Name	ž	-	S	Signature			Date/Thme	Time			Prin	Print Name	T.	A LANDARD	Signature	Date/Time	Time
LED OURSENSEN	NSU		MOR	2		2-8-16		13:40		8	Theory	题	CATER POPPER PART AND THE	& aptilia	i reek	2 093	
			5											HI I	000 1 1 111		

Chain of Custody

Page 4 of 12

1	IR Richardson	relean								Ē	Rill too		Midne Axlev		
	N NUMBER	inen i	1								-		Annual annual annual	(
me:	Anse	Varder	a Electric	L'Anse Warden Electric Company, LLC	ILC					-	Company	N.	L'Anse ward	L'Anse Warden Electric Company, LLC	
1	157 Sou	th Ma	157 South Main Street							-	Address:		P.O. Box 695		
tate ZIP:	L'Anse, MI 49946	MI 499	946								City, State ZIP.	ate ZIP.	White Pine, MI 49971	M 49971	
Email:	r.richaro	songe	jr.richardson@pmpowergroup.com	TOUD.COM	Phone:	906	906.885.7187	187			Emailt		m dge.axley@	midge.axley@pmpowergroup.cd Phone:	906.885.7400
	USEPA 1	14 Co	USEPA 114 Compliance Testing	Testing							RE	QUESTI	REQUESTED ANALYSIS	Health Strate Strategy	TAT
Project Number:	1.1.1.1.1.1.1	a services		10000 C. 1000				_	_		5	_			Routine
P.O. Number:			10000000000000000000000000000000000000	001001000000000000000000000000000000000								_			Same Day *
Sampler's Name:	ed Chr	istense	en, Mann	Jed Chrestensen, Mannik Smith Group	roup										Next Day +
	SAM	PLE R	SAMPLE RECEIPT			_	-					_			
Temperature (C):	-		Temp B	Temp Blank Present			_		-		9506				6 Day*
Received Intact:		Yes A	No N/A	Wet Ice / Blu	/ Blue Ice			-	-	683	i/os				* Please call for
Cooler Custody Seals:		Yes h	No N/A		Total Containers:			-		29-0	05				availability.
Sample Custody Seals:		Yes h	No N/A			sıə				WLS	e hv				will apply
Sample Identification		Matrix	Date Sampled	d Sampled	8	No. of Contain	Prep Crind	Molsture, Total Molsture, Total	A - latoT , nutius	A - letoT , nutilu?	Chlorine, Total				Due Date: Comments
Run 38 Woodchips		Solid	21/1/16	6 16:17	7	1	-	×	-	×	×				Copy report to
Run 3B RR Tie		Solid	7/7/16	6 16:19	6	-	×	×		×	×				
Run 38 TDF	Sc	Solid	2/7/16	6 16:21	-	-	×	×	×		×	_			
Run 3B Combined Fuel Solid	Fuel So	pile	7/7/16	6 16:25	S	-	×	×		×	×				
Run 3C Woodchips		Solid	2/7/76	6 18:52		-	×	×		×	×				
Run 3C RR Tie		Solid	7/7/16	F2:81 9		-	×	×		×	×	_			
Run 3C TDF	Sc	Solid	7/7/16	6 18:56		-	×	×	×		×				
Run 3C Combined Fuel	Fuel Sc	Solid	1///6			-	×	×	-	×	×				
	1							0							
		T												Ad	Additional Methods
		12	I INON	RELINOUISHED BY				ľ				100	a	RECEIVED.RY	trankey undo sine
Print Name	ne	Г		Signature		No.	Date	Date/IIIme	1	10	10.00	Print Name		Signature	Date/Time
YED OHERSENSEN	5		MCA	4		91-8-6	9	13140		3	tradito	ALCONT OF	255 Tredens + 25555 49401930560	apthic rach.	0423
			•					i.						000 F F 111	

Chain of Custody

Ľ T1601194

Tucson, AZ 85 T: +1 520 573 1 F: +1 520 573 1 Date & Time: 7/11/16 0933 Matrix: Solid Samples were received in: Box (2) Yes (*) No Yes (*) No Yes (*) No If present, were they signed and dated? Yes (*) No IzF55A940192176958 1zF55A940193973960 Bubble Wrap on (unbroken)? Yes (*) No
Sample Receipt Form T1601194 5 n Elec Work Order Number: Sample Sective Co. LLO Date & Time: 7/11/16 0933 Matrix: Solid S Samples were received in: Box (2) O Yes No NA If yes, how many and where? O Yes No If present, were they signed and dated? O Yes No Tracking Number 1zF55A940192176958 1zF55A940193973960
Sample Receipt Form T1601194 5 n Elec Work Order Number: WEEDA 114 Complement Teaching 5 Date & Time: 7/11/16 0933 Matrix: Solid 5 S Samples were received in: Box (2) O Yes No Na If yes, how many and where? O Yes No If present, were they signed and dated? O Yes No Tracking Number 1zF55A940192176958 1zF55A940193973960 Bubble Wrap
Assis Wavelin Section Co. Ld UNEDA 114 Completence Testing No Date & Time: 7/11/16 0933 Matrix: Solid S Samples were received in: Box (2) O Yes No If yes, how many and where? O Yes No If present, were they signed and dated? O Yes No Tracking Number IzF55A940192176958 IzF55A940193973960 Bubble Wrap
n Elec Work Order Number: Date & Time: 7/11/16 0933 Matrix: Solid S Samples were received in: Box (2) O Yes No NA If yes, how many and where? O Yes No If present, were they signed and dated? O Yes Tracking Number 1zF55A940192176958 Bubble Wrap IzF55A940193973960
S Samples were received in: Box (2) O Yes No NA If yes, how many and where? O Yes No If present, were they signed and dated? O Yes No If present, were they signed and dated? O Yes
O Yes No O NA If yes, how many and where? O Yes No If present, were they signed and dated? O Yes No Tracking Number 1zF55A940192176958 1zF55A940193973960 Bubble Wrap Image: Comparison of the second seco
O Yes No If present, were they signed and dated? O Yes No Tracking Number IzF55A940192176958 IzF55A940193973960 Bubble Wrap
Tracking Number
1zF55A940192176958 1zF55A940193973960 Bubble Wrap
1zF55A940193973960
Bubble Wrap
A COC? See No No NA If No, record discrepancies below volumes received for the tests indicated? See No O NA
ark, RR ties and TDF.
ns:
ar

As a part of ISO 37025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client.

Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM 05865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as biomass, Tire Derived Fuel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyze, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP-QES when the method references flame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 J.R. Richardson Attn:

Project: USEPA 114 Compliance Testing

Date Received: 7/11/16

Certificate of Analysis

	Sample	Date		Moisture	Sulfur	Chlorine, Total	
Sample ID:	and Ti		Lab #:	D3173	D4239	5050/9056	
				wt%	Moist. Free wt%	. Moist. Free mg/kg	
Run 1A Woodchips	7/6/16	1236	T1601194-001	46.70	0.03	<48	
Run 1A RR Tie	7/6/16	1238	T1601194-002	31.59	0.14	97	
Run 1A TDF	7/6/16	1240	T1601194-003	12.31	1.82	431	
Run 1A Combined Fuel	7/6/16	1228	T1601194-004	32.11	0.13	52	
Run 1B Woodchips	7/6/16	1444	T1601194-005	45.40	0.04	114	
Run 1B RR Tie	7/6/16	1447	T1601194-006	29.55	0.16	102	
Run 1B TDF	7/6/16	1449	T1601194-007	7.51	1.72	621	
Run 1B Combined Fuel	7/6/16	1454	T1601194-008	30.61	0.19	66	
Run 2A Woodchips	7/6/16	1800	T1601194-009	46.88	0.02	<48	
Run 2A RR Tie	7/6/16	1802	T1601194-010	30.53	0.15	79	
Run 2A TDF	7/6/16	1804	T1601194-011	9.88	1.87	424	
Run 2A Combined Fuel	7/6/16	1808	T1601194-012	27.62	0.22	83	
Run 2B Woodchips	7/7/16	1030	T1601194-013	46.47	0.04	<48	
Run 2B RR Tie	7/7/16	1032	T1601194-014	31.03	0.18	94	
Run 2B TDF	7/7/16	1034	T1601194-015	12.41	1.81	455	

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061

Rpt-T1601194 L'Anse Warden Electric Co LLC Richardson rev1,

8/4/2016

Page 7 of 12

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

J.R. Richardson Attn:

Project: USEPA 114 Compliance Testing

Date Received:

7/11/16

Certificate of Analysis

Sample ID:	Sample and Tir		Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
Run 2B Combined Fuel	7/7/16	1036	T1601194-016	34.42	0.10	62	
Run 3A Woodchips	7/7/16	1421	T1601194-017	43.44	0.03	<54	
Run 3A RR Tie	7/7/16	1423	T1601194-018	29.03	0.16	74	
Run 3A TDF	7/7/16	1425	T1601194-019	5.49	1.81	449	
Run 3A Combined Fuel	7/7/16	1429	T1601194-020	36.73	0.08	69	
Run 3B Woodchips	7/7/16	1617	T1601194-021	41.11	0.02	<48	
Run 3B RR Tie	7/7/16	1619	T1601194-022	26.88	0.13	83	
Run 3B TDF	7/7/16	1621	T1601194-023	11.33	2.10	433	
Run 3B Combined Fuel	7/7/16	1625	T1601194-024	29.30	0.15	65	
Run 3C Woodchips	7/7/16	1852	T1601194-025	38.76	0.12	<48	
Run 3C RR Tie	7/7/16	1854	T1601194-026	29.36	0.12	79	
Run 3C TDF	7/7/16	1856	T1601194-027	5.75	1.96	509	
Run 3C Combined Fuel	7/7/16	1900	T1601194-028	29.21	0.15	76	

Notes:

Samples were air dried then ground to < 1 mm prior to analysis.

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061

Rpt-T1601194 L'Anse Warden Electric Co LLC Richardson rev1, 8/4/2016 Page 8 of 12

Client: L'Anse Warden Electric Co., LLC 157 S. Main St.

L'Anse, MI 49946

Attn: J.R. Richardson

Project: USEPA 114 Compliance Testing

Date Received: 7/11/16

Certificate of Analysis

Sample ID:	Sample and Ti		Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg	
Run 1A Woodchips	7/6/16	1236	T1601194-001	0.01	<48	
Run 1A RR Tie	7/6/16	1238	T1601194-002	0.09	66	
Run 1A TDF	7/6/16	1240	T1601194-003	1.59	378	
Run 1A Combined Fuel	7/6/16	1228	T1601194-004	0.09	35	
Run 1B Woodchips	7/6/16	1444	T1601194-005	0.02	62	
Run 1B RR Tie	7/6/16	1447	T1601194-006	0.11	72	
Run 1B TDF	7/6/16	1449	T1601194-007	1.59	574	
Run 1B Combined Fuel	7/6/16	1454	T1601194-008	0.13	46	
Run 2A Woodchips	7/6/16	1800	T1601194-009	0.01	<48	
Run 2A RR Tie	7/6/16	1802	T1601194-010	0.11	55	
Run 2A TDF	7/6/16	1804	T1601194-011	1.69	382	
Run 2A Combined Fuel	7/6/16	1808	T1601194-012	0.16	60	
Run 2B Woodchips	7/7/16	1030	T1601194-013	0.02	<48	
Run 2B RR Tie	7/7/16	1032	T1601194-014	0.12	65	
Run 2B TDF	7/7/16	1034	T1601194-015	1.58	398	

Rpt-T1601194 L'Anse Warden Electric Co LLC Richardson rev1,

8/4/2016

Client: L'Anse Warden Electric Co., LLC 157 S. Main St.

L'Anse, MI 49946

Attn: J.R. Richardson

Project: USEPA 114 Compliance Testing

Date Received:

7/11/16

Certificate of Analysis

Sample ID:	Sample and Ti	2-20-01-11	Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg	
Run 2B Combined Fuel	7/7/16	1036	T1601194-016	0.06	41	
Run 3A Woodchips	7/7/16	1421	T1601194-017	0.02	<54	
Run 3A RR Tie	7/7/16	1423	T1601194-018	0.11	53	
Run 3A TDF	7/7/16	1425	T1601194-019	1.71	424	
Run 3A Combined Fuel	7/7/16	1429	T1601194-020	0.05	44	
Run 3B Woodchips	7/7/16	1617	T1601194-021	0.01	<48	
Run 3B RR Tie	7/7/16	1619	T1601194-022	0.10	61	
Run 3B TDF	7/7/16	1621	T1601194-023	1.86	384	
Run 3B Combined Fuel	7/7/16	1625	T1601194-024	0.10	46	
Run 3C Woodchips	7/7/16	1852	T1601194-025	0.07	<48	
Run 3C RR Tie	7/7/16	1854	T1601194-026	0.09	56	
Run 3C TDF	7/7/16	1856	T1601194-027	1.85	479	
Run 3C Combined Fuel	7/7/16	1900	T1601194-028	0.10	54	

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061

124

Rpt-T1601194 L'Anse Warden Electric Co LLC Richardson rev1, 8/4/2016

Page 10 of 12

E.2 15-DAY PRETEST SAMPLES

.

ᄃ o -0 lorin ۲ 0 -% If r % ¥ <u>-</u> % 0 0 ple ple ple <u>e</u> ġ <u>p</u> ġ ġ ġ. <u>p</u> ġ. ġ ġ ġ ġ ġ .d ġ R R 00 R R 00 R R 00 я 8 8 Я R 8 ж 8 **≃** 8 ч 8 ж 8 ~ 8 8 8 8 R R 0 ж 8 R R 00 я 8 8 ion * * * * * ~ * * * * * * * * ≃ ¥ ĸ ¥ ĸ ¥ ĸ ~~~ ¥ ¥ ¥ ~ ~ ¥ ¥ ~ ¥

Rpt-An r noplian in opilation r

xls

。 308

uo

r Ro

<u>_</u>

DR

Service Request No:T1600851

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory May 25, 2016 For your reference, these analyses have been assigned our service request number T1600851.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

in theyard

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 | FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 7

Service Request:T1600851

Client: L'Anse Warden Electric Co., LLC Project: USEPA Compliance Testing

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600851-001	R/R Tie	5/19/2016	1300
T1600851-002	Wood Chips	5/19/2016	1330
T1600851-003	TDF	5/19/2016	1345

Project Manager: JR Richardson Client Name: L'Anse Warde Address: 157 S. Main Si City, State ZIP; L'Anse, Mi 499 Email: Jr.richardsoné Project Name: USEPA Compli Project Number; 108672 Samder's Name: John Polkky	nardson		ALS Group										131 Million	
Name: ss: tate ZIP; Number; Number; imber: tr's Name:	And and a state of the state of								Bill to:	S	Susan Basile			
ss Late ZIP: Name: Number, Imber: Iris Name:	L'Anse Warden Electric Co., LLC	Jectric Co	" ILC					Ŭ	Company:		Anse Ward	L'Anse Warden Electric Co., LLC	o., LLC	
late ZIP; Name: Number; umber; ufs Name:	157 S. Main St.							A	Address:	P	PO Box 695			
Name: Number; imber; irfs Name:	L'Anse, MI 49946	9							City, State ZIP:	10	White Pine, Mi 49971	MI 49971		
	Jr.richardson@pmpowergroup.com Pt	mpowergi	non-com	ione:	906.885.7187	12.218	~	a	Emailt	1			Phone: 90	Phone: 906.885.7402
	USEPA Compliance Testing	ice Testing	0					10. 2	REQU	ESTED	REQUESTED ANALYSIS		STATISTIC CO.	TAT
					1		1	-	6. 1					X Routine
1	22				-	_				_			115	62
Ì	John Polkky				-	_				_	_			Next Day *
SA	SAMPLE RECEIPT	EIPT												3 Day*
femperature (C):		Temp Blank Present	k Present			129		-	-	_				0 6 Day
Received Intact:	Yes No	N/A	Wet Ice / Blu	lue Ice		83 /		core		_				* Please call for
Cooler Custody Seals:	Yes No	N/A	Total Contai	ners:		£21		1.0		_				availability.
Sample Custody Seals:	Yes No	N/N			sua	60		SOF						kush charges will anniv.
Sample Identification	Marrix	Date	Ame	Ci ab ID	rind Material	ies Total	G · listoT,	- Total -						Due Date:
		ł			No. of	and services		LIDING						Comments
R/R Tie		\$/19/2016	1300		-	×	-	×					Ö	Copy report to
Wood Chips		S/19/2016	1330		×	×	×	×					k.hill@we	k. hill@westonsolutions.com
TDF		5/19/2016	1345		×	×	×	×						
		a nation to			-	-	-							
					+			+	+	1	+			
					-		+			_	-			
					Η	П	Ħ	Ħ		Ħ				
					-				+	+	+			
				1			1						Additi	Additional Methods
500 114													Availabl	Available Upon Request
	REL	RELINQUISHED BY	HED BY	5.00	- State	44.2		Section 1	Statistics.	A State	R	RECEIVED BY	No. Contraction	
Print Name	and the second	1 , 545	Signature,		D	Date/Time	me		Prin	Print Name	1 1	éis	Signatury	Date/Time
John Polkky	-20	Jele-	6 Mar	6	5-19-16/1615	191/9	5	s.a.u	tint.	hich	440001	(XNELLE	to V NOUT	5/19/2015
	A		1						1		>	1	0	5/2/10/U

7 to 5 age 9

Chain of Custody

		3860 S. Palo Verde	Road, Suite 30
^		Т	cson, AZ 8571
		T:+	1 520 573 106
ALE	1	F: +	1 520 573 106
(ALS)	2	Sample Receipt Form T1600851	5
Client/Project:	L'Anse Warde	en Elec Work Order Number:	NUMBER
22/2022/Addig/71/2023/6	Cynthia Vroegh		
Samples were receiv	100000000000000000000000000000000000000	PS Samples were received in: Box	
Were custody seals	on containers?	O Yes No O NA If yes, how many and where?	
If present were cust	ody seals intact?	O Yes No If present, were they signed and dated?) Yes () No
Cooler Temp C	Temp Blank C	Tracking Number	
na	na	1z526f7e0398517258	
	100000		
	used? Bags rrive in good condit s and tags agree wit		193174242
Were all the approp	riate containers and	d volumes received for the tests Indicated?	O NA
Are samples receive	d deemed acceptab	ole? (Yes O No	
Comments: 3 - Ig ziplock ba	gs with RR ties a	and TDF	
Notes, discrepa	ncies, & resolutio	ions:	

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client.

Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM 05865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as biomass, Tire Derived Fuel, etc.).
- Aralyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP- OES when the method references flame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 7

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 Attn: J.R. Richardson

Project: USEPA Compliance Testing

Date Received: 5/25/16

Certificate of Analysis

Sample ID:	Sample and Tir		Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
R/R Tie	5/19/16	1300	T1600851-001	31.58	0.16	512	
Wood Chips	5/19/16	1330	T1600851-002	36.89	0.02	52	
TDF	5/19/16	1345	T1600851-003	1.33	1.68	503	

Rpt-T1600851 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016 Page 5 of 7

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 Attn: J.R. Richardson

Project: USEPA Compliance Testing

Date Received: 5/25/16

Certificate of Analysis

Sample ID:	Sample I and Tir		Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg	
R/R Tie	5/19/16	1300	T1600851-001	0.11	351	
Wood Chips	5/19/16	1330	T1600851-002	0.01	33	
TDF	5/19/16	1345	T1600851-003	1.66	497	

Rpt-T1600851 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016 Page 6 of 7

Service Request No:T1600895

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory May 26, 2016 For your reference, these analyses have been assigned our service request number **T1600895**.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

in the set

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600895-001	R/R Tie	5/20/2016	1345
T1600895-002	Wood Chips	5/20/2016	1345
T1600895-003	TDF	5/20/2016	1345

	ALS Group	PHONE +1 520 573 1061 FAX +1 520 573 1063 ALS Group	Sector Contraction														
Project Manager	JR Richardson	5						H	Bfil, top	Clevel.	1 S	Susan Basile	sile				
Client Name:	L'Anse Warden Electric Co., LLC	en Electric	Co., LLC		Č,				Company.	Siny	「開設」	Anse W	L'Anse Warden Electric Co., LLC	ectric O	D., LLC		
Address:	157 S. Main St.	St.							Address:	555	Part and	PO Box 695	36				
City, State ZIP:	L'Anse, MI 49946	9946							City, S	City, State ZIP:	儀	White Pi	White Pine, MI 49971	126			
Emailt:	jr.richardson@pmpowergroup.com Ph	1@pmpowei	mon-duorgr	DUET	906.885.7187	\$12.21	2		Email:	15,203	10.000				1. A	bone: 90	Phone: 906.885.7402
Project Name:	USEPA Compliance Testing	oliance Test	Bui		Sec.	はい			N N	EQUE	STED	REQUESTED ANALYSIS	SIS	Total Con	のたちの	Mr. Mr.	TAT
Project Number:					-											_	X Routine
P.O. Number:	108672					_		_							_	_	Same Day
Sampler's Name:	John Polkky			2.2	1							_	_			_	Next Day
Contraction of the	SAMPLE RECEIPT	RECEIPT	and the factor		4			_		_							3 Day-
Temperature (C):		Temp 8	Temp Blank Present,		2	14											6 Day*
Received Intact:	Yes	No N/A	Wet Ice / Blue Ice	Blue Ice		a/		505					_				* Please call for
Cooler Custody Seals:		No N/A	Total Contail	tadnerst	1	221		10	2								availability,
Sample Custody Seals:	1	No N/A			\$40	50		cne									Kush charges
and a surface to the				111111111	uje	- lah	-	. (25)					_			_	Due Date:
Sample Identification	lion: Matrix	X Sampled	Sampled	-	o. of Cont ep Grind	ot anuselo	ulfur, Total	oT ,aninoid									
0/D Tia		5/00/2016	1345		-	-	+	> ×	t	-	T	-	+		+	ð	Copy report to
- Wood Chine		tochor's			-	+	+								F	c.hill@we	k.hill@westonsolutions.com
wood Chips		01/17/n7/s			-	×	*	×				ļ	1	-			
TOF		5/20/2016	6 1345		<u>-</u>	×	×	×									
		+			+			-	+	+		Ŧ	+		-	+	
					+		T	+	t				F	-		t	
							H	Η	Ħ			H			\square		
		- 13			+	-		-		-	1	-	-	+	+	+	
A CONTRACTOR OF A CONTRACTOR O	Contraction of the						1	-								Addits	Additional Methods
	and the second				1											Availabb	Available Upon Request
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	RELINQUI	RELINQUISHED BY	. W.	書	Action of	100	11	3	1 1 (2)	1.1.1	A Star	RECE	RECEIVED BY	X	and a particular	のないなどのない
Print Name	trate	2	Signature	自動した	0	Date/Time	ЭШ		STATES IN	Print	Print Name	1		Sig	Signature	No. 1999	Date/Time
John Polkky		Ula	- felle	2	5-20-16/1610	6/161	0	2.P.S	s				0.00				5/20/2016
			1					L	Conce		2 2	N Gurales		The is Main	14.1	3	Ciai) -11 -1

7 to £ sgef

				3860 S. Palo V	erde Road, Suite 3
					Tucson, AZ 857
0.9	1				T: +1 520 573 10 F: +1 520 573 10
ALS)	Samp	ole Receipt Form	T16008	He Ca., LLC
Client/Project:	L'Anse Warde	n	Work Order Num	ber:	
Received by:	Sonia Gonzalez	Date &	Time: 5/26/16 1012	Matrix: Solid	
amples were rece	ived via?:	S	Samples were received in	Box	
Were custody seal	s on containers?	O Yes No	O NA If yes, how many	and where?]
f present were cu	stody seals intact?	Ove O	No If present, were they	signed and dated?	O Yes O No
	Temp Blank C	Tracking Nu	mber		
Amblent	n/a		1Z 526 F7E 03	9252 3056	
Did all sample lab	arrive in good conditi als and tags agree wit priate containers and red deemed acceptabl	volumes receive	Yes O No O NA If No ed for the tests indicated?	If No, record co , record discrepand (Yes C	
- An -			s () NO		
Comments: 3 ziploc bags					
Notes, discrep	incies, & resolutio	ns:	10.0		

2

As a part of ISO 17025 protocols, ALS must notify clients that the quoted enarytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for enalysis unless notified by the dient.

Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM 05855 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as blomass, Tire Derived Fuel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP-OES when the method references flame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

12

Page 4 of 7

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 J.R. Richardson Attn:

Project: USEPA Compliance Testing

Date Received:

5/26/16

Certificate of Analysis

Sample ID:	Sample and Tir	100 M 100 M 100 M 100 M	Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
R/R Tie	5/20/16	1345	T1600895-001	24.33	0.15	334	
Wood Chips	5/20/16	1345	T1600895-002	34.70	0.02	53	
TDF	5/20/16	1345	T1600895-003	0.98	1.66	285	

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, Mi 49946 Attn: J.R. Richardson

Project: USEPA Compliance Testing

Date Received: 5/26/16

Certificate of Analysis

Sample ID:	Sample Date and Time:	Lab #:	Sulfur D4239 As Received wt%	Chlorine, Totai 5050/9056 As Received mg/kg	
R/R Tie	5/20/16 1345	T1600895-001	0.12	253	
Wood Chips	5/20/16 1345	T1600895-002	0.02	34	
TDF	5/20/16 1345	T1600895-003	1.64	282	

Service Request No:T1600901

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory May 27, 2016 For your reference, these analyses have been assigned our service request number T1600901.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

w? Hyard

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1051 | FAX +1 520 573 1053 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 7

Client: L'Anse Warden Electric Co., LLC Project: USEPA Compliance Testing

SAMPLE CROSS-REFERENCE

 $\xi_i^{(i)}$

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600901-001	R/R Tie 5/21	5/21/2016	1130
T1600901-002	Wood Chips 5/21	5/21/2016	1530
T1600901-003	TDF 5/21	5/21/2016	1535
T1600901-004	R/R Tie 5/22	5/22/2016	1630
T1600901-005	Wood Chips 5/22	5/22/2016	1500
T1600901-006	TDF 5/22	5/22/2016	1535
T1600901-007	R/R Tie 5/23	5/23/2016	1445
T1600901-008	Wood Chips 5/23	5/23/2016	1445
T1600901-009	TDF 5/23	5/23/2016	1445

(ALS)	ALS Group		ALS Group								N SHEWNING	
Project Manager:	JR Richardson	E							Bill to:	Susan Basile		
	L'Anse Warden Electric Co., LLC	an Electric C	o., LLC						Company:	L'Anse Warden Electric Co., LLC	tric Co., LLC	
	157 S. Main St.	St.						Π	Address:	PO Box 695		
City, State ZIP: 1	L'Anse, MI 49946	1946							City, State ZIP:	White Pine, Mi 49971		
Email:	jr.richardson@pmpowergroup.com Pt	Spmpowerg	troup.com	ione:	906.8	906.885.7187	187	Π	Emailt		Phone:	Phone: 906.885.7402
Project Name: 1	USEPA Compliance Testing	llance Testir	61		-	100	1		REQUESTE	REQUESTED ANALYSIS	States and the	TAT
H					3843	-	_					X Routine
	108672				07.3	-						Same Day
Sampler's Name:	John Polkky											Next Day *
	SAMBLE RECEIPT	RECEIPT		*E	- 180	-	_	_				3 Day*
Temperature (C):	-	Temp Bla	Temp Blank Present		erra	121		9				6 Day*
Received Intact:	Yes	No N/A	Wet Ice / Blue Ice	Blue Ice	Por	41/		506				· Please call for
CooleriCustody Seals:	: Yes	No N/A	Total Contal	calners:		121		/0				avallability
Sample Custody Seals:	Sc Yes	No N/A			53	ed.	144	sos				Rush charges
	1		1 M		anist	- lete		i - 143			1	Due Date:
Sample identification	-	Sampled	Simple	8	No. of Con	rep Crind Molsture To	istoT (متعا	oT ,anihold:				Comments
0 /0 Tie		501/16	1130	14	+-	÷	+	,				Conv report to
Wood Chine		5/21/16		1 -	-	+	+	*			K,hiller	k.hill@westonsolutions.com
The		91/10/5		7	-	+	+	,				
1		01/17/0		1	t	+	+	• •				
K/K lie		5/22/10		~	-	+	+	×				
Wood Chips		5/22/16		-	-	+	+	×				
TOF		5/22/16		8	-	+	+	×				
R/R Tie	-	5/23/16	_		-	+	+	×				
Wood Chips		5/23/16	_	88	-	×	×	×				
ĴŪ,		5/23/16	1445	\sim	-	×××	×	×				
	1			ANG	-	-	_					And Summer Section of
											Adi	Additional Methods Available thron Remest
and the second	R	RELINQUISHED BY	HED BY	SUNT S	1000	4	1.5	The second	A subset of the second second	RECEIVED BY	-	
Print Name	ne	S	Signature	No.	1.1	Date/Time	Time		Print Name	ne	Signature	Date/Time
John Polkky				-	5-23-	5-23-16/1610	015		UPS			5/23/2016
									N.M. M.N	W San	Sam N La La	and with

A	*			3860	ן ד:	e Road, Suite 3 Tucson, AZ 857 +1 520 573 10 +1 520 573 10
(ALS))	Sampl	e Receipt Form	Line	1600901	5
Client/Project:	L'Anse Warde	n Electric	Work Orde			
Received by:	Sonia Gonzalez	Date &	Time: 5/27/16 1	115 Matrix	c [Solid	
amples were recel	ved via7:	s	Samples were rec	eived In: B	ox	
Were custody seals	on containers?	O Yes No	O NA IFyes, ho	w many and whe	re?	
f present were cus	tody seals intact?	O Yes ON	lo If present, we	re they signed ar	nd dated?	O Yes O No
	Temp Blank C	Tracking Nur				
Ambient	n/a		1Z 526 F	7E 03 9801 98	868	
Did all sample labe	arrive in good condit Is and tags agree wit priate containers and	th COC7	Yes O No O NA	If No, record o	record comme discrepancies b • Yes O No	elow
Are samples receiv	ed deemed acceptab	le? () Yes	O No	1		
Comments: 9 ziploc bags				2		
Notes, discrepa	ncies, & resoluti	ons:			20010-031	

As a part of ISD 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client.

Modifications may include, but are not limited to:

- The enalysis of a sample matrix that differs from that stated in the published method (example ASTM DS865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as biomass, Tire Derived Fuer, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP- OES when the method references flame Acomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 7

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 Attn: J.R. Richardson

Project: USEPA Compliance Testing

Date Received: 5/27/16

Certificate of Analysis

Sample ID:	Sample	Date	Lab #:	Moisture	Sulfur	Chlorine, Total	
Sample ID:	and Tir	ne:	LaD #.	D3173	D4239	5050/9056	
				wt%	Moist. Free wt%	Moist. Free mg/kg	
R/R Tie 5/21	5/21/16	1130	T1600901-001	29.39	0.15	141	
Wood Chips 5/21	5/21/16	1530	T1600901-002	36.39	0.02	62	
TDF 5/21	5/21/16	1535	T1600901-003	1.61	1.66	620	
R/R Tie 5/22	5/22/16	1630	T1600901-004	31.39	0.14	367	
Wood Chips 5/22	5/22/16	1500	T1600901-005	39.08	0.02	<50	
TDF 5/22	5/22/16	1535	T1600901-006	1.13	1.74	470	
R/R Tie 5/23	5/23/16	1445	T1600901-007	28.50	0.12	251	
Wood Chips 5/23	5/23/16	1445	T1600901-008	37.00	0.03	<50	
TDF 5/23	5/23/16	1445	T1600901-009	1.22	1.79	512	

Notes:

Samples were air dried then ground to < 1 mm prior to analysis.

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600901 L'Anse Warden Electric Co LLC Richardson Rev2, 8/4/2016 Page 5 of 7

Client: L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946 Attn: J.R. Richardson

Project: USEPA Compliance Testing

Date Received: 5/27/16

Certificate of Analysis

Sample ID:	Sample I and Tir	Contraction of the second s	Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg
R/R Tie 5/21	5/21/16	1130	T1600901-001	0.11	100
Wood Chips 5/21	5/21/16	1530	T1600901-002	0.02	39
TDF 5/21	5/21/16	1535	T1600901-003	1.64	610
R/R Tie 5/22	5/22/16	1630	T1600901-004	0.09	252
Wood Chips 5/22	5/22/16	1500	T1600901-005	0.01	<50
TDF 5/22	5/22/16	1535	T1600901-006	1.72	465
R/R Tie 5/23	5/23/16	1445	T1600901-007	0.09	179
Wood Chips 5/23	5/23/16	1445	T1600901-008	0.02	<50
TDF 5/23	5/23/16	1445	T1600901-009	1.77	506

Rpt-T1600901 L'Anse Warden Electric Co LLC Richardson Rev2, 8/4/2016 Page 6 of 7

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory May 31, 2016 For your reference, these analyses have been assigned our service request number **T1600903**.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

W? Hyard

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 : FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

Service Request:T1600903

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600903-001	R/R Tie	5/24/2016	1310
T1600903-002	Wood Chips	5/24/2016	1310
T1600903-003	TDF	5/24/2016	1310

Gen	ALS Group	ALS Group		-								HALL BE LEVEL AND IN CAMERA IN CAMERA IN COMPANY		
Client Name: L Address: 1	JR Richardson								BBB, toc.		Susan Basile	dle		
	L'Anse Warden Electric Co., LLC	1 Electric C	5., LLC						Company:	:Aut	L'Anse W	L'Anse Warden Electric Co., LLC	Co., LLC	
	157 S. Main St.								Address	1	PO Box 695	56		
City, State ZIP: L	L'Anse, MI 49946	946							City, St	City, State ZIP,		White Pine, MI 49971	Construction of	Contraction of the Contraction
	jr.richardson@pmpowergroup.com m	ppmpowerg	roup.com	Jone:	906,885.7187	85.71	87		Email:		2.5		Phone: 9	Phone: 906.885.7402
Project Name: U	USEPA Compliance Testing	ance Testin	6						R	EQUES	REQUESTED, ANALYSIS	S		TAT
Project Number:				č i i							100 Mar 100			X Routine
	108672				6	-				2				Same Day *
ie:	John Polkky				3	-								Next Day *
	SAMPLE RECEIPT	ECEIPT		100		-								3 Day
Temperature (C):		Temp Blan	Temp Blank Present			121		9						6 Day
Received Intact:	Yes 1	No N/A	Wet Ice / BI	Slue Ice	1	N E8		506			_			* Please call for
Cooler Custody Seals:	Yes	No N/A	Total Contal	alners:	S.	ELI		/0						availability.
Sample Custody Seals:	Yes	No N/A		Γ	SI	EO		505						Kush charges
Sample (dentification	-	- 2	Time Sampled	3	enterno of Containe	rep Grind Aoisture. Total -	ulfur, Total - D4	- Istor, Total -						Due Date: Comments
R/R Tie		5/24/16	1310		-	+-	+	×	t				8	Copy report to
Wood Chips		5/24/16	1310		-	×	×	×		_			k hill@w	k-hill@westonsolutions.com
TDF		5/24/16			-		+ +	×		П				
						+								
											_			
						+		+						
	-			T		+								
													Addit	Additional Methods
The second second second	C. C. R.	RELINQUISHED BY	HED BY	Constant of	The second	1000	ANT COL	1	all for the	10.00	State of the	RECEIVED BY		
Print Name	100	1,5	Signature	A STATE	1.1.1	Date/Time	Time	1000	Service of	Print Name	làme	S	Signature	Date/Time
John Polkky		yen	- HUM	8	5-24-16/1610	1/91	10	5	U.P.S					5/24/2016
			2						Source	S.	honzeloz	in ani	NNY	SIDI NIES

Sample Receipt Form T1600903 Little Marked Reflect Tic Work Order Number: Client/Project: L'Anse Warden Electric Work Order Number: Received by: Sonia Gonzalez Date & Time: 5/31/16 1015 Matrix: Solid Samples were received by: Sonia Gonzalez Date & Time: 5/31/16 1015 Matrix: Solid Samples were received by: Sonia Gonzalez Date & Time: Solid Samples were received via?: UPS Samples were received in: Box Were custody seals on containers? Yes< No NA If yes, how many and where? If If present were custody seals intact? Yes No If present, were they signed and dated? Yes Cooler Temp C Temp Blank C Tracking Number Ambient n/a 12 526 F7E 03 9771 4873 Did all the bottles arrive in good condition (unbroken)? If yes No NA<	ALS	N				F: +1	520
Client/Project: L'Anse Warden Electric Work Order Number: Received by: Sonia Gonzalez Date & Time: 5/31/16 1015 Matrix: Solid Samples were received via?: UPS Samples were received in: Box Were custody seals on containers? O Yes No NA If yes, how many and where? If present were custody seals intact? O Yes No If present, were they signed and dated? O Yes Cooler Temp C Temp Blank C Tracking Number IZ 526 F7E 03 9771 4873 O Yes Packing material used? None If No, record comments bell Did all the bottles arrive in good condition (unbroken)? If Yes O No NA If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? If Yes O No NA If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? If Yes O No NA If No, O NA Are samples received deemed acceptable? If Yes O No No NA If Comments:	(ALS)	/	Sample	e Receipt Form	Likepa	Warman Beatrie Co. 110	
Samples were received via?: UPS Samples were received in: Box Were custody seals on containers? Yes No NA If yes, how many and where? If present were custody seals intact? Yes No If present, were they signed and dated? Yes Cooler Temp C Temp Blank C Tracking Number 12 526 F7E 03 9771 4873 Yes Packing material used? None Image: Sample service in good condition (unbroken)? Yes No NA If No, record comments below Did all the bottles arrive in good condition (unbroken)? Yes No NA If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? Yes No NA Yes No No Yes No NA Gormments: Yes No No NA	Client/Project:	L'Anse Warde	n Electric	Work Order			
Samples were received via?: UPS Samples were received in: Box Were custody seals on containers? O Yes O No O NA If yes, how many and where? If present were custody seals intact? O Yes O No If present, were they signed and dated? O Yes Cooler Temp C Temp Blank C Tracking Number Ambient n/a 1Z 526 F7E 03 9771 4873 Packing material used? None Did all the bottles arrive in good condition (unbroken)? O Yes O No O NA If No, record comments below Did all the bottles and tags agree with COC? O Yes O No O NA If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? O Yes O No O NA Are samples received deemed acceptable? O Yes O No Comments:	Received by:	Sonia Gonzalez	Date & T	Ime: 5/31/16 10	015 Matrix:	Solid	
Were custody seals on containers? Yes No NA If yes, how many and where? If present were custody seals intact? Yes No If present, were they signed and dated? Yes Cooler Temp C Temp Blank C Tracking Number If yes, how many and where? Yes Cooler Temp C Temp Blank C Tracking Number If yes Yes Yes Ambient n/a 1Z 526 F7E 03 9771 4873 If No, record comments bell If No, record comments bell Did all the bottles arrive in good condition (unbroken)? If yes No NA If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? If yes No NA Are samples received deemed acceptable? If yes No No Comments: If yes No No	1.030.030.030.03 0 00			9430003 234033938663		MUCROWN	
If present were custody seals intact? Yes O No If present, were they signed and dated? Yes Cooler Temp C Temp Blank C Tracking Number Amblent n/a 1Z 526 F7E 03 9771 4873 Packing material used? None If No, record comments bell Did all the bottles arrive in good condition (unbroken)? If No, record comments bell Old all sample labels and tags agree with COC? If No, record discrepancies below Were all the appropriate containers and volumes received for the tests indicated? If No, O NA Are samples received deemed acceptable? If Yes O No			-	<u></u>	den i		
Cooler Temp C Temp Blank C Tracking Number Amblent n/a 1Z 526 F7E 03 9771 4873 Packing material used? None Image: Second	Were custody seals	on containers?	O Yes 🖲 No	O NA If yes, how	v many and where		_
Cooler Temp C Temp Blank C Tracking Number Ambient n/a 1Z 526 F7E 03 9771 4873 Packing material used? None Image: Second	If present were cu:	stody seals intact?	O Yes ON	o If present, we	re they signed and	dated?	Yes
Amblent n/a 1Z 526 F7E 03 9771 4873 Packing material used? None Image: Second se	Cooler Temp C	Temp Blank C	Tracking Num	iber		1-	
Packing material used? None Did all the bottles arrive in good condition (unbroken)? Oid all sample labels and tags agree with COC? Were all the appropriate containers and volumes received for the tests indicated? Are samples received deemed acceptable? Comments:	and the second se	and the second design of the s			'E 03 9771 487	'3	_
Did all the bottles arrive in good condition (unbroken)? Old all sample labels and tags agree with COC? Were all the appropriate containers and volumes received for the tests indicated? Are samples received deemed acceptable? Comments:							_
Are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received deemed acceptable? Image: Control of the original sectors are samples received de					5.6877 C 0110234700		
Comments:	Were all the appro	priate containers and	volumes received	for the tests indicated	17 🔘	Yes O No O	NA
Comments:	Are samples receiv	ed deemed acceptabl	le7 🔊 var	O Ma	10		
			1010	0110			
	and the second s						
	and the second s						_
Notes, discrepancies, & resolutions:	and the second s						
	3 ziploc bags	incies, & resolutio	ons:				_
	3 ziploc bags	incies, & resolutio	ons:		and dealers		

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client. Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM D5865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other metrices such as biomass, Tire Derived Fuel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP-OES when the method references flame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 7

Project: USEPA Compliance Testing

Date Received: 5/31/16

Certificate of Analysis

Sample ID:	Sample and Tir	10 C C C C C C C C C C C C C C C C C C C	Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
R/R Tie	5/24/16	1310	T1600903-001	24.20	0.09	189	
Wood Chips	5/24/16	1310	T1600903-002	43.57	0.02	<52	
TDF	5/24/16	1310	T1600903-003	1.96	1.64	561	

670

Notes:

Samples were air dried then ground to < 1 mm prior to analysis.

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600903 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016 Page 5 of 7

Project: USEPA Compliance Testing

Date Received: 5/31/16

Certificate of Analysis

Sample ID:	Sample I and Tin		Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg
R/R Tie	5/24/16	1310	T1600903-001	0.07	143
Wood Chips	5/24/16	1310	T1600903-002	0.01	<52
TDF	5/24/16	1310	T1600903-003	1.61	550

Rpt-T1600903 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016 Page 6 of 7

Service Request No:T1600910

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory June 01, 2016 For your reference, these analyses have been assigned our service request number **T1600910**.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

W? Hyatt

Wendy Hyatt Client Services Manager

> ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1051 | FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 7

333

Client: L'Anse Warden Electric Co., LLC Project: USEPA Compliance Testing

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600910-001	R/R Tie	5/25/2016	1300
T1600910-002	Wood Chips	5/25/2016	1300
T1600910-003	TDF	5/25/2016	1300

÷

-
-
σ
0
-
S
-
Ū
-
0
-
.=
3
-C
ū

ALS Environmental - Tucson ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Work Order No.:

٠

1.4

(ALS)	ALS Group		Same Second												INTERNE	
Project Manager	JR Richardson					1			BII	Bill tot	「花子」	Susan Basile	asile			
Client Name:	L'Anse Warden Electric Co., LLC	n Electric C	o., LLC						8	Companya	1995	L'Anse V	Varden I	L'Anse Warden Electric Co., LLC	", LLC	
	157 S. Main St		10					12.0	Ad	Address	1	PO Box 695	595			
City, State ZIP:	L'Anse, MI 49946	946		and below and					ð	City, State ZIP		White Plne, MI 49971	ne, MI 4	1266		
	jr.richardson@pmpowergroup.com Phone:	ppmpowerg	Iroup.com	100	906.885.7187	85.7	187		G	Emailt		1			Phone	Phone: 906.885.7402
Project Name:	USEPA Compliance Testing	iance Testir	6						Station .	REQUE	STED	REQUESTED ANALYSIS	SIS	HANDER.	19 dentro	TAT
Project Number:					0	811	_	_								X Routine
P.O. Number:	108672						_						-			Same Day *
Sampler's Name:	John Polkky							_		_				_		Next Day *
	SAMPLE RECEIPT	ECEIPT				11-2			-					_		3 Day*
Temperature ('C):		Temp Bla	Temp Blank Present		-	the state		9	_		_					6 Day-
Received Intact:	Yes	No N/A	Wet Ice / Blue Ice	lue Ice				506				_				* Please call for
Cooler Custody Seals:	Yes	No N/A	Total Containers:	dners:	- 1			/0	-		_	-	_			availability.
Sample Custody Seals:	Yes	No N/A			\$.13	en .		505	-				_			will apply
Sample (dentification	on Matrix	Date Sumpled	Time Sampled	e F	nimo of Contain	Prep Grind	Moisture. Total - D	- Total , Total -								Due Date: Comments
R/R Tie		5/25/16	1300		-	-	-	×	-							Copy report to
Wood Chips		5/25/16	1300		-	×	×	×	-						K hill (k. hill@westonsolutions.com.
TDF		5/25/16	1300		-	×	×	×								
					\top	+	+		+	\ddagger		+	+			
						$\left \right $	$\left \right $									
					1	+	-		+		<u></u>					
					Ħ	H	H	\square	H							
						-	_		-	_	-	-	_		Add	Additional Methods
and address	No. of the second second														Avail	Available Upon Request
	R	RELINQUISHED BY	HED BY	States?	THE.	a tuta	100	1	101 C 100	Sold States	Statistics.	の語を見	REC	RECEIVED BY	Y	No. of the second second
Print Name	tie	54	Signature			Date,	Date/Time		1 A 1	Print	Print Name	States -	Contraction of the	Stg	Signature	Date/Time
John Polkky		Kha	- KUR	X	5-25-16/1700	16/1	200		U.P.S				2.5 m			5/25/2016
	•				1				Ę	Andi Balton	DIFT DIFT	G	9	Altr	1	[1]//1/1002
								I								

Revised : S250018

AIS		F: +1 520 57
		Sample Receipt Form T1600910 5
Client/Project:	L'Anse Warde	n Electric Work Order Number
Received by:	Andi Barton	Date & Time: 6/1/16 1002 Matrix: Solid
Samples were receiv	red via?: UF	PS Samples were received in: Box
Were custody seals	on containers7	O Yes No O NA If yes, how many and where?
If present were cust	ody seals intact?	O Yes O No If present, were they signed and dated? O Yes O
Cooler Temp C	Temp Blank C	Tracking Number
N/A	N/A	1Z 526 F7E 03 9459 1265
	rrive in good condit s and tags agree wit rlate containers and	
Were all the approp	d deemed acceptab	Ne? Yes O No
Are samples receive		412
Are samples receive	k Bags	15
Are samples receive	k Bags	
Are samples receive	k Bags	*4

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the dient.

Modifications may include, but are not limited to:

¥,

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM D5865 Standard Test. Method for Gross Calorine Value of Coal and Coke is used for other matrices such as blomass, Tire Derived Fuer, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP- QES when the method references frame Atomic Absorption Spactroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Project: USEPA Compliance Testing

Date Received: 6/ 1/16

Certificate of Analysis

Sample ID:	Sample and Tir		Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
R/R Tie	5/25/16	1300	T1600910-001	26.81	0.11	319	
Wood Chips	5/25/16	1300	T1600910-002	38.39	0.02	<52	
TDF	5/25/16	1300	T1600910-003	3.33	1.59	573	

Project: USEPA Compliance Testing

Date Received: 6/ 1/16

Certificate of Analysis

Sample ID:	Sample D and Tim	1000000	Lab #:	Sulfur D4239 As Received wt%	Chlorine, Total 5050/9056 As Received mg/kg	
R/R Tie	5/25/16	1300	T1600910-001	0.08	234	
Wood Chips	5/25/16	1300	T1600910-002	0.01	<52	
TDF	5/25/16	1300	T1600910-003	1.54	554	

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600910 L'Anse Warden Electric Co LLC Richardson Rev2, 7/11/2016

Page 6 of 7

Service Request No:T1600952

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory June 07, 2016 For your reference, these analyses have been assigned our service request number T1600952.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

in theyatt

Wendy Hyatt Client Services Manager

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 | FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 9

339

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600952-001	R/R Tie 5/26	5/26/2016	1310
T1600952-002	Wood Chips 5/26	5/26/2016	1310
T1600952-003	TDF 5/26	5/26/2016	1310
T1600952-004	R/R Tie 5/27	5/27/2016	1330
T1600952-005	Wood Chips 5/27	5/27/2016	1330
T1600952-006	TDF 5/27	5/27/2016	1330
T1600952-007	R/R Tie 5/28	5/28/2016	1330
T1600952-008	Wood Chips 5/28	5/28/2016	1330
T1600952-009	TDF 5/28	5/28/2016	1330
T1600952-010	R/R Tie 5/29	5/29/2016	1310
T1600952-011	Wood Chips 5/29	5/29/2016	1310
T1600952-012	TDF 5/29	5/29/2016	1310
T1600952-013	R/R tie 5/30	5/30/2016	1330
T1600952-014	Wood Chips 5/30	5/30/2016	1330
T1600952-015	TDF 5/30	5/30/2016	1330

	ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucs PHONE +1 520 573 1061 FAX +1 520 573 1063 ALS Group	S. Palo Verde F 173 1061 FAX	pad, Suite 30. +1 520 573 1	2, Tucson 063	on, AZ 85714	ž		1	×	Work Order No.:	No.: Were			
Project Manager	JR Richardson								100	Bill to:	Susan Basile			
	L'Anse Warden Electric Co., LLC	in Electric C	D, LLC						U	Company	L'Anse Wan	L'Anse Warden Electric Co., LLC	TC	
Address:	157 S. Main St.	ţ,							×	Address:	PO Box 695			
Chy, State ZIP:	L'Anse, MI 49946	946							0	City, State ZIP:	White Pine, MI 49971	MI 49971		
Emailt	jr.richardson@pmpowergroup.com Phone	Spmpower	group.com	Phone:	906	906.885.7187	187		B	Email:	20.6		Phone: 906.885.7402	5.7402
Project Name:	USEPA Compliance Testing	lance Testi	p.		14		April 1	12 A	Ser and	* REQUEST	* REQUESTED ANALYSIS	SALES CONTRACTOR	State of the second second	TAT
Project Number:	1 2 2 2												×	Routine
P.O. Number:	108672													Same Day *
Sampler's Name:]	John Polkky													Next Day *
1	SAMPLE RECEIPT	THIODAY					_	_						3 Day*
Temperature ('C):		Temp Bla	Temp Blank Present			123		9						6 Day*
Received Intact:	Yes	No N/A	Wet Ice / Blue Ice	Blue Ice	100	11/		506				_	d.	Please call for
Cooler Custody Seals:	Yes	No N/A	Total Containers	talners:		221	-	10						availability.
Sample Custody Seals:	1	No N/A			\$10	50	-	\$05					2	Rush charges
Sample: Identification	Natrit N	Date Samples	Time Sempled	993	ialistaco to .	p Grind isture. Total -	Hur, Total - D4	- IstoT , seinol						Due Date:
and the second se			Res College	and the second	-	-	-	42		_				Comments
R/R Tie		5/26/16	1310	8	1	x x	×	×					Copy report to	ort to
Wood Chips		5/26/16	1310		-	xx	×	×					k.hill@westonsolutions.com	olutions.com
TDF		5/26/16	1310		-	××	×	×	-				_	
R/R Tie		5/27/16	1330		-	××	×	×						
Wood Chips		5/22/16	1330		-	××	×	×						
TDF		5/22/16	1330		-	×	×	×						
R/R Tie		5/28/16	1330		-	××	×	×						
Wood Chips		5/28/16	1330		-	××	×	×						
TDF		5/28/16	1330	0.21	-	×	×	×						
	_					-	_						Additional International	Interior of the
A State State State State	111												Available Upon Request	in Request
	8	RELINQUISHED BY	HED BY	の方面を	1000	Sec. Sec.	Contraction of the local division of the loc	1000	A DUNCE	State State State	Constanting of	RECEIVED BY		
Print Name	ē	5 5	Signature			Date/Time	Time		100	Print Nam	me 1 / .	Signa	ature 1	Date/Time
John Polkky		She.	- Elle	they -	5-31-	5-31-16/1630	0230		S'4'N	CUMM	io litter	(intelled	VALPAG SI3	5/31/2016
		-	J							1	5	-	0 10	1111111

e lo é ageq

Chain of Custody

341

-
-
σ
0
÷.
S
3
Ū
-
ō
2
3
-
()
-

ALS Environmental - Tucson ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Project Manager:	JR Richardson	u.						Н	Bill to:	時に出た	s	Susan Basile	a				
Clens Name:	L'Anse Warden Electric Co., LLC	ten Electric	Co., LLC					Т	Company	any	The All	L'Anse Warden Electric Co., LLC	den El	actric Co	"ITC		
Address:	157 S. Main St.	St.						1	Address:	1555	a.	PO Box 695	2				
City, State ZiP:	L'Anse, MI 49946	9946						Т	City, State	State ZIP:	20	White Pine, MI 49971	MI 49	126			
Email:	jr.richardso	modudau	jr.richardson@pmpowergroup.com	Diec	906.885.7187	85.71	87	-	Email:	12429	1000				4	00 1100	Phone: 906.885.7402
Project Name:	USEPA Compliance Testing	pliance Tes	ting		1000	5.3		Real Providence	の見かんでい	REQUE	STED	REQUESTED ANALYSIS		10.33X MAR		1.4.1.4.1	TAT
Project Number:	and a sub-concerned					_		1		1.2					_		x Routine
P.O. Number:	108672					_		_				_		_			Same Day
Sampler's Name:	John Polkky						- //	-	_					_			Next Day
	SAMPLE	SAMPLE RECEIPT												_	-		3 Day
Temperature ('C):	100	Temp	Temp Blank Present			1/1		9					042	_	-		6 Day
Received Intact:	Yes	No N/A	A Wet Ice / Blue Ice	Blue Ice	2	9/		506									* Please call
Cooler-Custody Seals:	st: Yes	No N/A	A Total Containets:	stainets;		221		/ 0	_					_			availability
Sample Custody Seals:	Is: Yes	No N/A	-		sia	EQ.	5829	sos						_		~	Kush charges will apply.
Service A.						-	- Int	- letol					1.11				Due Date
Sample Identification	don Matrix	tx Date	Ampled	04	No. of Co	Adisture.	sulfur, To	Chlorine,								0.21-21-0	Comments
R/R The		5/29/16	16 1310	010	-	+	×	×	E					F	\vdash	8	Copy report to
Wood Chips		5/29/16	16 1310	110	-	×	×	×						_	1	hildwei	k.hil@westonsolutions.com
TDF		5/29/16	16 1310	013	1 ×	×	×	×									
R/R Tle		5/30/16	16 1330	C	1 ×	×	×	×						_	-		
Wood Chips		5/30/16	16 1330	410	1 ×	×	×	×						_			
TDF		5/30/16	16 1330	510	× -	×	×	×		-				_		_	
		-		Ca	111	-				-		_		_			
				*		+		+	1	+		+	1	Ŧ	+		
					-	-		-	E					-			
																Additio	Additional Methods
and the second se	and the second second	and the second se	A DESCRIPTION OF THE PARTY OF T	0.0010000	10000	PLOY A	1000	101 104	10000000	Constant of the	Concernant Pro-	Calcologia (1000	Contraction of the	100	National View	Available upon nequest
ALL AND AL	Sector Sector	KELINUU	KELINQUISHED BY	Statest	and and	-	and the second		C. A. Salar	C. I	and the second	A STATION	KECE	KECEIVED BY	The state	the state	AND PERSON
Print Name	me	0	Signature		「行いている	Date/Time	Ime		No. of Street, or other	Print	Print Name	11	0	Sigi	Signature		Date/Time
John Polkky		Ela.	- Elle	d	5-31-16/1630	6/16	8	L.P.S	5.	4th	1ma	Union	104	mat	B VI	CO OF	5/31/2016
				1				1		-)	1			0	V-17116

			3860 S. Palo Ve	erde Road, Suite 302
				Tucson, AZ 85714 T: +1 520 573 1061
ALE				F: +1 520 573 1063
(ALS)	5	Sample Receipt Form	T160095	1 5+, LLE
Client/Project:	L'Anse Warde	n Elec Work Orde	198011	
Received by:	Cynthia Vroegh	Date & Time: 6/7/16 11	14 Matrix: Solid	
Samples were received	ved via?: UF	Samples were rec	eived in: Box	
Were custody seals	on containers?	O Yes INO O NA If yes, ho	w many and where?	
If present were cust	ody seals intact?	O Yes No If present, we	re they signed and dated?	O Yes No
Cooler Temp C	Temp Blank C	Tracking Number		
na	na	1z526f	7e0392134879	
Did all sample label Were all the approp	rrive in good condit is and tags agree wit rlate containers and td deemed acceptab	th COC? Yes O No O NA	If No, record discrepanci	es below
Comments: 15 - Ig plastic zi	plock bags			
Notes, discrepa	ncies, & resolutio	ons:		

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client.

Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM D5865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as biomass, Tire Derived Fuel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP- OES when the method references fiame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

14

Project: USEPA Compliance Testing

Date Received:

6/7/16

Certificate of Analysis

Sample ID:	Sample I and Tir		Lab #:	Moisture D3173	Sulfur D4239 Moist, Free	Chlorine, Total 5050/9056 Moist. Free	
				wt%	wt%	mg/kg	
R/R Tie 5/26	5/26/16	1310	T1600952-001	29.79	0.16	233	
Wood Chips 5/26	5/26/16	1310	T1600952-002	43.16	0.02	53	
TDF 5/26	5/26/16	1310	T1600952-003	4.77	1.74	414	
R/R Tie 5/27	5/27/16	1330	T1600952-004	32.39	0.13	245	
Wood Chips 5/27	5/27/16	1330	T1600952-005	41.43	0.03	<50	
TDF 5/27	5/27/16	1330	T1600952-006	3.14	1.64	382	
R/R Tie 5/28	5/28/16	1330	T1600952-007	34.18	0.09	233	
Wood Chips 5/28	5/28/16	1330	T1600952-008	42.91	0.02	<50	
TDF 5/28	5/28/16	1330	T1600952-009	2.12	1.68	382	
R/R Tie 5/29	5/29/16	1310	T1600952-010	27.14	0.11	248	
Wood Chips 5/29	5/29/16	1310	T1600952-011	41.53	0.02	<50	
TDF 5/29	5/29/16	1310	T1600952-012	2.85	1.77	563	
R/R tie 5/30	5/30/16	1330	T1600952-013	29.76	0.12	415	
Wood Chips 5/30	5/30/16	1330	T1600952-014	44.17	0.02	<50	
TDF 5/30	5/30/16	1330	T1600952-015	6.05	1.67	509	

Notes:

Samples were air dried then ground to < 1 mm prior to analysis.

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600952 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016

Page 6 of 9

Project: USEPA Compliance Testing

Date Received: 6/

6/7/16

Certificate of Analysis

Sample ID:	Sample I and Tir	1070 H () (T () ()	Lab #:	Sulfur D4239 As Received wt%	Chiorine, Total S050/9056 As Received mg/kg
R/R Tie 5/26	5/26/16	1310	T1600952-001	0.11	163
Vood Chips 5/26	5/26/16	1310	T1600952-002	0.01	30
TDF 5/26	5/26/16	1310	T1600952-003	1.65	394
R/R Tie 5/27	5/27/16	1330	T1600952-004	0.09	166
Wood Chips 5/27	5/27/16	1330	T1600952-005	0.02	<50
TDF 5/27	5/27/16	1330	T1600952-006	1.59	370
R/R Tie 5/28	5/28/16	1330	T1600952-007	0.06	154
Wood Chips 5/28	5/28/16	1330	T1600952-008	0.01	<50
TDF 5/28	5/28/16	1330	T1600952-009	1.65	374
R/R Tie 5/29	5/29/16	1310	T1600952-010	0.08	180
Wood Chips 5/29	5/29/16	1310	T1600952-011	0.01	<50
TDF 5/29	5/29/16	1310	T1600952-012	1.72	547
R/R tie 5/30	5/30/16	1330	T1600952-013	0.08	291
Wood Chips 5/30	5/30/16	1330	T1600952-014	0.01	<50
TDF 5/30	5/30/16	1330	T1600952-015	1.57	478

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600952 L'Anse Warden Electric Co LLC Richardson Rev1, 7/11/2016

Page 7 of 9

Service Request No:T1600991

Mr. J.R. Richardson L'Anse Warden Electric Co., LLC 157 S. Main St. L'Anse, MI 49946

Laboratory Results for: USEPA Compliance Testing

Dear Mr.Richardson,

Enclosed are the results of the sample(s) submitted to our laboratory June 14, 2016 For your reference, these analyses have been assigned our service request number T1600991.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 7102. You may also contact me via email at Wendy.Hyatt@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

W? Hyatt

Wendy Hyatt Client Services Manager

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 | FAX +1 520 573 1063 ALS Group USA, Corp. dba ALS Environmental

Page 1 of 7

346

Client: L'Anse Warden Electric Co., LLC Project: USEPA Compliance Testing

SAMPLE CROSS-REFERENCE

.

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
T1600991-001	R/R Tie 5/31	5/31/2016	1500
T1600991-002	Wood Chips 5/31	5/31/2016	1500
T1600991-003	TDF 5/31	5/31/2016	1500
T1600991-004	R/R Tie 6/1	6/1/2016	1630
T1600991-005	Wood Chips 6/1	6/1/2016	1630
T1600991-006	TDF 6/1	6/1/2016	1630
T1600991-007	R/R Tie 6/2	6/2/2016	1500
T1600991-008	Wood Chips 6/2	6/2/2016	1500
T1600991-009	TDF 6/2	6/2/2016	1500

3	
e,	6
1	ŏ
1	2
1	2
4	5
4	-
7	0
- j	2
•	=
4	2
ī	5
00	-02

ALS Environmental - Tucson ADDRESS 3860 S. Palo Verde Road, Sulte 302, Tucson, A2 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Work Order No.:

Project Manager	JR Richardson								B(I) to:	Susan Basile	tle		
Client Name:	L'Anse Warden Electric Co., LLC	n Electric C	o., LLC						Company:	L'Anse Wa	L'Anse Warden Electric Co., LLC	,, LLC	
Address:	157 S. Main St.	بر							Address:	PO Box 695	5		
City, State ZIP:	L'Anse, MI 49946	946	Contraction of the second second						City, State ZIP:	White Pine	White Pine, MI 49971	A Second S	
Emaile	jr.richardson@pmpowergroup.com Phone	Dpmpowerg	Iroup.com	Phone:	906.885.7187	385.7	187		Emailt	Sec. 2 Sec.		Phone: 906	906.885.7402
Project Name:	USEPA Compliance Testing	lance Testir	6						REQUESTE	REQUESTED: ANALYSIS	S	BIRLEY MALWARD	TAT
E				200	-	-	_						X Routine
	108672						_	_					101
Sampler's Name:	John Polkky					-							Next Day •
	SAMPLE RECEIPT	ECENT			1	-	_						3 Day*
Temperature ('C):		Temp Bla	Temp Blank Present		-		1.00	9					0 6 Day*
Received Intact:	Yes	No N/A	Wet Ice / Blue Ice	slue Ice	-			\$96		_			· Please call for
Cooler Custody Seals:	Yes	No N/A	Total Containers	alners:	12		-						availability.
Sample Custody Seals:		No N/A			sıə								Kush charges will annhy
			Sec. 1		niesne								Due Date:
Sample Identification	don Matrix	Sampled	Sampled	8	o. of Co	ep Grine	oisture. Mur, Tol	hiorine, '					
0/0 Tie		5/31/16	1500		N -	+	+	+				Com	Conv report to
Wood Chine		5/11/16/2			-	+	+	+				k.hill@wea	k, hill@westonsolutions.com
TOF		5/31/16			-	+	+-	+-				-	
R/R Tie		6/1/16	1630		-	×	××	×					
Wood Chips		6/1/16			-	-	×	-					
TDF		91/1/9	1630		-	×	××	×					
R/R Tie		6/2/16	1500		-	×	×	×					
Wood Chips		6/2/16	1500		-	×	××	×					
TDF		6/2/16	1500	3	-	×	×	×		_	_		
	_	_				-	-	_		-		-	
1000	Carlos -											Additic	Additional Methods Available Upon Request
Constant of the	×	RELINQUISHED BY	HED BY	大学のころで	in the second	Silin .	135	100 th	T. S. W. Hawken & Law	A Domestic State	RECEIVED BY	V. A. S. Stratter	and a state of the
Print Name		S	Signature		ALC: N	Date	Date/Time		Print Name	Яć	Sigi	Signature	Date/Time
John Polkky	kky				6	06-1	6-06-16/1630	30	2.4.0			1	6/6/2016
									anthia	moul	VINHA.	n/nolah	Vallylle 10

				3860 S. P	alo Verde Roa Tucso	d, Suite 30 n, AZ 8571
10000						0 573 106
(ALS))					20 573 106 5
•		Samp	le Receipt Form	L'Write W	00991	5
Client/Project:	L'Anse Warde	n Elec] . Work Order Nut	nber:		
Received by:	Cynthia Vroegh	Date &	Time: 6/14/16 1021	Matrix: So	bild	
Samples were recei	ved via?: UF	s	Samples were received	in: Box		
Were custody seals	dn containers?	O Yes @ No	O NA If yes, how man	y and where?	[
If present were cus	tody seals intact?	O Yes 🔘	No If present, were the	y signed and da	ted? O Ye	s 🖲 No
Cooler Temp C	Temp Blank C	Tracking Nu				
na	na		1z526f7e03	95218283		
Did all sample labe	arrive in good conditi Is and tags agree wit priate containers and	h COC?	Ves O No O NA If P Ves O No O NA If P	lo, record discre	rd comments be spancies below	
Are samples receiv	ed deemed acceptab	e7 💽 Ye	s () No	10		
Comments: 9 - Ig ziplock bi	ags with RR ties,	bark, TDF				
Notes, discrepa	ncies, & resolutio	ons:				
						4

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client. Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM D5865 Standard Test Method for Gross Calorific Value of Coal and Coke is used for other matrices such as biomass, Tire Derived Puel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of imited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using KP-OES when the method references frame Atomic Absorption Spectroscopy)

RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 7

Project: USEPA Compliance Testing

Date Received: 6/

6/14/16

Sample ID:	Sample and Ti	the second se	Lab #:	Moisture D3173 wt%	Sulfur D4239 Moist. Free wt%	Chlorine, Total 5050/9056 Moist. Free mg/kg	
R/R Tie 5/31	5/31/16	1500	T1600991-001	31.53	0.13	229	
Wood Chips 5/31	5/31/16	1500	T1600991-002	45.81	0.02	<58	
TDF 5/31	5/31/16	1500	T1600991-003	5.26	1.84	363	
R/R Tie 6/1	6/1/16	1630	T1600991-004	34.78	0.11	103	
Wood Chips 6/1	6/1/16	1630	T1600991-005	36.80	0.02	<57	
TDF 6/1	6/1/16	1630	T1600991-006	2.80	1.73	496	
R/R Tie 6/2	6/2/16	1500	T1600991-007	31.35	0.15	231	
Wood Chips 6/2	6/2/16	1500	T1600991-008	41.85	0.02	<58	
TDF 6/2	6/2/16	1500	T1600991-009	4.70	1.72	742	

Certificate of Analysis

Notes:

Samples were air dried then ground to < 1 mm prior to analysis.

ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600991 L'Anse Warden Electric Co LLC Richardson, 7/5/2016

Page 5 of 7

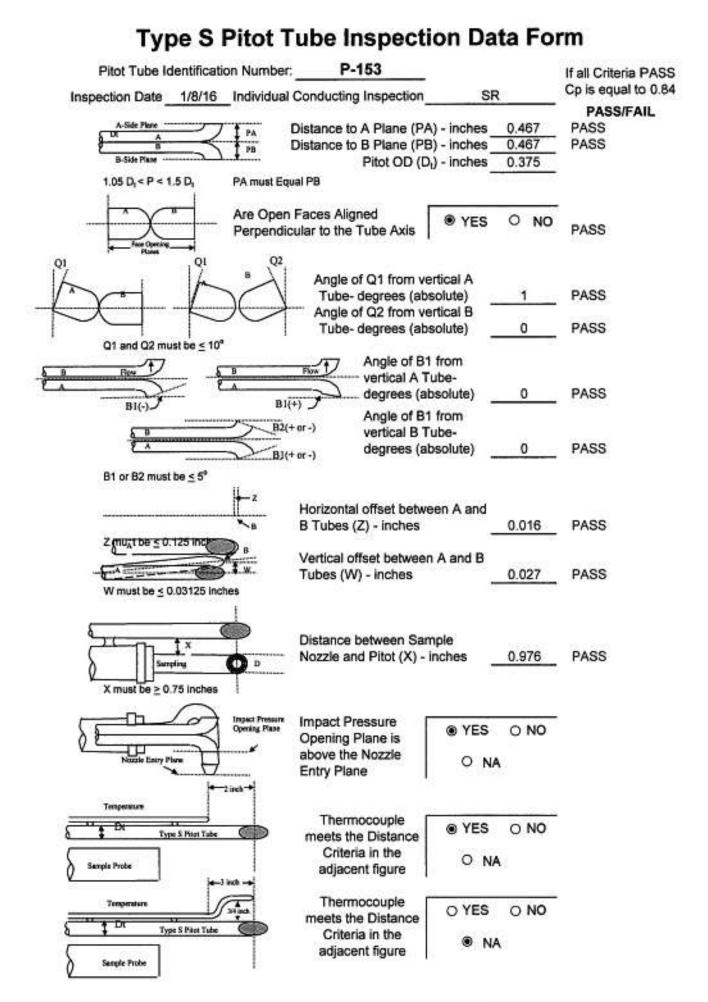
Project: USEPA Compliance Testing

Date Received: 6/

6/14/16

Certificate of Analysis

Sample ID:	Sample I and Tir		Lab #:	Sulfu D423 As Rece wt%	19 Ived	Chlorine, Total 5050/9056 As Received mg/kg	
R/R Tie 5/31	5/31/16	1500	T1600991-001		0.09	157	
Wood Chips 5/31	5/31/16	1500	T1600991-002		0.01	<58	
TDF 5/31	5/31/16	1500	T1600991-003		1.74	344	
R/R Tie 6/1	6/1/16	1630	T1600991-004		0.07	67	
Wood Chips 6/1	6/1/16	1630	T1600991-005		0.01	<57	
TDF 6/1	6/1/16	1630	T1600991-006		1.68	482	
R/R Tie 6/2	6/2/16	1500	T1600991-007		0.10	159	
Wood Chips 6/2	6/2/16	1500	T1600991-008		0.01	<58	
TDF 6/2	6/2/16	1500	T1600991-009		1.63	707	


ADDRESS 3860 S. Palo Verde Road, Suite 302, Tucson, AZ 85714 PHONE +1 520 573 1061 FAX +1 520 573 1063

Rpt-T1600991 L'Anse Warden Electric Co LLC Richardson, 7/5/2016

Page 6 of 7

APPENDIX F QUALITY CONTROL RECORDS

.

Type S Pitot Tube Inspection Data Form

Inspection Date 1/26/16	ndividual Conducting Inspection	SR	If all Criteria PASS Cp is equal to 0.84
A-Side Plane	PA Distance to A Plane (PA Distance to B Plane (PE Pitot OD (D	3) - inches 0.469	PASS/FAIL PASS PASS
1.05 D ₁ < P < 1.5 D ₁	PA must Equal PB	1/ mones	
	Are Open Faces Aligned Perpendicular to the Tube Axis	● YES O NO	PASS
Ď- Ď	Angle of Q1 from ve Tube- degrees (ab	solute) 0	PASS
1 1	Angle of Q2 from ve Tube- degrees (ab		PASS
Q1 and Q2 must be ≤ 10°	Angle of B1	from	
BI(-)	B1(+) degrees (al	bsolute) <u>1</u>	PASS
2	B2(+ or -) B3(+ or -) B3(+ or -) Angle of B1 vertical B T degrees (al	ube-	PASS
B1 or B2 must be ≤ 5*	F	100 100 article 100 a	
Emuri 106 - 0.126 1	B Horizontal offset between B Tubes (Z) - inches	een A and0.009	PASS
W must be ≤ 0.03125 inches	Vertical offset between Tubes (W) - inches	A and B 0.015	PASS
A must be > 0.75 inc.	proving Plane		PASS
Nazike Entry Place	Impact Pressure	⊛ YES O NO	
Tanpensus DI Type S Bus Take	above the Nozzle Entry Plane	O NA	
Toespenature Toespenature Sample Ditter Types S Direct Tube	Thermocouple meets the Distance Criteria in the adjacent figure	OYES ONO ⊛NA	
٤	Thermocouple meets the Distance Criteria in the adjacent figure	⊛YES ONO ONA	-

Sample Probe

Type S Pitot Tube Inspection Data Form

Inspection Date 12/30/15 Individual Conducting Inspect	ion SR	If all Criteria PASS Cp is equal to 0.84
A-Side Plane DI B-Side Plane B-Side Plane B-Side Plane B-Side Plane B-Side Plane	(PB) - inches 0.472	PASS/FAIL PASS PASS
1.05 D ₁ < P < 1.5 D ₁ PA must Equal PB	D (D ₁) - inches 0.375	
Are Open Faces Aligned Perpendicular to the Tube Ax		PASS
Angle of Q1 from	(absolute) 1	PASS
Angle of Q2 from Tube- degrees		PASS
	of B1 from	
BI(+) Vertical degree	A Tube- s (absolute) 0	PASS
B B2(+ or -) vertical	of B1 from B Tube- s (absolute) 1	_ PASS
Horizontal offset b CA (ZIA USE DE C.D. 125 (C) - inch		_ PASS
Vertical offset betv Tubes (W) - inche W must be ≤ 0.03125 inches		PASS
Sampling D Sampling D Sampli	177 TO 180 TA	-
Nuzzle Entry Place Impact Pressure Opening Plane is above the Nozzle	OYES ONO ⊛NA	
Entry Plane	1	
Temperatures		
Adjacent figure		

Sample Probe

Type S Pitot Tube Inspection Data Form

Pitot Tube Identification Number Inspection Date 1/18/16 Individual	he la	SR	If all Criteria PASS Cp is equal to 0.84
A-Side Plane	Distance to A Plane (PA Distance to B Plane (PE Pitot OD (D	A) - inches 0.424 3) - inches 0.424	PASS/FAIL PASS PASS
	Faces Aligned cular to the Tube Axis	® YES ○ NO	PASS
	Angle of Q1 from ve Tube- degrees (ab Angle of Q2 from ve Tube- degrees (ab	solute) <u>2</u> ertical B	PASS
Q1 and Q2 must be ≤ 10°	Angle of B1	from ube-	PASS
B2((+) Angle of B + or -) vertical B T + or -) degrees (a	ube-	PASS
B1 or B2 must be ≤ 5° Zenu^1 be < 0.125 inc	Horizontal offset betw B Tubes (Z) - inches	een A and0.032	PASS
W must be ≤ 0.03125 inches	Vertical offset between Tubes (W) - inches	n A and B 0.02	PASS
X must be ≥ 0.75 inches	Distance between Sar Nozzle and Pitot (X) -		PASS
Number Entry Place	Impact Pressure Opening Plane is above the Nozzle Entry Plane	⊛YES ONO ONA	r.
Temperature Temperature Type S Priori Tube Sample Prote	Thermocouple meets the Distance Criteria in the adjacent figure	OYES ONO © NA	
Temperstare	Thermocouple meets the Distance Criteria in the adjacent figure	⊛YES ONO ONA	ŝ

Quality Source Sampling Systems & Accessories

Wind Tunnel Pitot Calibration

S-type Pitot ID: Standard Pitot ID: Cp(std): Part Number: Test Velocity (fps): Wind Tunnel Location: Customer:	50 Calera, AL	Date: Personnel: Cp(actual): P _{bar} (in Hg): T(°F): Tunnel Size:	13-Jul-15 KMR 0.735 29.36 86 20" x 40"
--	------------------	---	---

ш	AP _{std} (in. H ₂ 0)	ΔP _s (in, H ₂ 0)	Cp(s)	Deviation*
SIDE	0.560	1.019	0.734	0.002
SF	0.562	1.016	0.736	-0.001
× -	0.560	1.018	0.734	0.000
L	0.500	AVERAGE	0.735	0.001
		AVENAGE	Std deviation	0.002

NOTES:

- 1. Pitot calibrated with an Environmental Supply Co. PM10 cyclone.
- 2. C_p is only valid when used with PM10 cyclone.
- 3. C_p is only valid with 1" spacing from PM10 cyclone.

$$Cp(s) = Cp(std) \sqrt{\frac{\Delta P(std)}{\Delta P(s)}}$$

*Deviation = {Cp(s) - AVG Cp(s)} {must be <0.010}

Standard deviation of the deviations must be less than 0.02 for both sides.

Pitot tube S/N P-963 was calibrated in accordance with the CFR 40, Part 60 Appendix A, Method 2, Section 10.

Signature

7/13/15

www.environsupply.com

Calibrator	SK		INIGH	MIGUEL DOX NUMBER	44		Amolent lemp	21	
Date	Date 19-Jan-16		Wet Test	et Test Meter Number	P-2952	Temp Re	Temp Reference Source	Thermocouple Simuls (Accuracy +/- 1°F)	Simulator //- 1°F)
			Dry Gas	Dry Gas Meter Number	15550528			Baro Dree in	
Setting	Gas	Gas Volume		Temperatures	itures			Hg (Pb)	29.7
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Meter			Calibration Results	Results
in H ₂ 0	f,	ft3	Ч°	Outlet, °F	Inlet, °F	Average. °F	Time, min	,	
(HV)	(MN)	(pA)	(ML)	("pu	(Id)	(Td)	0		H
		408.155		76.00	76.00		20102	The second s	TO POSSAGE
0.5	5.0	413.209	72.0	76.00	76.00	76.0	12.6	0.9955	1.7895
		5.054		76.00	76.00				
	23	413.209		77.00	00.77	0520			Contraction of the second
1.0	6,0	419.270	72.0	77.00	77.00	0.77	10.9	0.9968	1.8565
		6.061		27.00	77.00				
		419.270		77.00	77.00		State 1	Constanting of the second s	
ر. ت	10.0	429,400	72.0	77.00	77.00	0.77	15.0	0.9928	1.8986
		10.130		77.00	77.00				
		429.400		79.00	78.00				Constant of
2.0	10.0	439.575	72.0	79,00	78.00	78.5	13.0	0.9899	1,8961
	A.S. 14	10.175		79.00	78.00				
		439.575		80.00	79.00				
3.0	10.0	449.820	72.0	80.00	79.00	79.5	10.90	0.9825	1.9958
		047.01		00.00	(3.00				
							Average	0.9915	1.8873
- Gas Volur	ne passing thr	Vw - Gas Volume passing through the vertilest meter	meter	U - 1 me of calibration run Dh - Bammetric Pressure	NON RUN	;		Vw + Pb + (td + 460)	
Tomo of o	Tu - Texes of ease in the wet test meter	webs and any gale in		ALI Description of the	coordination of the second	-		i	
- Temp of th	he iniet ass of	Tdl - Temp of the inlet cas of the dry gas meter		Art - riceoure unidication actives orifice			Vd * Pb + 13.6	$\frac{1}{6} * (tw + 450)$	
o - Temp of t	the outlet gas c	Tdo - Temp of the outlet gas of the dry gas meter	2	Y - Ratio of accuracy of wet test	cv of wet test			, E	1.072
- Average te	mp of the gas	Td - Average temp of the gas in the dry gas meter	ge	meler to dry gas meter	eter	4	$\Delta H = \left[\frac{0.0311 * \Delta H}{Pb * (td + 460)} \right]$	00)]*[(09	
Reference	ence								
Temperature	rature		Temperature	Temperature Reading from Individual Thermocouple Input ¹	fividual Therm	ocouple Input	i i	Average	Temp
Select Temperature	nperature							Temperature	Difference ²
				Channel Number	Number			Reading	(%)
ပ္ခ	÷,	F	2	3	4	5	9		
32	0	32	32	32	32	31		31.8	0.0%
212	2	212	213	213	213	212		212.6	-0.1%
932	0	932	933	933	833	932		932.6	%0.0
1832	32	1832	1832	1832	1832	1832		1832.0	0.0%
- Channel Temps must acrea with +L 5°F or 3°C	an ount occord								

Copyright Roy F Weston Inc June 1999PV

358

Long Cal box#22 1-19-16.xls

Y Factor Calibration Check Calculation PARTICULATE (PMI/PMI2) TEST TRAIN

METER BOX NO. 22

RUN NO. 4 07/07/16

MWd = Dry molecular weight source gas, Ib/Ib-mole.	Devinososis
0.32 - Molecular weight of oxygen, divided by 100.	State-
0.44 - Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO2 = Percent carbon dioxide by volume, dry hasis.	13.3
% O ₁ = Percent oxygen by volume, dry basis.	7.2

MWd = (0.32 * O2) + (0.44 * CO2) + (0.28 * (100 - (CO2 + O2)))

MWd = (0.32 * 7.2) + (0.44 * 13.3) + (0.28 * (100 - (13.3 + 7.2)))

MWd=(2.30)+(5.85)+(22.26)

MWd = 30.42

Tma = Source Temperature, absolute("R)	The Star Sta
Tm = Average dry gas meter temperature, deg F.	79.0

Tma = Ts + 460

Tma = 78.97 + 460

Tma = 538.97

Ps = Absolute meter pressure, inches Hg.	Sector Sector
13.60 = Specific gravity of mercury.	and the second second
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	0.37000
Pb = Barometric Pressure, in Hg.	29.38

Pm = Pb + (delta H / 13.6)

Pm = 29.38 + (0.37 / 13.6)

Pm = 29,41

Yqa = dry gas meter calibration check value, dimensionless.	BARREN BARR
0.03 = (29.92/528)(0.75)2 (in. Hg ¹⁰ /R) cfm2.	TAL AND
29.00 - dry molecular weight of air, lb/b-mole.	
Vm = Volume of gas sample measured by the day gas meter at meter conditions, dcf.	33.193
Y = Dry gas meter calibration factor (based on full calibration)	0.9915
Delta H@ - Dry Gas meter orifice calibration coefficient, in. H2O.	1.8873
SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in: H2O	0.60828
O = Total sampling time, minutes.	97.5

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqs=(97.50/33.19)*SQRT (0.0319*538.97 *29)/(1.89*29.41 * 30.42) *0.61

Yqs = 2.937 * SQRT 498.598 / 1,688.255 * 0.61

Yqa = 0.9710

Diff = Absolute difference between Yqa and Y

Diff = ((Y - Yqa)/Y)* 100

Diff = ((0.9915 - 0.9710) / 0.9915) * 100

Diff = 2.07 Allowable = 5.0 「「学校をあるの言語」

-		1					duine visioning	The second se	Contraction of the
Date	Date 13-Jul-15	17 10	Wet Test	Wet Test Meter Number	P-2952	Temp Ri	Temp Reference Source	Thermocouple Simulator (Accuracy +/- 1 ⁹ F)	Simulator
			Dry Gas	Dry Gas Meter Number	16300942		L	Raro Press in	
Setting	Gas	Gas Volume		Temperatures	itures	2002		Hg (Pb)	29.69
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter	-	Dry Gas Meter			Calibration Results	Results
In H ₂ 0	ff ²	ft ³	₹° Turt	Outlet, °F	Inlet, °F	Average, °F	Time, min	٨	ΗΔ
(110)	(ma)	act ock	(mil)	1001	1000	Inil	1		
0.5	5.0	434,141	73.0	75.00	75.00	74.5	13.3	1.0006	2.0077
		5.005		74.50	74.50				
1.0	5.0	434.141 439.147	73.0	77.00	75.00	76.0	9.6	1.0019	2.0861
0422		5.006		76.00	76.00				
		439.147		77.00	77.00				
1.5	10.0	449.183 10.03R	73.0	80.00	80.00	78.5	16.4	1.0030	2.2725
		440 182		BO OD	80.00				
2.0	10.0	459.241	73.0	81.00	81.00	80.5	14.1	1.0033	2.2314
		10.058		80.50	80.50				
		459.241	0	81.00	81.00				
3.0	10.0	469.336	73.0	83.00	83.00	82.0	11.6	0.9999	2.2591
		2022			-		Averane	1 0017	2.1714
- Gas Volum	ie passing thro	Vw - Gas Volume passing through the wet test meter	neter	0 - Time of calibration run ph., Parametric Deserves	ion run	2		Vw • Pb • (td + 460)	
- Tamp of ga	Tw - Temp of pass in the wet test meter	ogn ard ory gao in st meter		AH - Processe differential across	rential annee	a 🖌	3		
- Temp of th	e inlet gas of th	Tdi - Temp of the inlet gas of the dry gas meter		orifice			Vd * PD + 13.6	6 * (W + 40U)	
- Temp of th	he outlet gas o	Ido - Temp of the outlet gas of the dry gas meter	*	Y - Ratio of accuracy of wet test	cy of wet test	100		H] [(tw + 460)+O	0)•0]2
- Average ter	mp of the gas i	Id - Average temp of the gas in the dry gas meter	۵.	meter to dry gas meter	eler	4	AH = Pb + (td + 460)		Ţ
Reference	nce								and
Temperature	ature		Temperature I	Temperature Reading from Individual Thermocouple Input ¹	lividual Therm	tocouple Input	-	Average	Temp
Select Temperature	perature		200					Temperature	Difference ²
500	5			Channel Number	Number			Reading	(%)
p	۴ ۵	÷	2	3	4	9	9		
32		32	32	32	32	32		32.0	%0'0
212	2	212	212	212	212	212		212.0	0.0%
932	2	932	932	932	932	932		932.0	0.0%
1832	2	1830	1830	1830	1830	1830		1830.0	0.1%

٠

Copyright Roy F Weston Inc June 1999PV

360

Long Cal Box 26 7-13-15,xls

Y Factor Calibration Check Calculation METHOD 29 TEST TRAIN METER BOX NO. 26 RUN NO. 3 07/06/16

MWd = Dry molecular weight source gas, Ib/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	STATISTICS.
0.44 - Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO2 = Percent carbon dioxide by volume, dry basis.	13.1
% O2 = Percent oxygen by volume, dry basis.	7.3

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 7.3) + (0.44 * 13.1) + (0.28 * (100 - (13.1 = 7.3)))

MWd = { 2.34 } + { 5.76 } + (22.29)

MWd = 30.39

Tma = Source Temperature, absolute("R)	
Tm - Average dry gas meter temperature, deg F.	71.1

Tma - Ts + 460

Tma = 71.13 + 460

Tma = 531.13

Ps = Absolute meter pressum, inches Hg.	A STATE A STATE
13.60 = Specific gravity of mercury.	Stor. Sales
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.813
Pb = Barometric Pressure, in Hg.	29.38

Pm = Pb + (delta H / 13.6)

Pm = 29.38 + (1.8125 / 13.6)

Pm = 29.51

Yea = dry gas meter calibration check value, dimensionless,	Salas and
0.03 = (29.92/528)(0.75)2 (in. Hg%R) cfm2.	Mar State State State
29.00 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	65.414
Y = Dry gas meter calibration factor (based on full calibration)	1,0017
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.1714
SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H ₂ O	1 3 3 9 4
O = Total sampling time, minutes	96

Yqa = (O / Vm) * SQRT (0.0319 * Tms * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqa = (96.00 / 65.41) * SQRT (0.0319 * 531.13 * 29) / (2.17 * 29.51 * 30.39) * 1.34

Yqs = 1.468 * SQRT 491.344 / 1.947.203 * 1.34

Yqa = 0.987

Diff = Absolute difference between Yqs and Y

Sala - Salar

20

Diff = ((Y - Yqa)/Y)* 100

Diff = ((1.0017 - 0.987) / 1.0017) * 100 ALLOWABLE <\$ Diff = 1.47

INTERFERENCE CHECK

Dute: 12/4/14-12/5/14 Analyzer Type: Servomex - O₂ Medel No: 4900 Serial No: 49000-652921 Calibration Span: 21.09 % Pollutant: 21.09% O₂ - CC418692

	ANALYZE	20200-2020-022000-022				
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^H 0.00			
CO2 (30.17% CC199689)	0.00	-0.01				
NO (445 ppm CC346681)	0.00	0.02	0.11			
NO ₂ (23.78 ppm CC500749)	NA	NA	NA			
N ₂ O (90.4 ppm CC352661)	0.00	0.05				
CO (461.5 ppm XC006064B)	0.90	0.02	0.00			
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23			
CH4 (453.1 ppm SG901795)	NA	NA	NA			
H ₂ (552 ppm ALM048043)	0.00	0,09	0.44			
HCI (45.1 ppm CC17830) 0.00		0.03	0.14			
NH ₅ (9.69 ppm CC58181)	H _b (9.69 ppm CC58181) 0.00 0.01					
	1.20					
	< 2.5%					

16 The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in running the interferences.

Char Walter

INTERFERENCE CHECK

Date: 12/4/14-12/5/14 Analyzer Type: Servymex - CO, Model No: 4900 Serial No: 49000-652921 Calibration Span: 16.65% Pollutant: 16.65% CO, - CC418692

	ANALYZE	cocomo Arricol este secon				
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)				
CO2 (30.17% CC199689)	NA	NA	NA			
NO (445 ppm CC346681)	0.00	0.02	0.10			
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02			
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04			
CO (461.5 ppm XC006064B)	0.60	0.01	0.00			
SO ₂ (451.2 ppm CC409079)	0.00	0.11				
CH4 (453.1 ppm SG901795)	0,00	0.07	0.44			
H ₂ (552 ppm ALM048043)	f ₂ (552 ppm ALM048043) 0.00 0.04					
HCI (45.1 ppm CC17830)	0.10	0,06	0.60			
NH ₈ (9.69 ppm CC58181)	H ₈ (9.69 ppm CC58181) 0.00 0.02					
	2.19					
	< 2.5%					

⁰⁰ The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

dis Walter

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E03NI79E15A00E4 XC016048B ASG - Riverton - NJ B52016 C02,02,BALN

DE4 Reference Number: 82-1 Cylinder Volume: 150. - NJ Cylinder Pressure: 2013 Valve Outlet: 590 Certification Date: Mar Expiration Date: Mar 29, 2024

82-124547137-1 150.5 CF 2015 PSIG 590 Mar 29, 2016

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

1	Jo Not	Use	This	Cylinder	below	100	psig,	i.e.	0.7	megapascals.	

ANALYTICAL RESULTS								
		uested centration	Actual Protocol Concentration Method		Total Relative Uncertainty	Assay Dates		
CARBON DIOXIDE 9.000 %		8.882 %	G1	+/- 0.7% NIST Traceable	03/29/2016			
OXYGEN	12.0	0%	11.95 %	G1	+/- 0.4% NIST Traceable	03/29/2016		
NITROGEN	Bala	ince						
	CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No Concentration Uncertainty Expl						
NTRM	13060819	CC417106	24.04 % CARBON	DIOXIDE/NITROGEN	+/- 0.6%	May 16, 2019		
NTRMplus	09060208	CC262337	9.961 % OXYGEN/	NITROGEN	+/- 0.3%	Nov 08, 2018		
	ANALYTICAL EQUIPMENT							
Instrument/Make/Model Analytical Principle Last Multipoint Calibration								
Horiba VIA 510-CO2-LDH9LRNS			NDIR		Mar 03, 2016			
Horiba MPA 5	10-02-7TWMJ04	1	Paramagnetic		Mar 03, 2016			

Triad Data Available Upon Request

Signature on file Approved for Release

Airgas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 SG9168232BAL ASG - Riverton - NJ B52015 CO2, O2, BALN

Reference Number: 82-124470561-1 157.2 CF Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date: Expiration Date: Jan 14, 2023

2015 PSIG Jan 14, 2015

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Geseous Celibration Standards (May 2012)" document EPA 800/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. Al concentrations are on a volume/volume basis unless otherwise noted.

_	Do Not Use	This (Cylinder	below	100	psig, i	e. 0.7	megapascals.	
							_		

			ANALYTICA	L RESULTS		
Compone	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
OXYGEN 21.00 %		17.00 % 21.00 % Balance	21.00 % 21.30 %		G1 +/- 0.7% NIST Traceable G1 +/- 1.0% NIST Traceable	
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARDS	5 Uncertainty	Expiration Date
NTRM NTRM	13060705 09061414	CC411739 CC273509	16.939 % CARBON 0 22.53 % OXYGEN/N		+/- 0.6% +/- 0.4%	May 08, 2019 Mar 08, 2019
Instrume	nt/Make/Mod	el	ANALYTICAL Analytical Prin		Last Multipoint Cali	bration
Horiba VIA 510-CO2-LDH9LRNS Siemens Oxymat 6E-O2-N1-M1-0603			NDIR Paramagnetic		Dec 19, 2014 Jan 12, 2015	

Triad Data Available Upon Request

Signature on file Approved for Release

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02AI99E15AC232 CC261812 ASG - Riverton - NJ B52013 CH4,BALA

Reference Number: 82-124386516-1 Cylinder Volume: 146.2 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 590 Certification Date: Jul 30, 2013

Expiration Date: Jul 30, 2021 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a

volume/volume basis unless otherwise noted. Do Not Line This Cylinder below 100 psig. i.e. 0.7 megapas

	A0. 2015	Α	NALYTICAL RESU	JLTS	
Component	Requested Concentration	Actual Concen	tration Method		Assay Dates
METHANE AIR	2.500 PPM Balance	2.543 PP	M G1	+/- 1.0% NIST Traceable	07/30/2013
	0.00	CAL	IBRATION STAN	DARDS	
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRMplus	07060416	CC206028	4.495 PPM METHANE/	(AIR +/- 1.0%	Apr 19, 2017
		AN	ALYTICAL EQUIP	MENT	
Instrument/Ma	ke/Model	Ana	alytical Principle	Last Multipoint Cal	ibration
Nicolet 6700 APW1100391 CH4		FTI	२	Jul 03, 2013	

Triad Data Available Upon Request

Signature on file Approved for Release

Airgas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A0448 CC37650 ASG - Riverton - NJ B52014 CH4, BALA

Reference Number: 82-124454428-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

148.2 CF 2015 PSIG Sep 24, 2014

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a

Expiration Date: Sep 24, 2022

volume/volume basis unless otherwise no	neo.
Do Not Use This Ovinder below 100 psig. i.e. 0.7 n	negapascals.

		25 8	ANALYTIC	AL RESULTS	S	
Component	Requested Concentrat		ntration	Protocol Method	Total Relative Uncertainty	Assay Dates
methane Air	5.000 PPM Balance	5.104 P	РM	G1	+/- 0.9% NIST Traceat	ole 09/24/2014
1			LIBRATIO	N STANDAR		
Туре	Lot ID	Cylinder No	Concentra	ation	Uncertainty	Expiration Date
NTRM	12060611	CC357484	9.91 PPM M	METHANE/AIR	+/- 0.4%	Nov 29, 2017
				L EQUIPME		
Instrument/N	lake/Model	Ar	nalytical Princ	iple	Last Multipoint Ca	alibration
Nicolet 6700 Al	HR0801933 CH4	FT	'IR		Sep 24, 2014	

Triad Data Available Upon Request

Signature on file Approved for Release

Page 1 of 82-124454428-1

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Airgas, Inc. 600 Union Landing Road Cinneminson, NJ 06077 856-829-7878 Fax: 656-829-6576 www.airgas.com

Part Number:	Æ
Cylinder Number:	CC
Laboratory:	AS
PGVP Number:	BS
Gas Code:	CH

02AI99E15A0361 C344084 SG - Riverton - NJ 52014 H4,BALA

Reference Number: 82-124439683-1 Cylinder Volume: 146.2 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 590 Certification Date: Jun 17, 2014

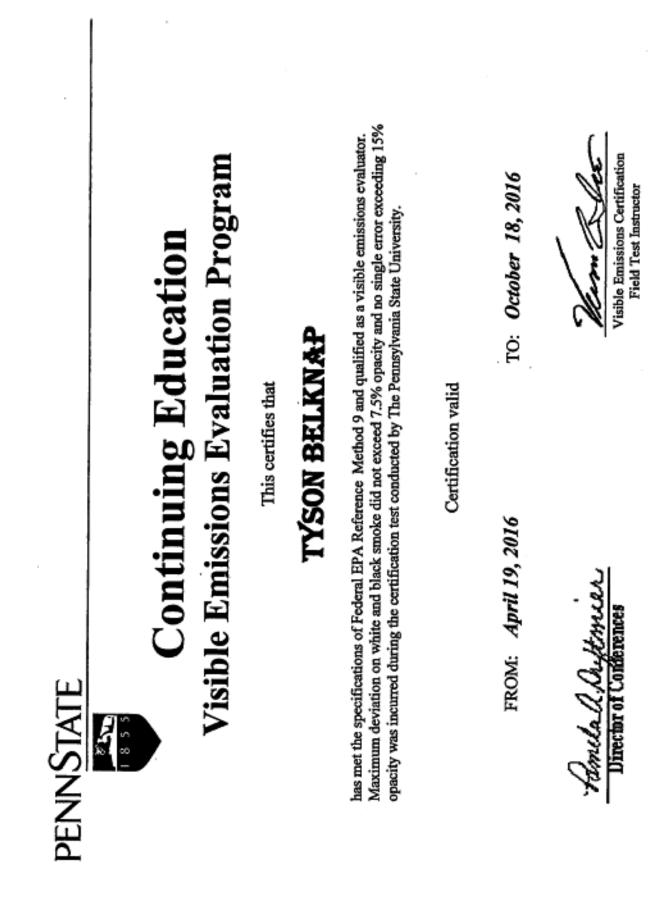
Expiration Date: Jun 17, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA (600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

hermisi	19945	and the second	ANALYTICAL R			
Cómpo	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
METHAN AIR	NE	8.500 PPM Balance	8.558 PPM	G1	+/- 0.9% NIST Trac	ceable 06/17/2014
Туре	Lot ID	202002 C 000000 C 00	CALIBRATION STA Concentration	NDARDS	S Uncertainty	Expiration Date
NTRM	07060510		10.00 PPM METHANE/AIR	JIPMENT	+/- 0.8%	Apr 27, 2017
Instrum	ent/Make/Mode		Analytical Principle		ultipoint Calibratic	n
Nicolet 6700 AHR0801933 CH4					the second s	

Triad Data Available Upon Request

Notes:


Approved for Release

RUN DATA

13

Stratification Check

Client: .ocation:	LWEC L'Anse, Michigan			ect Number: Operator:	14464.007.004.0001 TB	
Source:	Boiler # 1	Calibration: 1		Date:	05 Jul 2016	
		O ₂	CO2			
	Time	%	%			
	Resp	onse Time <	1 minute (40 s	econds)		
	2000 Hoad 1	Po	oint A 1			
	13:53	6.7	13.3			
	13:54	6.6	14.3			
	13:55	6.9	15.3			
	Average	6.7	14.3			
			A 2			
	13:56	6.6	13.4			
	13:57	7.2	14.4			
	13:58	7.3	15.4			
	Average	7.0	14.4			
			A 3		τς.	
	14:02	7.5	12.5			
	14:03	7.3	13.5			
	14:04	7.4	14.5			
	Average	7.4	13.5			
	Overall Average	7.1	14.1			
	5% minimum	6.7	13.4			
	5% maximum	7.4	14.8			

APPENDIX G SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR BIAS CORRECTION OF OXYGEN AND CARBON DIOXIDE

<u>Client: L'Anse Warden Electric Company</u> <u>Test Number: Run 1</u> <u>Test Location: Boiler No. 1</u> <u>Plant: L'Anse, MI</u> <u>Test Date: 7/6/16</u> <u>Test Period: 1315-1415</u>

1. Bias corrected value of Oxygen (%).

$$Cd = \frac{6.8 - 0.1}{12.1 - 0.1} \times 11.9$$

Cd = 6.7

Where:

- Cd = Oxygen concentration measured on a dry basis (ppmvd), bias corrected.
- AVG = Average Oxygen concentration for the test run.
- bias = The average of pre and post test zero bias checks.
- Sbias = The average of pre and post test span bias check.
- SPAN GAS = The calibration gas concentration, which was used for the BIAS check.

2. Bias corrected value of Carbon Dioxide (%).

Cd =	(AVG - bias) x SPAN GAS					
	(Sbias - bias)					
Cd =	13.200 - 0.05 x 8.9					
	8.60 - 0.05					

Cd = 13.7

Where:

- Cd = Carbon Dioxide concentration measured on a dry basis (ppmvd), bias corrected.
- AVG = Average Carbon Dioxide concentration for the test run.
- bias = The average of pre and post test zero bias checks.
- Sbias = The average of pre and post test span bias check.
- SPAN GAS = The calibration gas concentration, which was used for the BIAS check.

SAMPLE CALCULATIONS FOR VOC CONCENTRATIONS AND EMISSION RATES

<u>Client: L'Anse Warden Electric Company</u> <u>Test Number: 1</u> <u>Test Location: Boiler No. 1</u> Plant: L'Anse, MI Test Date: 7/6/16 Test Period: 1315-1415

1. Moisture corrected value of VOC, dry basis (ppm/v).

C(VOC)	=	AvgVOC			
		(100 -	MOISTURE) / 100		
C(VOC)	=		0.10 17.8) / 100		
C(VOC)	=	<0.12			

Where:

AvgVOC	=	VOC concentration measured on a wet basis (total hydrocarbons, parts per million by volume) as methane.
C(VOC)	=	The concentration of total VOC, corrected for moisture.
MOISTURE	=	The percentage of water vapor in the gas stream from corresponding isokinetic test train.

2. VOC concentration, ppm @ 7% O2.

C(VOC)corr	=	C(VOC) x [20.9 - 7 O2]
		[20.9 - O2(measured)]
C(VOC)corr	=	<0.12 x 13.9
0(000)001		20.9 - 6.7

C(VOC)corr = <0.12

Where:

- C(VOC)corr = VOC concentration of sample, as methane, corrected to 7 O2.
- O2 (measured) = Average oxygen concentration for test run as measured, .
- 3. VOC mass emission rate dry basis, lbs/hr.

MR1(VOC) =		C(VOC) x Qs(std) x 16.04 x 60 min/hr
MR1(VOC)	-	385.35 x 10^6
MR1(VOC)	_	<0.12 x 69882 x 16.04 x 60 min/hr
	-	385.35 x 10^6
MR1(VOC)	=	<0.02
Where:		
MR1(VOC)	=	VOC mass emission rate, lbs/hr.
Qs(std)	=	Average volumetric gas stream flow rate at standard conditions, dscf/min.
16.04	=	Molecular weight of methane
385.35x10^6	=	Conversion factor from ppm to lbs.

SAMPLE CALCULATIONS FOR PARTICULATE

<u>Client: L'Anse Warden Electric Company</u> <u>Test Number: Run 1</u> <u>Test Location: Boiler No. 1</u> <u>Plant: L'Anse, MI</u> <u>Test Date: 7/6/16</u> <u>Test Period: 1314-1521</u>

1. Particulate Concentration, gr/dscf.

	Mt		
C1 =	15.432 x Vm(std)		
C1 =	15.432 x	0.00550	
01 -	10.402 X	59.552	
=	0.0014		

Where:

C1 =	Particulate concentration, gr/dscf.
Mt =	Total weight of particulate caught by train
	adjusted for the site blank sample
15.432 =	Conversion factor from gms to gr.

2. Particulate mass emission rate, lb/hr.

PMR1 =	0.008571 x C1 x Qs(std)
PMR1 =	0.008571 x 0.0014 x 69828
=	0.85
Where:	
PMR1 =	Particulate mass emission rate lb/hr

0.008571 =	Conversion factor relating grains to pounds (7,000)
	and minutes to hours.

3. Particulate mass emission rate, lb/MMBtu.

PMR2 =	C1 x .000142857 x Fd x (20.9/(20.9-%O2))
PMR2 =	0.0014 x 0.000142857 x 9561 x (20.9/(20.9-6.6)
=	0.003
Where:	
PMR2 =	Particulate mass emission rate, lb/MMBtu.
0.000142857 =	Conversion factor relating grains to pounds
Fd =	Facility Provided F-factor of 9561.
O2 =	Oxygen measured during the run, dry basis.

SAMPLE CALCULATIONS FOR CONCENTRATIONS AND EMISSION RATES OF HCI AND CI_2

Client: L'Anse, Warden Electric Comp-any	Fa
Test Number: Run 1	Те
Test Location: Boiler No. 1	Te

<u>Facility: L'Anse, MI</u> <u>Test Date: 7/6/16</u> <u>Test Period: 0935-1040</u>

1. Hydrogen chloride concentration, lb/dscf.

C1(HCI)	=	W(HCI) x 2.2046 x 10 ⁻⁶ V _{dm} (std)
C1(HCI)	=	8.2000 x 2.2046 x 10^-6 44.309
C1(HCI)	=	4.08E-07
Where:		
W(HCI) C1(HCI) 2.2046x10 ^{-⊎}	= = =	Weight of hydrogen chloride collected in sample, mg. Hydrogen chloride concentration, lbs/dscf. Conversion factor from mg to lbs.

2. Hydrogen chloride concentration, ppmv.

C2(HCI)	=	385.35 x 10 ⁶ x C1(HCI) MW
C2(HCI)	=	385.35 x 10 ⁵ x 0.0000004080 36.45
	=	4.31
Where:		
C2(HCI)	=	Concentration of HCl in stack gas, parts per million by volume (dry basis).
385.35 x 10°	=	Conversion factor from lbs/ppm.

2. Hydrogen chloride mass emission rate, lb/hr.

PMR1(HCI)	=	C1(HCI) x Qs(std) x 60
PMR1(HCI)	=	0.0000004080 x 70699 x 60
	=	1.73
vvnere:		

PMR1(HCI) = Hydrogen chloride mass emission rate, lb/hr.

3. Chlorine concentration, lb/dscf.

		W(Cl ₂) x 2.2046 x 10 ⁻⁶
C1(Cl ₂)	=	 V _{dm} (std)
C1(Cl ₂)	=	< 1.2000 x 2.2046 x 10^-6
		44.309
C1(Cl ₂)	=	< 5.97E-08
Where:		
W(Cl ₂)		Weight of Chlorine collected in sample, mg.
C1(Cl ₂)	=	Chlorine concentration, lbs/dscf.
2.2046x10 ⁻⁶ =		Conversion factor from mg to lbs.

4. Chlorine concentration, ppm/v.

		385.35 x 10 ⁶
$C2(Cl_2)$	=	x C1(CL ₂)
		MW
		385.35 x 10 ⁶
$C2(Cl_2)$	=	x <0.000000597
		70.906
	=	< 0.32
Where:		
C2(Cl ₂)	=	Concentration of Cl_2 in stack gas, parts per million by volume (dry basis).
385.35 x 10^6 =		Conversion factor from lbs/ppm.
5. Chlorine ma	ss ei	nission rate, lb/hr.
PMR1(Cl ₂)	=	$C1(Cl_2) \times Qs(std) \times 60$
PMR1(Cl2)	=	< 0.000000597 x 70699 x 60
	=	< 0.25

where:

PMR1(Cl₂) = Chlorine mass emission rate, lb/hr.

SAMPLE CALCULATIONS FOR LEAD

<u>Client: L'Anse Warden Elecric Company</u> <u>Test Number: Run 1</u> <u>Test Location: Boiler No. 1</u> <u>Plant: L'Anse, MI</u> <u>Test Date: 7/18/00</u> <u>Test Period: 1314-1521</u>

1. Lead concentration, lb/dscf.

C₁	=	W x 2.2046 x 10^-9
01		Vm _(std)
C₁	_	7.68 x 2.2046 x 10^-9
01	-	59.552

= 2.84E-10

Where:

- W = Weight of Lead collected in sample in ug.
- C_1 = Lead concentration, lb/dscf.
- 2.2046×10^{-9} = Conversion factor from ug to pounds.

2. Lead mass emission rate, lb/hr.

 $PMR = C_1 \times Qs(std) \times 60$

- PMR = 0.000000003 x 69828 x 60
- PMR = 1.19E-03

Where:

- PMR = Lead mass emission rate, lb/hr.
 - 60 = Conversion factor from minutes to hours.

SAMPLE CALCULATIONS FOR DIOXIN/FURAN (METHOD 23)

<u>Client: L'Anse, Warden Electric Company</u> <u>Test Number: Run 1</u> <u>Test Location: Boiler No. 1</u> Plant: L'Anse, MI Test Date: 7/6/16 Test Period: 0914-1231

1. 2,3,7,8-TCDF concentration, lb/dscf.

$$C_1 = \frac{W \times 2.2046 \times 10^{-12}}{Vm_{(std)}}$$

= < 4.21E-16

Where:

W	=	Weight of 2,3,7,8-TCDF collected in sample in ng.
C ₁	=	2,3,7,8-TCDF concentration, lb/dscf.
2.2046x10 ⁻¹²	=	Conversion factor from ng to pounds.

2. 2,3,7,8-TCDF concentration, ug/dscm.

C ₂ =	W 35.316x
02 -	Vm _(std)
C ₂ =	< 0.000023 35.316 x
02 -	120.370
=	< 0.00000675

Where:

 C_2 = 2,3,7,8-TCDF concentration, ug/dscm.

- W = Weight of 2,3,7,8-TCDF collected in sample in ug.
- 35.32 = Conversion factor from cubic feet to cubic meters.

3. 2,3,7,8-TCDF concentration, ug/dscm @ 7% O2.

- $C3 = C2 \times (21 7 \quad O2) / (21 Actual O2)$ C3 = < 0.00000675 x (21 - 7)/ (21 - 6.90)
- C3 = < 0.00000670

Where:

C3 = 2,3,7,8-TCDF concentration, ug/dscm @ 7 O2.

4. 2,3,7,8-TCDF mass emission rate, lb/hr.

MR1	=	C ₁ x Qs(std) x 60
MR1	=	< 0.0000000000000042 x 70699 x 60
MR1	=	< 1.79E-09
Where:		

MR1 = 2,3,7,8-TCDF mass emission rate, lb/hr. 60 = Conversion factor from minutes to hours.

SAMPLE CALCULATIONS FOR CRESOLS (2-Methylphenol)

Client: L'Anse Warden Electric Company	Plant: L'Anse	e, <u>MI</u>
Test Number: Run 1	Test Date: 7/6	/16
Test Location: Boiler No. 1	Test Period:	914-1231

1. 2-Methylphenol concentration, lbs/dscf.

$$C_1 = \frac{W \times 2.2046 \times 10^{-9}}{Vm(std)}$$

Where:

- W = Weight of 2-Methylphenol collected in sample in ug.
- C_1 = 2-Methylphenol concentration, lbs/dscf.

 2.2046×10^{-9} = Conversion factor from ug to lbs.

2. 2-Methylphenol mass emission rate, lb/hr.

PMR1	=	C ₁ :	x Qs(std) x	60 min/hr
PMR1	=	<	9.16E-11	x 70699 x 60
	=	< 3.8	8E-04	

Where:

PMR1 = 2-Methylphenol mass emission rate, lb/hr.

APPENDIX H PROJECT PARTICIPANTS

IASDATA/LWEC/14464.007.004/EPA 114 LETTER REPORT-LW

Team Member	Title	Company	
Steve Walsh	CEO		
JR Richardson	Technical Manager		
John Polky	Plant Fuels Supervisor	LWEC	
Chris Anderson	Operations/Maintenance Manager		
Al Clishe	Senior Consultant		
Steve Kohl	Legal Counsel	Warner Norcross & Judd LLP	
Jed Chrestensen	Project Engineer	Mannik Smith Group	
Ken Hill	Senior Project Manager		
Jack Mills	Senior Project Scientist		
Brian Allan	Report Coordinator		
Tyson Belknap	Project Scientist	Weston Solutions, Inc.	
Steve Rathfon	Technician V		
Kyle Schweitzer	Technician III		
Donny Fetzer	Technician IV		

APPENDIX I PROJECT CORRESPONDENCE

IASDATA/LWEC/14464.007.004/EPA 114 LETTER REPORT-LW

٠

L'ANSE WARDEN ELECTRIC COMPANY, LLC PO Box 695 29639 Willow Road White Pine, Michigan 49971

May 17, 2016

Attn: Compliance Tracker, AE-17J Air Enforcement Compliance Branch U.S. Environmental Protection Agency, Region 5 77 W. Jackson, Blvd. Chicago, Illinois 60604

Re: L'Anse Warden Electric Company – Modified Submittal in Response to April 1, 2016 Section 114 Request

Following discussion with US EPA Region 5 on Thursday, May 12, 2016, enclosed please find a revised stack test protocol for US EPA's review. In addition, L'Anse Warden Electric Company (LWEC) would like to clarify that based upon discussions with the Michigan Department of Environmental Quality (MDEQ), the acceptable chlorine content for creosote treated ties has been modified as compared to the criteria outlined in the April 1 request. As a consequence, a reading of 1600 ppm on the Olympus XRF meter will be used for screening of ties as acceptable fuel. Additionally, as discussed on May 12, 2016, LWEC intends to conduct testing as required by the April 1 request between June 22 and June 30, 2016 so that this requested testing can be conducted in conjunction with LWEC's required Part 60 RATA testing. LWEC understands that US EPA will try to accommodate LWEC with regard to this test schedule. I certify under penalty of law that I have examined and am familiar with the information in the enclosed documents, including all attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are, to the best of my knowledge and belief, true and complete. I am aware that there are significant penalties for knowingly submitting false statements and information, including the possibility of fines or imprisonment pursuant to Section 113(c)(2) of the Clean Air Act and 18 U.S.C. §§ 1001 and 1341.

L'Anse Warden Electric Company, LLC

By: The Wat

Its: CEO

Date: 5/17/16

Cc via Email:

7.1

Molly Smith, USEPA Nicole Cantello, USEPA

BOILER NUMBER ONE EPA SECTION 114 INFORMATION REQUEST EMISSIONS TEST PROTOCOL

REVISION 1, MAY 2016

L'ANSE WARDEN ELECTRIC COMPANY, LLC.

157 South Main Street L'Anse, Michigan 49946

May 2016

W.O. No. 14464.007.004

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name L'Anse Warden Electric Company LLC	County Baraga
Source Address _ 157 S. Main Street	City L'Anse
AQD Source ID (SRN)B4260 RO Permit NoMI-ROP-B4260-2011	RO Permit Section No.
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the	RO Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, this source was in compliance with ALL term each term and condition of which is identified and included by this reference. Th is/are the method(s) specified in the RO Permit.	s and conditions contained in the RO Permit, he method(s) used to determine compliance
2. During the entire reporting period this source was in compliance with all terms each term and condition of which is identified and included by this reference. E enclosed deviation report(s). The method used to determine compliance for each the RO Permit, unless otherwise indicated and described on the enclosed deviation	EXCEPT for the deviations identified on the term and condition is the method specified in
Semi-Annual (or More Frequent) Report Certification (General Condition No.	23 of the RO Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, ALL monitoring and associated recordkeep and no deviations from these requirements or any other terms or conditions occurre	ing requirements in the RO Permit were met d.
2. During the entire reporting period, all monitoring and associated recordkeeping no deviations from these requirements or any other terms or conditions occurred, enclosed deviation report(s).	
Other Report Certification	
Reporting period (provide inclusive dates): From To	
Additional monitoring reports or other applicable documents required by the RO Permi Emissions Test Protocol	t are attached as described:
I certify that, based on information and belief formed after reasonable inquiry, the stateme	ote and information in this report and

the supporting enclosures are true, accurate and complete.

James R. Richardson	Technical Manager	907-885-7187
Name of Responsible Official (print or type)	Title	Phone Number
Junes L bitantin		5/17/16
Signature of Responsible Official		Date

IASDATA/LWEC/14464.007.004/EPA 114 LETTER PROTOCOL REV 1-LW

TABLE OF CONTENTS

Section

Page

1.	INTI	RODUCT	TION	1	
	1.1	PLAN	INFORMATION	1	
	1.2	TESTI	NG FIRM INFORMATION	1	
	1.3		IARY OF TEST PARAMETERS		
2.	DES	CRIPTIC	ON OF PROCESS AND SAMPLING LOCATIONS	4	
	2.1	PROCI	ESS OVERVIEW	4	
		2.1.1 2.1.2 2.1.3	Basic Operating Parameters Boiler Operations Test Program Fuel Mix and Firing Rates	4 4	
	2.2	NT33737564	DLLUTION CONTROL EQUIPMENT		
		2.2.1 2.2.2	ESP Operating Parameters ESP Rated Capacity and Efficiency	5	
	2.3	REFER	RENCE METHOD TEST LOCATION	5	
		2.3.1	Flue Gas Parameters	5	
3.	SAMPLING AND ANALYTICAL PROCEDURES				
	3.1	PRE-TEST DETERMINATIONS			
	3.2	AL TESTING	7		
		3.2.1	Gas Volumetric Flow Rate		
	3.3	PARTI	CULATE AND METALS SAMPLING TRAIN	9	
		3.3.1 3.3.2 3.3.3	Particulate and Metals Sample Recovery Particulate Analysis Metals Analysis	12	
	3.4		ETHOD 26A – HYDROGEN CHLORIDE/CHLORINE LING TRAIN	13	
		3.4.1 3.4.2	Hydrogen Chloride/Chlorine Sample Recovery Hydrogen Chloride Analysis		
	3.5	5 EPA METHOD 23/EPA SW846 METHOD 0010 - PCDD/PCDF AND CRESOL SAMPLING TRAIN.		16	
		3.5.1	EPA Method 23/EPA SW846 Method 0010 - PCDD/PCDF and Cresol Sample Recovery		
		3.5.2	EPA Method 23 - PCDD/PCDF Sample Analysis		
	1235	3.5.3	EPA SW846 Method 0010 - Cresol Sample Analysis		
	3.6		M2.5 SAMPLING TRAIN		
		3.6.1	PM10/PM2.5 SAMPLE RECOVERY	23	

TABLE OF CONTENTS (CONTINUED)

Section

Page

		3.6.2	Filterable PM10/PM2.5 (EPA 201A) Analysis	24
		3.6.3	Condensable Particulate (EPA 202) Analysis	25
	3.7	CONT	INUOUS EMISSIONS MONITORING SYSTEM	
		3.7.1	VOC and O2/CO2 Monitoring Procedures	27
	3.8	OPAC	ITY	
4.	FUE	L SAMP	LING AND ANALYSIS	29
5.	QUA	LITY AS	SSURANCE/QUALITY CONTROL	
	5.1	QUAL	ITY CONTROL PROCEDURES	
	5.2	GAS S	TREAM SAMPLING QA PROCEDURES	30
		5.2.1	Stack Gas Velocity/Volumetric Flow Rate QA Procedures	
		5.2.2	Moisture and Sample Gas Volume QA Procedures	
		5.2.3	Isokinetic Sampling Train QA Procedures	
		5.2.4	Sample Identification and Custody	
		5.2.5	Data Reduction and Validation QC Checks	
	5.3	REFEF	RENCE METHOD CEMS QA/QC CHECKS	
	5.4	LABO	RATORY AUDIT SAMPLES	34
6.	TES	T REPO	RT OUTLINE	

APPENDIX A FUEL SAMPLING PROCEDURES

APPENDIX B EXAMPLE CALCULATIONS AND FIELD DATA SHEETS

ii

÷1

LIST OF FIGURES

- 53

Section	Page
Figure 2-1	CEMS and Reference Method Test Location6
Figure 3-1	EPA Method 5/29 – Particulate and Metals Sampling Train
Figure 3-2	Modified EPA Method 26A Sampling Train14
Figure 3-3 E	PA Method 23 PCDD/PCDF and Cresol Sampling Train
Figure 3-4	EPA Method 201A (PM10/PM2.5)/202 Sampling Train
Figure 3-5	CEM Sampling System

iii

_

LIST OF TABLES

Section	Page
Table 1-1 Summary of Test Parameters	3
Table 3-1 Summary of Sampling and Analytical Methods	8
Table 4-1 Fuel Sample Analytical Methods	29

iv

1. INTRODUCTION

Weston Solutions, Inc. (WESTON) has been retained by L'Anse Warden Electric Company, LLC (LWEC) to perform an emissions testing program on the Boiler No. 1 exhaust duct at the LWEC facility located in L'Anse, Baraga County, Michigan. Boiler No. 1 was previously a coal, oil, and gas-fired steam generating station and has been converted to burn biomass. The objective of this test program is to satisfy the requirements of the U.S. Environmental Protection Agency (EPA) Region V Section 114 Information Request submitted on 1 April 2016. Boiler No. 1 is identified as EUBOILER No. 1, and the facility currently operates under the State of Michigan Renewable Operating Permit (ROP) No. MI-ROP-B4260-2011 and Permit to Install (PTI) 168-07D.

The EPA Region V 114 letter requests emissions testing under two operating conditions. Test condition one would include a typical fuel mix of wood, tire derived fuel (TDF), wood from creosote treated railroad ties and pentachlorophenol (PCP) treated railroad ties. Test condition two would be the same as test condition one but would exclude the PCP ties. At this time, the emissions test program encompasses condition two only. LWEC has decided to discontinue the use of PCP tie fuel and is in the process of modifying the operating permit. Representatives from EPA Region V have agreed LWEC will not be required to conduct testing for condition one, based on LWEC discontinuing use of PCP ties.

1.1 PLANT INFORMATION

L'Anse Warden Electric Company, LLC 157 South Main Street L'Anse, Michigan 49946 Mr. JR Richardson Phone: 906-885-7187

1.2 TESTING FIRM INFORMATION

Weston Solutions, Inc. 1400 Weston Way West Chester, PA 19380 Mr. Ken Hill Phone: 610-701-3043

1

1.3 SUMMARY OF TEST PARAMETERS

Table 1-1 provides the test parameters, associated test methods, and reporting units for this test program.

Following this introduction, Section 2 provides a description of the process and sampling locations. Section 3 provides a description of the sampling and analytical procedures. Section 4 outlines the fuel processing, fuel sampling and analytical procedures to be used during the test program. Section 5 provides quality assurance and quality control procedures (QA/QC). Section 6 provides an outline of the test report. Appendix A provides the fuel sampling procedures. Example calculations and field data sheets are provided in Appendices B and C.

Table 1-1 Summary of Test Parameters

Test Parameter ⁽¹⁾	Test Method ⁽²⁾⁽³⁾	Reporting Units ⁽⁴⁾
Total Particulate (filterable)	EPA M5 (combined with EPA M29)	gr/dscf, lb/MMBtu, lb/hr
PM10/PM2.5 (filterable and condensable)	EPA M201A/202	gr/dscf, lb/MMBtu, lb/hr
Metals (nickel, lead, arsenic, manganese)	EPA M29	ug/m³, lb/hr
Polychlorinated Dibenzo-p-dioxins/ Polychlorinated Dibenzofurans (PCDD/PCDF)	EPA M23	ug/m ³ @ 7% O2 TEQ, lb/hr TEQ
Cresol Isomers	EPA SW846 M0010 (combined with EPA 23)	ug/m³, lb/hr
Hydrogen Chloride/Chlorine	EPA M26A (modified)	ppmvd, lb/hr
Volatile Organic Compounds (VOCs) as methane	EPA M25A/EPA M18	ppmvd @ 7% O2, lb/hr
Opacity	EPA M9	%

1. Cresol isomers are m-cresol, o-cresol and p-cresol.

 The proposed EPA Method 26A sampling modifications are for the sample to be collected non-isokinetically from a single traverse point similar to EPA Method 26.

3. If required, methane analysis will be determined by gas chromatography (GC) analysis of a bag sample which will be subtracted from the measured VOC to yield non-methane VOC.

 The exhaust gas O₂ concentration (diluent gas) and a facility provided F-factor will be used to calculate emission rates in terms of lb/MMBtu.

3

2. DESCRIPTION OF PROCESS AND SAMPLING LOCATIONS

2.1 PROCESS OVERVIEW

LWEC is a cogeneration facility, consisting of a single boiler generating process steam and electric power to the grid firing primarily biomass materials. The boiler typically produces steam at 180,000 lbs/hr and gross power generation from 14 to 17.7 MW/hr.

2.1.1 Basic Operating Parameters

The fuel feed to the boiler is regulated to meet process steam and electrical generation requirements. The fuel blend and excess air may be modified to improve combustion characteristics. Adjustments to air, fuel blend or load are made as necessary to conform to emissions monitoring limits.

2.1.2 Boiler Operations

The hourly boiler operating limit is 324 million British thermal units (MMBtu). The maximum annual heat input is 2,656,800 MMBtu, based on 8,200 hours of operation per year.

The boiler load will be determined by the demand for process steam and electricity. The boiler load will be maintained at 90% of capacity during the test program.

2.1.3 Test Program Fuel Mix and Firing Rates

The fuel mix during the Section 114 Test Program will consist of wood, creosote treated railroad ties, and TDF. As requested by EPA, the firing rates for each of the fuels will be within the range consistent for normal operations and the MDEQ ROP testing conducted in September 2015 (7.5-10 TPH wood, 12-15 TPH creosote ties, and 1.5-2.0 TPH TDF).

2.2 AIR POLLUTION CONTROL EQUIPMENT

Particulate emissions are controlled with a single chamber, three-field electrostatic precipitator (ESP).

4

2.2.1 ESP Operating Parameters

The precipitator electrical controls and rapping sequence, intensity and frequency are set for optimum performance and are not generally modified after this optimization exercise unless emissions issues are observed.

2.2.2 ESP Rated Capacity and Efficiency

The original design specifications for the precipitator were: 98.1% efficiency at 110,000 actual cubic feet per minute (ACFM) at a temperature of 370°F.

2.3 REFERENCE METHOD TEST LOCATION

The reference method sample ports (two sets) are located on a section of rectangular ductwork that runs horizontally from the exit of the ESP prior to the exhaust stack. The rectangular ductwork is six feet by six feet six inches (6' x $6\frac{1}{2}$) and has a straight run of fifty-seven feet (57'). All dimensions and port locations will be verified prior to testing.

A second set of four sample ports are installed approximately 2 feet downstream from the primary sample ports and allows for additional sample trains to be operated simultaneously. Air flow disturbances in the secondary sample ports will be minimized by port selection and placement of the upstream sampling equipment. Additionally, a third set of sample ports located on top of the ESP outlet ductwork that may be used for single point sampling (HCl/Cl₂ and continuous emissions monitoring). All dimensions and port locations will be verified prior to testing.

Figure 2-1 presents a diagram of the sample port and traverse point location.

2.3.1 Flue Gas Parameters

.

The expected flue gas parameters at this location are as follows:

Temperature: approximately 370 °F Moisture: approximately 15% v/v Volumetric Flow Rate: Up to about 125,000 ACFM

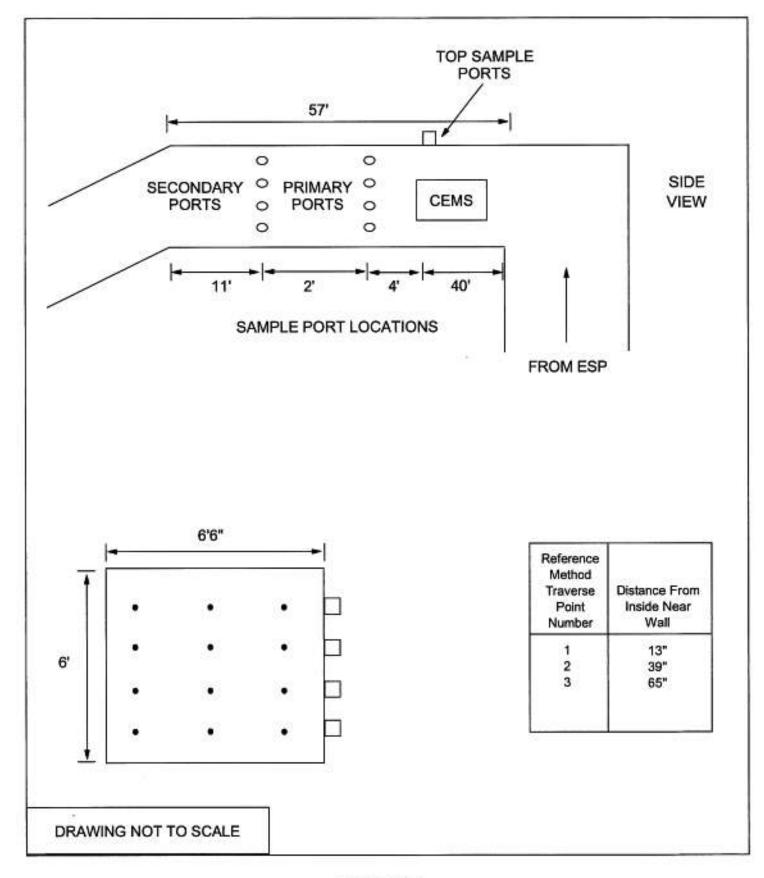


FIGURE 2-1 SAMPLE PORT AND TRAVERSE POINT LOCATIONS

3. SAMPLING AND ANALYTICAL PROCEDURES

The purpose of this section is to detail the stack sampling and analytical procedures to be utilized during the test program. Table 3-1 summarizes the sampling and analytical methods.

3.1 PRE-TEST DETERMINATIONS

Preliminary test data will be obtained at the sampling location. Geometry measurements will be measured and recorded, and traverse point distances verified. A preliminary velocity traverse will be performed utilizing a calibrated "S" type pitot tube and a Dwyer inclined manometer to determine velocity profiles. Flue gas temperatures will be observed with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple. Water vapor content will be measured by performing an EPA Method 4 moisture test, or will be based on previous test data (preliminary only).

A check for the presence or absence of cyclonic flow will be conducted at the test location. If the average cyclonic flow check angle is < 20°, then that will verify the suitability of the test site for obtaining representative samples.

Preliminary test data will be used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Pre-test calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices will be performed as specified in Section 5 of EPA Method 5 test procedures.

3.2 FORMAL TESTING

3.2.1 Gas Volumetric Flow Rate

A series of three test runs will be performed for each parameter. The gas velocity will be measured using EPA Methods 1 and 2. Velocity measurements will be performed using an "S-type" pitot tube fastened alongside the EPA Methods 5/29, 23/0010 and 201A/202 sample probes. The stack gas pressure differential will be measured with inclined manometers. Flue gas temperatures will be measured with calibrated digital temperature readouts equipped with

7

Sample	No. of Test Runs	Sampling Duration	Sampling Method	Sample Size	Analytical Parameters	Preparation Method	Analytical Method
		1-hr composite sample per run	Modified M26A	30-50 ft ³	HCI/Cl2	NA	Ion Chromatography (SW846-9057)
		I to 1.5-hr composite sample per run	M 5/29	30-50 Å ³	Particulate Metals	Desiccation Acid digestion (SW-846- 3050A)	Gravimetric (EPA Method 5) ICP and AAS (SW-846-6010A)
		1 to 1.5-hr composite sample per run	M201A/202	30-50 ft ³	PM10/PM25	Desiccation	Gravimetric (EPA Method 5)
	9	3-hr composite sample per run	M23/M0010	> 90 ft3	PCDD-PCDF/ Cresol Isomers	Extraction	M23/SW 846-8270
Stack Gas	£	Continuous	M3A	NA	CO2/02	NA	CEM
		Continuous	M25A	NA	VOC	NA	CEM
		1-hr composite sample per run (optional)	MI8	30 liters	Methane	NA	GC/FID
					Moisture	NA	Gravimetric
		Concurrent	M1-4	NA	Temperature	NA	Temperature
					Velocity	NA	Pitot Tube
		I-hour observation per run	6W	NA	Opacity	NA	NA

4

	Methods
ole 3-1	and Analytical
Tab	f Sampling
	Summary o

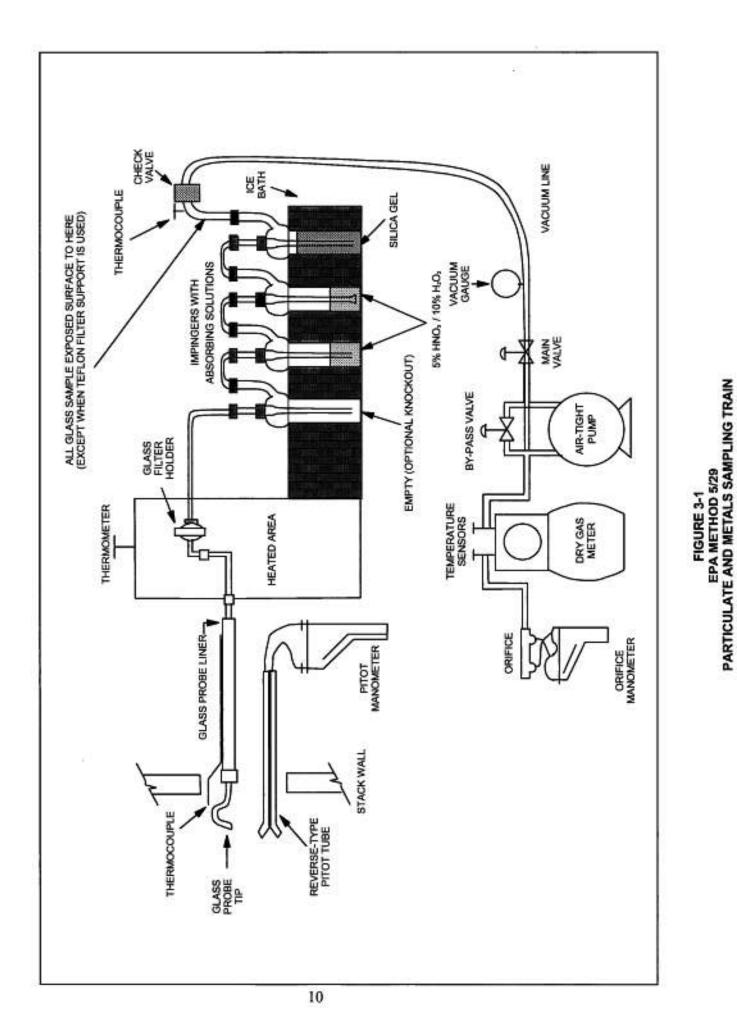
les:		
M5/M29	t	Combined Method 5 and Method 29 sampling train.
	3	Inductively coupled plasma emission spectroscopy.
2	ı	Atomic absorption spectroscopy.
CIENC	x	Gas Chromatograph/Flame lonization Detector
tats	1	Pb, Ni, As, Mn
0100M/E	H	Combined Method 21 and Method 0010 sampling train.

MSDATALUNEC/14464.007.0046PA 114 LETTER PROTOCOL REV 5-LW

00

5/17/2018

chromel-alumel (type-K) thermocouples. Velocity measurements and stack gas temperatures will be incorporated in the isokinetic sampling trains which traverse across the stack diameter. The velocity and volumetric flow rate will be used for determining the parameter mass rate calculations. Likewise moisture content will be determined concurrently with each test. The moisture content of the gas stream will be determined by the volume increase of the impinger water rand weight increase of the silica gel in comparison to the volume of gas sampled.


The gas stream composition [oxygen (O₂) and carbon dioxide content (CO₂)] of the flue gas will be measured according to EPA Method 3A or 3/3A procedures using a Reference Method Continuous Emission Monitoring (CEM) system.

As an option for parameters that do not require an O₂ correction, a Tedlar bag sample technique may be used to determine the gas stream composition. The Tedlar bag samples of O₂ and CO₂ will be collected from the exhaust of the control console calibrated orifice at a constant rate of ~0.5 liters per minute. This provides an integrated, conditioned (dry) sample. The gas passing through the control console orifice is conditioned by the impinger train. The sample is also integrated with respect to time and location in the stack.

Analysis of the Tedlar bag samples will be performed using EPA Reference Method 3A analytical procedures. The conditioned Tedlar bag samples will be analyzed directly by calibrated analyzers such as a paramagnetic O₂ analyzer and a non-dispersive Infrared (NDIR) CO₂ analyzer. The O₂ and CO₂ analyzers were configured and calibrated in accordance with the gas analyzer requirements outlined in EPA Reference Method 3A. The dry molecular weight of the gas stream will be calculated using the measured oxygen and carbon dioxide concentrations. The balance of the gas stream is assumed to be nitrogen.

3.3 PARTICULATE AND METALS SAMPLING TRAIN

The sampling train utilized to perform the particulate and metals sampling will be an EPA Reference Method 5/29 train (see Figure 3-1).

INSDATALMECHANK DOAFIGURE 4-1 EPA6- 29

A calibrated glass nozzle will be attached to a heated (~250°F) borosilicate probe. The probe will be connected to a heated (~250°F) borosilicate filter holder containing a 9-centimeter (cm) quartz filter (preweighed to a constant 0.1 milligram (mg) weight). The filter holder will be connected to the first of four impingers by means of rigid glass connectors. The first moisture knockout impinger (if used) will be dry. The second and third impingers will each contain 100 ml of nitric acid (HNO₃)/hydrogen peroxide (H₂O₂) solution, and the fourth impinger will contain 300 grams (g) of dry silica gel. The third impinger will be a standard Greensburg-Smith type, while all other impingers will be of a modified design. All impingers will be maintained in an ice bath. A control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers will be connected to the final impinger via an umbilical cord to complete the train.

During particulate/metals sampling, gas stream velocities will be measured by inserting a calibrated "S"-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential will be observed immediately after positioning the nozzle at each traverse point, and the sampling rate will be adjusted to maintain isokineticity \pm 10 percent. Flue gas temperature will be monitored at each point with a calibrated pyrometer and thermocouple.

Probe, filter box, and impinger exit gas temperatures will be monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples positioned in the heated filter chamber and in the sample gas stream after the last impinger.

Isokinetic test data will be recorded at each traverse point during all test periods. Leak checks will be performed on the sampling apparatus according to reference method instructions, prior to and following each run, and/or component change.

3.3.1 Particulate and Metals Sample Recovery

At the conclusion of each test, the sampling train will be dismantled, the openings sealed, and the components transported to the field laboratory.

A consistent procedure will be employed for sample recovery as follows:

- The quartz fiber filter(s) will be removed from its holder with tweezers and placed in its original container (petri dish), along with any loose particulate and filter fragments (Sample type 1).
- 2. The probe and nozzle will be separated and the particulate rinsed with acetone into a borosilicate container with a Teflon-lined closure while brushing with a non-metallic (Teflon) brush a minimum of three times. Particulate adhering to the brush will be rinsed with acetone into the same container. The front-half of the filter holder and connecting glassware will be rinsed with acetone while brushing a minimum of three times. The acetone rinses will be combined in a borosilicate container and sealed with a Teflon-lined closure (Sample type 2). A separate 0.1N HNO3 acid rinse of the probe, nozzle, front-half of the filter holder and connecting glassware will be the filter holder and connecting glassware will be with a Teflon-lined closure (Sample type 2). A separate 0.1N HNO3 acid rinse of the probe, nozzle, front-half of the filter holder and connecting glassware will be with a Teflon-lined closure (Sample type 3).
- 3. The total volume of HNO₃/H₂O₂ and condensate in impingers 1, 2 and 3 will be measured to the nearest ml and the value recorded. The liquid will then be placed in a borosilicate container along with a 100-ml HNO₃ rinse of the impingers, connectors, and back half of the filter holder. The container will be sealed with a Teflon-lined closure (sample type 4).
- The silica gel will be removed from the last impinger and immediately weighed to the nearest 0.1 g.
- Samples of acetone and 0.1 N HNO3 acid and HNO3/H2O2 will be retained for blank analysis.

Each sample bottle will be labeled to clearly identify its contents. The height of the fluid level will be marked on each bottle. Sample integrity will be assured by maintaining chain-of-custody records.

3.3.2 Particulate Analysis

The particulate analysis will proceed as follows:

- The filters (Sample type 1) and any loose fragments will be desiccated for 24-hours and weighed to the nearest 0.1 mg to a constant (± 0.5 mg) weight.
- The front-half acetone wash samples (Sample type 2) and an acetone blank will be evaporated at ambient temperature and pressure in tared beakers, then desiccated and weighed to constant 0.5-mg weight.

The total weight of material measured in the acetone-rinse fraction plus the weight of material collected on the quartz filter represents the total particulate catch. Blank corrections will be made where appropriate for all sample weights.

Following the gravimetric particulate analysis of the filter, the sample will be analyzed for metals. Likewise upon completion of the gravimetric analysis of the front-half acetone samples, the residue will be resolubilized with 0.1 N HNO₃ and combined with the front half nitric sample for metals analysis.

3.3.3 Metals Analysis

Samples collected for metals analysis will be contained in three different media:


- Front Half Nitric Acid (including resolubilized particulate residue for front-half acetone samples)
- Filter (following particulate analysis)
- Back Half Nitric Acid

The front half nitric acid and particulate filter samples will be combined with the back half nitric acid impingers and condensate in the laboratory for analysis. The metals will be solubilized by the addition of nitric acid and 30% H₂O₂. Sample volume will be reduced to 50 ml on a hot plate. The sample will be brought to 300 ml final volume and analyzed for Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Argon Plasma (ICP) metals.

Following digestion, the metals samples will be ready for analysis by ICP-AAS.

3.4 EPA METHOD 26A – HYDROGEN CHLORIDE/CHLORINE SAMPLING TRAIN

The sampling train utilized to perform the hydrogen chloride sampling will be configured as an EPA Reference Method 26A full-size sampling train except there will be no borosilicate nozzle attached to the sample probe (see Figure 3-2). This modification will be implemented to allow non-isokinetic sampling from a single traverse point similar to EPA Method 26. A heated (≥248°F) borosilicate probe will be attached to a heated (≥248°F) borosilicate filter holder containing a 9-cm quartz filter. The filter folder will be connected to the first of six impingers by means of rigid glass connectors. The first moisture knockout impinger will contain 50 ml of 0.1 normal sulfuric acid. The second and third impingers will each contain 100 ml of

IASDATALWEC14464.004/FIGURE 4-2 EPA 26

0.1 N sulfuric acid. The fourth and fith impingers will each contain 100 ml of 0.1 N sodium hydroxide, and the sixth impinger will contain 300 grams of dry silica gel. The second and third impingers will be a standard Greenburg-Smith type and all other impingers will be of a modified design. All impingers will be maintained in an ice bath. A control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers will be connected to the final impinger via an umbilical cord to complete the train. Probe, filter box, and impinger exit gas temperatures will be monitored with a calibrated direct read-out pyrometer equipped with a chromel-alumel thermocouples.

This sample will be conducted in conjunction with other isokinetic sample trains and CEM monitoring or independent stack gas velocities, and stack gas composition (O₂/CO₂ content) will be measured to determine hydrogen chloride/chlorine mass rates.

3.4.1 Hydrogen Chloride/Chlorine Sample Recovery

At the conclusion of each test, the sampling train is dismantled, the openings sealed, and the components are transported to the field laboratory.

A consistent procedure will be employed for sample recovery as follows:

- The quartz fiber filter or thimble will be removed from its holder with tweezers and discarded.
- The total liquid content of impingers one, two and three (0.1 N H₂SO₄) was measured and the sample placed in a polyethylene container fitted with a Teflonlined closure (Sample type 1). Also included in this sample was distilled water rinse of the impingers and connectors. The sample was labeled for chloride analysis.
- 3. The total liquid content of impingers four and five (0.1 N NaOH) were measured and the sample placed in a polyethylene container fitted with a Teflon-lined closure (Sample type 2). Also included in this sample was a distilled water rinse of the impingers and connectors. The sample was labeled for chlorine analysis. Sodium thiosulfate was added to the NaOH samples as a preservative per Method 26A procedures.
- 4. The silica gel impinger was immediately weighed to the nearest 0.5 g.
- Samples of sulfuric acid, sodium hydroxide and distilled water used for this program were retained for blank analysis.

Each sample bottle was labeled to clearly identify its contents. The height of the fluid level was marked on each bottle. The samples were then transported to the subcontract laboratories. Sample integrity was assured by maintaining chain-of-custody records.

3.4.2 Hydrogen Chloride Analysis

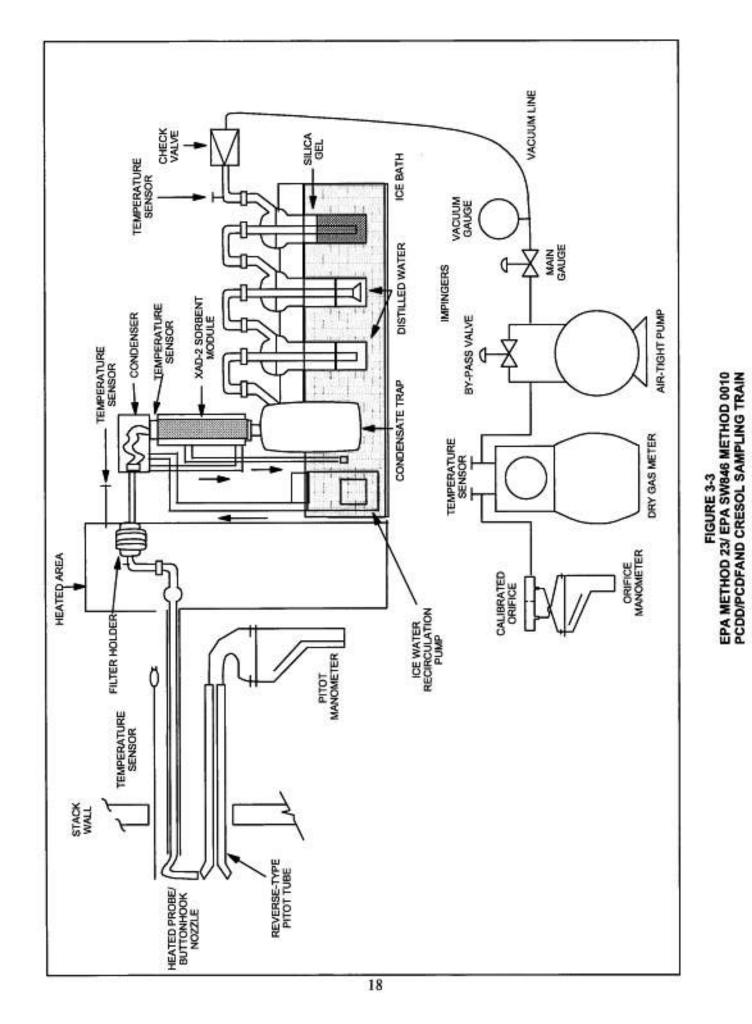
The samples from the H₂SO₄ impingers will be analyzed for chloride (CI⁻) by the procedures outlined in EPA SW-846 Method 9057 (ion chromatography) and reported as HCl. The samples from the NaOH impingers will be analyzed for chlorine (Cl₂) by the procedures outlined in EPA SW846 Method 9057 (ion chromatography) and reported as chlorine.

3.5 EPA METHOD 23/EPA SW846 METHOD 0010 - PCDD/PCDF AND CRESOL SAMPLING TRAIN

The test train utilized to perform the polychlorinated dibenzo-p-dioxins/polychlorinated dibenzo furans (PCDD/PCDF) and the cresol isomers sampling will be conducted using a combined EPA Method 23 and EPA SW846 Method 0010 sample train (see Figure 3-3).

A borosilicate nozzle will be attached to a heated (~250°F) borosilicate probe. The probe will be connected directly to a heated borosilicate filter holder containing a solvent extracted Reeve Angel 934 AH glass fiber filter. A section of borosilicate tubing will join the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 g of 30/60 mesh XAD-2 resin. A thermowell is located on the outlet of the condenser so the XAD module inlet temperature is monitored. The XAD module will be connected to a condensate trap followed by a series of three impingers. The first two impingers will each contain 100-ml of high purity distilled water. The final impinger will contain 300 g of dry pre-weighed silica gel. All impingers and the condensate trap will be maintained in an ice bath. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers will be connected to the final impinger via an umbilical cord to complete the sample train.

During PCDD/PCDF and cresol sampling, gas stream velocities will be measured by inserting a calibrated "S"-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential will be observed immediately after positioning the nozzle at each traverse point, and the sampling rate will be adjusted to maintain isokineticity \pm 10 percent. Flue gas temperature will be monitored at each point with a calibrated pyrometer and thermocouple. Probe, filter box, XAD module, and impinger exit gas temperatures will be monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples. The thermocouples will be positioned in the heated filter chamber and between the condenser and XAD module and after the last impinger.


Isokinetic test data will be recorded at each traverse point during all test periods. Leak checks will be performed on the sampling apparatus according to reference method instructions, prior to and following each run, and/or component change.

3.5.1 EPA Method 23/EPA SW846 Method 0010 - PCDD/PCDF and Cresol Sample Recovery

At the conclusion of each test, the sampling train will be dismantled, the openings sealed, and the components transported to the field laboratory.

A consistent procedure will be employed for sample recovery:

- The foil covered XAD-2 module will be sealed, labeled, and placed in an ice-cooled chest (sample type 1).
- The glass fiber filter will be removed from its holder with tweezers and placed in a borosilicate container with a Teflon-lined closure along with any loose particulate and filter fragments (sample type 2).
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder will be rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush will be rinsed with acetone into the same container. The container will be sealed with a Teflon®-lined closure (sample type 3).
- The components from the aforementioned step will be rinsed with methylene chloride while brushing. The solvent will be added to Sample Type 3.

- 5. The volume of liquid collected in the condensate trap will be measured, the value recorded, and the contents poured into a glass sample bottle along with deionized water rinse of the back-half of the filter holder, connectors, condenser coil and condensate trap. The borosilicate sample container will be capped with a Teflon-lined closure (sample type 4). The train components in the aforementioned step will be washed with acetone followed by methylene chloride and the solvent rinses placed in a separate borosilicate container with a Teflon-lined closure (sample type 5).
- The volume of liquid in impingers one and two will be measured, the values recorded, and discarded.
- All Method 23 test train components up to the exit of the condenser will be rinsed with toluene. The toluene rinse will be placed in a borosilicate sample container capped with a Teflon lined closure (sample type 6).
- The silica gel in the third and final impinger will be weighed and the weight gain value recorded.
- Site blank samples of the solvents, XAD-2 module, filter and distilled water will be retained for analysis.

Each container will be labeled to clearly identify its contents. The height of the fluid level will be marked on the container of each liquid sample to provide a reference point for a leakage check after transport.

3.5.2 EPA Method 23 - PCDD/PCDF Sample Analysis

The front-half solvent wash, filter, XAD-2 resin, back-half solvent and toluene rinse contents will be extracted. The extracts will be combined into a train total composite extract and analyzed as per the procedures outlined in EPA Method 23 utilizing high resolution capillary column GC/high resolution mass spectrometry (MS) procedures.

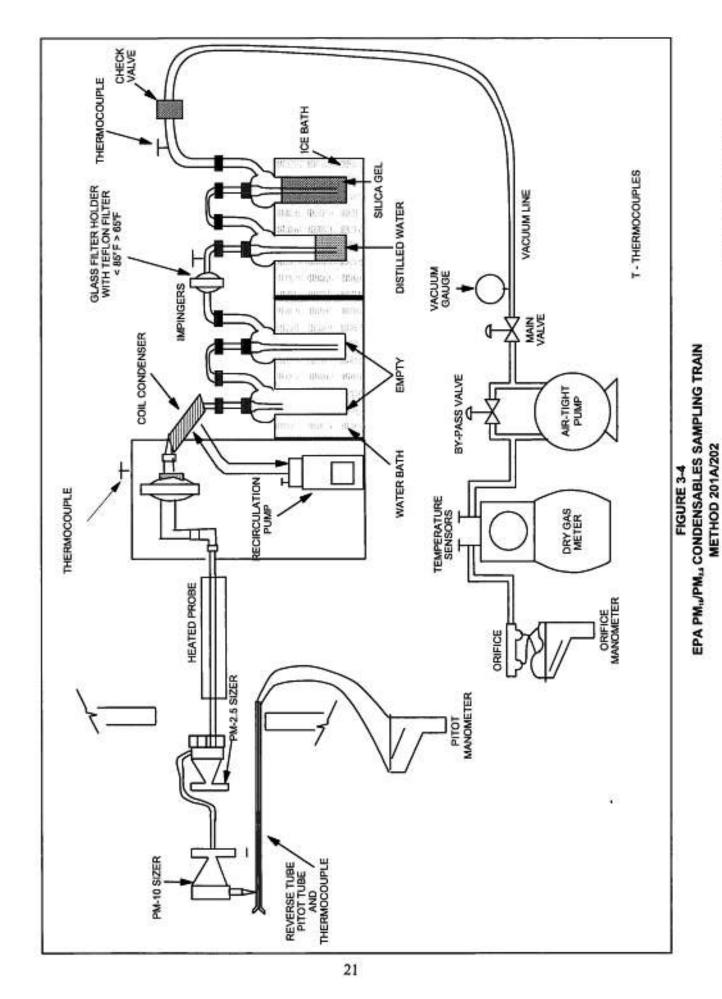
3.5.3 EPA SW846 Method 0010 – Cresol Sample Analysis

General analysis for cresol isomers will follow the analytical procedures summarized below. Refer to SW 846 Method 8270 for detailed specifications of this analysis procedure. Analysis will be limited to three target cresol isomers; m-cresol, o-cresol and p-cresol.

First each front-half wash sample is concentrated to 1-5 ml using a rotary evaporator apparatus. The sample container is rinsed three times with methylene chloride, added to the concentrated solution, and concentrated further to near dryness. The above concentrate is added to the filter and XAD-2 resin in a soxhlet apparatus that contained a precleaned glass extraction thimble and silica gel. Internal standards are added, covered with a plug of precleaned glass wool and refluxed with toluene for 16 hours. The extract is transferred using three 10-ml rinses of toluene to a rotary evaporator, concentrated to approximately 8 ml, and reduced to 1 ml under nitrogen stream. The sample is split in half, one split is analyzed, and the second archived.

The back-half impinger solvent rinse is concentrated to 2 ml using a rotary evaporator, then added to the impinger water/condensate sample. Following solvent addition, the sample is spiked with the appropriate internal standards. A liquid extraction is then conducted using methylene chloride. The extract is combined with the front-half soxhlet extract for cleanup and analysis. The remaining extract is analyzed for the targeted cresol isomers utilizing GC with low-resolution MS.

Site blanks and laboratory blanks are analyzed with each group of source samples using the above procedure as QC, contamination or performance checks, as appropriate. All GC/MS analyses include analysis of method blank, a method blank spike, a matrix spike, and a laboratory control standard. In addition, appropriate surrogate compounds for the cresols are spiked into each XAD-2 module. Recoveries from method spikes and surrogate compounds are calculated and recorded on control charts to maintain a history of system performance.


3.6 PM10/PM2.5 SAMPLING TRAIN

Particle size (PM₁₀/PM_{2.5}) will be collected using EPA Method 201A. The sampling train will also incorporate the revision to EPA 202 procedures for determination of condensible particulate also referred to as the dry impinger method (see Figure 3-4).

The sampling train will consist of the following components:

 A stainless steel nozzle with an inside diameter sized to sample isokinetically connected to a cyclonic separator.

13

IASDATA/LWEC METHOD 201A-202

- A PM₁₀/PM_{2.5} dual stage sampling cyclone.
- A borosilicate probe equipped with a calibrated thermocouple to measure flue gas temperature and a calibrated S-type Pitot tube to measure flue gas velocity pressure.
- A heated (at stack temperature) borosilicate filter holder containing a tared quartz fiber filter.
- The pitot tube tip will be mounted slightly beyond the combined cyclone head assembly and at least one inch off the gas flow path to the cyclone nozzle.
- A section of borosilicate connections from the outlet of the probe to the water cooled coil condenser. The outlet of the condenser is connected to the first impinger.
- An impinger train consisting of four impingers. The first two impingers will be empty and have a short stem and modified stem, respectively. The third impinger will be of a standard design and will contain 100 ml of distilled water. The fourth impinger will contain 300 grams of dry preweighed silica gel.
- An untared Teflon filter and glass filter holder is located between the second (dry) impinger and the third impinger. The filter exit temperature is monitored and maintained between 65°F and 85°F.
- A vacuum hose with adapter to connect the outlet of the impinger train to a control module.
- A control module containing a 3-cfm carbon vane vacuum pump (sample gas mover), a calibrated dry gas meter (sample gas volume measurement device), a calibrated orifice (sample gas flow rate monitor), and inclined manometers (orifice and gas stream pressure indicators).
- A switchable calibrated digital pyrometer to monitor flue and sample gas temperatures.

Leak checks of the entire sampling train will be performed prior to sampling. At test completion, a final leak check will be performed at the sample probe inlet. Per EPA 201A procedures, no leak check of the PM₁₀/PM_{2.5} cyclone and filter housing will be performed at test completion. This is to minimize particle bypass through the cyclone during the leak check.

During PM₁₀/PM_{2.5}, flue gas velocity will be measured with a calibrated S-type pitot tube (provided with extensions) fastened slightly beyond the combined cyclone head and at least one inch from nozzle. Flue gas temperature is monitored with a calibrated direct readout pyrometer equipped with a chromel-alumel (Type K) thermocouple positioned near the sampling nozzle. The probe, filter box, CPM filter exit, and impinger exit gas temperatures are monitored with a calibrated direct

readout pyrometer equipped with Type K thermocouples. The PM₁₀/PM_{2.5} sample will be collected at a constant rate based on stack gas conditions. The sampling time at each traverse point will be adjusted based on the stack velocity measured at each point to ensure the sample is collected isokinetically.

3.6.1 PM10/PM2.5 SAMPLE RECOVERY

At the conclusion of each PM10/PM2.5 test, the sampling train will be dismantled. The openings sealed and the components transported to the field laboratory.

Following test completion and prior to the start of sample recovery the impinger portion of the EPA 201A/202 train will be purged with nitrogen at a minimum of 14 liters per minute for 60 minutes. The CPM filter will be maintained between 65°F and 85°F during the purge. This purge is to expel any dissolved sulfur dioxide.

A consistent procedure will be employed for sample recovery:

- The pre-weighed quartz fiber filter will be removed from the borosilicate filter housing with tweezers and placed in its original container (petri dish) along with any loose particulate and filter fragments (sample type 1).
- 2. The particulate adhering to the internal surfaces of the nozzle and PM₁₀ cyclone will be rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush will be rinsed with acetone into the same container. The container will be sealed with a Teflon lined closure (sample type 2-PM greater than 10 µm).
- 3. The particulate adhering to the internal surfaces of the PM₁₀ cyclone exit connecting tube and the internal surfaces of the PM_{2.5} cylcone will be rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush will be rinsed with acetone into the same container. The container will be sealed with a Teflon lined closure (sample type 3-PM less than 10 µm but greater than 2.5 µm).
- 4. The particulate adhering to the internal surfaces of the PM_{2.5} cyclone to filter holder connecting tube (PM_{2.5} cyclone exit) and filter holder will be rinsed with acetone into a borosilicate container while brushing a minimum of three times with no visible particulate remains. Particulate adhering to the brush will be rinsed with acetone into the same container. The container will be sealed with a Teflon-lined closure (sample type 4-PM less than 2.5 µm).

- Following completion of the nitrogen purge, the total liquid content of impingers one and two will be measured volumetrically or gravimetrically and the sample will be placed in a borosilicate container (sample type 5).
- 6. The coil condenser, the first two impingers, the back half of the filterable particulate filter holder, the front half of the condensable filter housing, and the connectors will be rinsed twice with distilled water. The rinsate will be added to sample type 5.
- 7. The coil condenser, the first two impingers, the back half of the filterable particulate filter holder, the front half of the condensable filter housing, and the connectors will be rinsed twice with acetone and hexane. The rinses will be placed in a borosilicate container with Teflon-lined closure (sample type 6).
- The Teflon filter (CPM filter) located between impingers 2 and 3 was removed from its filter holder and placed into a petri dish or borosilicate container (sample type 7).
- The total liquid content of impinger three will be measured volumetrically and discarded.
- The silica gel will be removed from the last impinger and immediately weighed to the nearest one-tenth gram. The weight gain will be recorded.
- Acetone, PM_{2.5} filter, distilled water and hexane blank samples will be placed into a borosilicate/Teflon container or petri dish and sealed for gravimetric analysis.

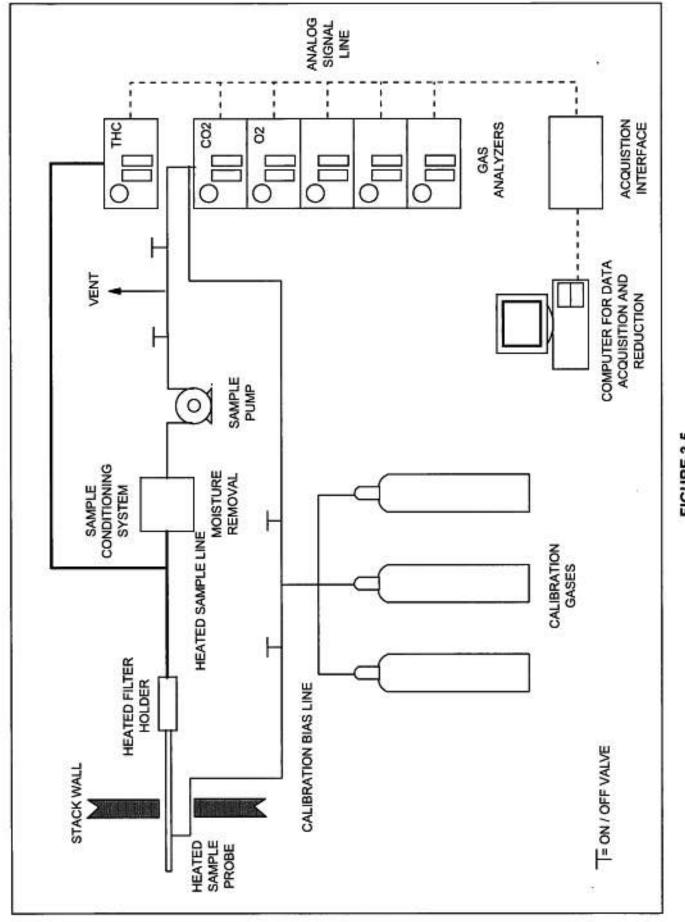
Each container will be labeled to clearly identify its contents. The height of the fluid level will be marked on the container of each liquid sample to determine whether or not leakage occurred during transport.

3.6.2 Filterable PM10/PM2.5 (EPA 201A) Analysis

- The filters and any loose fragments will be desiccated for 24 hours and weighed to the nearest 0.1 mg to a constant weight of no more than 0.5 mg between 2 consecutive weighings with no less than six hours of desiccation time between weighings.
- The front-half acetone wash samples (nozzle/PM₁₀ cyclone rinse, PM₁₀ cyclone exit/PM_{2.5} cyclone rinse and PM_{2.5} exit/filter holder rinse) will be evaporated at ambient temperature and pressure in tared beakers, and then desiccated to constant weight to the nearest 0.1 mg.
- A blank sample of acetone and a filter will be analyzed along with the PM10/PM2.5 source samples.

The residue weight of the nozzle PM₁₀/cyclone rinse sample represents the particulate catch greater than 10 microns (>PM₁₀). The PM cyclone exit PM_{2.5} cyclone rinses represent the particulate catch less than 2.5 microns (< PM₁₀), The PM_{2.5} filter holder rinse sample plus the filter residue represents the filterable particulate catch less than and equal to 2.5 microns (PM_{2.5}).

3.6.3 Condensable Particulate (EPA 202) Analysis


- The total volume of sample type 5 will be measured.
- The Teflon filter will be extracted (rinsed).
- The remaining contents of sample type 5 and the acetone/hexane rinse (sample type 6) will be combined in a separatory funnel. After mixing, the organic phase will be removed and retained in a tared beaker. Two separate additions of 75 ml of hexane will be added to the separatory funnel and removed (following mixing and separation) to the tared beaker. The organic fraction will be evaporated at room temperature and desiccated to the nearest 0.1 mg to a constant weight.
- The resulting water (inorganic fraction) will be placed in a tared beaker and taken to near dryness (~ 50 ml) on a hot plate and then evaporated to dryness in an oven at 105°C.

The total of the organic and inorganic fractions represent the condensible particulate catch. The total PM₁₀/PM_{2.5} includes the filterable PM₁₀/PM_{2.5} catch plus the organic and inorganic condensables.

3.7 CONTINUOUS EMISSIONS MONITORING SYSTEM

A diagram of the reference method sampling system used to measure VOC and O₂/CO₂ is presented in Figure 3-5. The system will conform to the requirements of EPA Reference Methods 25A and 3A. A flame ionization analyzer will be used to measure VOC concentrations. A non-dispersive infrared (NDIR) analyzer will be used to measure CO₂ and a paramagnetic analyzer will be used to measure O₂ concentrations.

Stack gas will be withdrawn from the stack through a heated stainless steel probe and heated filter via a heated sample line maintaining a temperature of 250°F. The probe will be inserted into a dedicated sample port at a single point in the gas stream. The outlet of the heated sample

INSDAT/ANAXALTAIPIGURE 3-1 WESTON SAMPLING SYSTEM

FIGURE 3-5 WESTON CEM SAMPLING SYSTEM

line will be connected to a sample conditioning system for moisture removal. The clean, dried sample will then be transported to the O₂ and CO₂ analyzers via a Teflon® sample line. The VOC sample will be drawn directly to the flame ionization analyzer from a "T" located before the sample conditioners. The flame ionization analyzers measures VOC on a wet basis. A separate Teflon® line will be used for introduction of VOC and O₂/CO₂ bias gases to the probe outlet.

3.7.1 VOC and O₂/CO₂ Monitoring Procedures

The VOC and O₂/CO₂ analyzers will be calibrated daily by direct introduction of EPA Protocol calibration gases to the analyzers. These gases are prepared with a balance of nitrogen and nitrogen is also used as the zero gas. After the analyzer calibration, a system bias check will be conducted by introducing the zero gas and one selected VOC and O₂/CO₂, calibration gas to the sample probe outlet. The bias check will be repeated at the end of each test run to determine sampling system bias and instrument drift for each analyzer.

The interference checks on WESTON's O₂/CO₂ instrumental analyzers were previously performed (December 2014) in accordance with EPA Method 7E and will not be repeated for this test program.

Additionally, an O₂ stratification check will be performed prior to the test effort in accordance with EPA Method 7E – Section 8.1.2. The number of points sampled during formal testing will be determined by the stratification test results.

Three formal test runs of one hour or longer will coincide with the isokinetic sample runs. The VOC testing will be conducted during isokinetic testing so gas moisture content and stack volumetric flow rate data can be used to calculate VOC concentrations and mass rates.

The output from the analyzers will be directed to a data acquisition system and recorded by a computer equipped with data reduction software designed by WESTON. The software will calculate the average one-minute measured concentrations which will be used to compute an average concentration for the test run.

As an option, LWEC may analyze the gas sample for methane content using an on-site GC/FID per EPA Method 18. The methane concentrations measured are subtracted from the total VOC concentrations measured using EPA Method 25A to yield non-methane VOC. A gas sample would be collected from a slipstream of the CEM sampling system. This would ensure that a representative sample was collected concurrently with the Method 25A continuous monitoring.

3.8 OPACITY

Opacity will be determined by a certified visible emissions (VE) evaluator pursuant to EPA Reference Method 9. A 60-minute opacity observation (3 total) will be conducted in conjunction with each EPA 5/29 and 201A/202 test train pairing. General procedures related to EPA 9 are presented below:

- A qualified observer will stand at a distance to provide a clear view of the emissions with the sun oriented in the 140° sector to his/her back.
- The observers' line of vision will be perpendicular to the plume direction.
- The observer will record all pertinent atmospheric conditions and pertinent site information.
- Opacity observations will be made at the point of greatest opacity of the plume and at a point without condensed water vapor.
- The exhaust plume will be observed in 15 second intervals to make a reading for a
 minimum of 240 readings per 60-minute period. The reported % opacity will be
 calculated as the average of the 240 consecutive observations.

4. FUEL SAMPLING AND ANALYSIS

LWEC fuel is supplied by M.A. Energy Resources LLC (MAER). MAER operates a fuel aggregation facility where raw materials are processed then conveyed to the facility.

As required by the 114 letter, fuel samples will be collected during the test program during each test run in accordance with 40 CFR 63 Subpart 7521(c and d), as presented in Appendix A. LWEC designated personnel will collect fuel samples twice per run (approximately beginning and mid-point). A composite sample of each fuel type per test run will be submitted for analysis as listed in Table 4-1.

Fuel Type	Required Analysis	Analytical Methods	Expected Minimum Detection Level
TDF	Sulfur Concentration	ASTM D6700-01. "Standard Practice for Use of Scrap Tire- Derived Fuel"	Not Applicable (ash) 0.02 weight % (Sulfur)
	Moisture Content	ASTM E3173, "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"	Not Applicable
	Chlorine Concentration	<u>SW-846-9056A</u> , "Determination of Inorganic Anions by Ion Chromatography"	2.0 ppm
Wood	Moisture Content	ASTM E871, "Standard Method of Moisture Analysis of Particulate Wood Fuels"	Not Applicable
	Chlorine Concentration	SW-846-9056A, "Determination of Inorganic Anions by Ion Chromatography"	2.0 ppm
	Sulfur Concentration	ASTM D4239, "Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion"	0.02 weight %
Creosote Ties	Moisture Content	ASTM E871, "Standard Method of Moisture Analysis of Particulate Wood Fuels"	Not Applicable
	Chlorine Concentration	<u>SW-846-9056A</u> , "Determination of Inorganic Anions by Ion Chromatography"	2.0 ppm
	Sulfur Concentration	ASTM D4239, "Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion"	0.02 weight %

Table 4-1 Fuel Sample Analytical Methods

5. QUALITY ASSURANCE/QUALITY CONTROL

5.1 QUALITY CONTROL PROCEDURES

As part of the compliance test, WESTON will implement a QA/QC program. QA and QC are defined as follows:

- <u>Quality Control</u>: The overall system of activities whose purpose is to provide a quality product or service: for example, the routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process.
- <u>Quality Assurance</u>: A system of activities whose purpose is to provide assurance that the overall quality control is being done effectively. Further,

The field team manager for stack sampling will be responsible for implementation of field QA/QC procedures. Individual laboratory managers will be responsible for implementation of analytical QA/QC procedures. The overall project manager oversees all QA/QC procedures to ensure that sampling and analyses meet the QA/QC requirements and that accurate data results from the test program.

5.2 GAS STREAM SAMPLING QA PROCEDURES

General QA checks that will be conducted during testing and apply to all methods include the following:

- Performance of leak checks.
- Use of standardized forms, labels and checklists.
- Maintenance of sample traceability.
- Collection of appropriate blanks.
- Use of calibrated instrumentation.
- Review of data sheets in the field to verify completeness.
- Use of validated spreadsheets for calculation of results.

The following section details specific QA procedures to be applied to the isokinetic methods.

5.2.1 Stack Gas Velocity/Volumetric Flow Rate QA Procedures

The QA procedures followed for velocity/volumetric flow rate determinations will follow guidelines set forth by EPA Method 2. Incorporated into this method, are sample point determinations by EPA Method 1, and gas moisture content determination by EPA Method 4. QA procedures for Methods 1 and 2 are discussed below.

Volumetric flow rates will be determined during the isokinetic flue gas tests. The following QC steps will be followed during these tests:

- The S-type pitot tube will be visually inspected before sampling.
- Both legs of the pitot tube will be leak checked before sampling.
- Proper orientation of the S-type tube will be maintained while making measurements. The yaw and pitch axes of the S-type pitot tube will be maintained at 90° to the flow.
- The manometer oil will be leveled and zeroed before each run.
- Pitot tube coefficients will be determined based on physical measurement techniques as delineated in Method 2.

5.2.2 Moisture and Sample Gas Volume QA Procedures

Gas stream moisture will be determined as part of the isokinetic test trains. The following QA procedures will be followed in determining the volume of moisture collected:

- Preliminary impinger train tare weights are weighed or measured volumetrically to the nearest 0.1 g or 1.0 ml.
- The balance is leveled and placed in a clean, motionless, environment for weighing.
- The indicating silica gel is fresh for each run and periodically inspected and replaced during runs if needed.
- The silica gel impinger gas temperature is maintained below 68°F.

The QA procedures that are followed in regards to accurate sample gas volume determination will be:

 The dry gas meter is fully calibrated annually using an EPA approved intermediate standard device.

- Pre-test, port-change, and post-test leak-checks are completed (must be less than 0.02 cfm or 4 percent of the average sample rate).
- The gas meter is read to the thousandth of a cubic foot for all initial and final readings.
- Readings of the dry gas meter, meter orifice pressure (Delta H) and meter temperatures are taken at every sampling point.
- Accurate barometric pressures are recorded at least once per day.

23

 Pre- and Post-test dry gas meter checks are completed to verify the accuracy of the meter calibration constant (Y).

5.2.3 Isokinetic Sampling Train QA Procedures

The Quality Assurance procedures outlined in this section are designed to ensure collection of representative, high quality test parameter (HCl/HF) concentrations and mass emissions data. The sampling QA procedures to be followed to ensure representative measurements are:

- All glassware will be prepared per reference method procedures.
- The sample rates must be within ± 10 percent of the true isokinetic (100 percent) rate.
- All sampling nozzles will be manufactured and calibrated according to EPA standards.
- Recovery procedures are completed in a clean environment.
- Sample containers for liquids and filters will be constructed of borosilicate or polyethylene with Teflon®-lined lids.
- At least one reagent blank of each type of solution or filter will be retained and analyzed.
- All test train components from the nozzle through the last impinger are constructed of glass (with the exception of the filter support pad which is Teflon®).
- All recovery equipment (i.e., brushes, graduated cylinders, etc.) will be non-metallic.

5.2.4 Sample Identification and Custody

Sample custody procedures for this program are based on EPA recommended procedures. Since samples are analyzed at remote laboratories, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain-of-custody records for samples being transferred. These procedures are discussed below.

The Field Team Manager is responsible for ensuring that all stack samples taken are accounted for and that all proper custody and documentation procedures are followed for the field sampling and field analytical efforts. The Field Team Manager is assisted in this effort by key sampling personnel involved in sample recovery.

Following sample collection, all stack samples are given a unique sample identification code. Stack sample labels are completed and affixed to the sample container. The sample volumes are determined and recorded and the liquid levels on each bottle are marked. Sample bottle lids are sealed on the outside with Teflon® tape to prevent leakage. Additionally, the samples will be stored in a secure area until they are shipped.

As the samples are packed for travel, chain-of-custody forms are completed for each shipment. The chain-of-custody forms specifying the treatment of each sample are also enclosed in the sample shipment container.

5.2.5 Data Reduction and Validation QC Checks

All data and/or calculations for flow rates, moisture contents, and isokinetic rates, are made using a computer software program validated by an independent check. In addition, all calculations are spot checked for accuracy and completeness by the Field Team Leader.

In general, all measurement data are validated based on the following criteria:

- Process conditions during sampling or testing.
- Acceptable sample collection procedures.
- Consistency with expected or other results.
- Adherence to prescribed QC procedures.

Any suspect data will be flagged and identified with respect to the nature of the problem and potential effect on the data quality.

5.3 REFERENCE METHOD CEMS QA/QC CHECKS

- Continuous emissions monitoring system (probe to sample conditioner) will be checked for leaks prior to the testing.
- Pre and post-test calibration bias tests will be performed as required by the reference methods.
- A permanent data record of analyzer response will be made using computer software designed by WESTON.
- All calibration gases used will meet EPA Protocol standards.

5.4 LABORATORY AUDIT SAMPLES

Laboratory audit samples for metals (Pb, Ni, As, Mn) and HCl will be obtained from a Stationary Source Audit Sample (SSAS) provider in accordance with the EPA SSAS program. The audit samples will be analyzed in conjunction with the stack samples and the results will be included in the final test report.

6. TEST REPORT OUTLINE

The results of the test program will be submitted after the test program has been completed and the results have been assembled in report format. LWEC will submit the test report within 30 days after completion of the test program.

The compliance test report will contain the following information as a minimum:

- a. Summary of Results
 - 1. Results of the above specified emission tests;
 - 2. Process and control equipment data related to determining compliance;
 - 3. Discussion of test errors;
 - Discussion of any deviations from the reference test methods;
 - 5. Production data; and
 - 6. Fuel usage logs.
- b. Facility Operations
 - 1. Description of the process and control equipment in operation and
 - Facility operating parameters that demonstrate that the facility was being operated at maximum production rates.
- c. Sampling and Analytical Procedures
 - Sampling port location(s) and dimensions of cross-section;
 - Sampling point description, including labeling system;
 - Brief description of sampling procedures, including equipment and diagram;
 - Description of sampling procedures (plarmed and accidental) that deviated from any standard method;
 - 5. Brief description of analytical procedures, including calibration;
 - Description of analytical procedures (plarmed or accidental) that deviated from any standard method; and
 - 7. Quality control/ quality assurance procedures, tests, and results.
- d. Appendix
 - 1. Complete results with example calculations;
 - 2. Raw field data (original, not computer printouts);
 - 3. Laboratory report, with signed chain-of-custody forms;
 - 4. Calibration procedures and results;
 - 5. Raw process and control equipment data, signed by plant representative;
 - 6. Test log;
 - 7. Project participants and titles; and
 - 8. Related correspondence.

APPENDIX A FUEL SAMPLING PROCEDURES

.

Fuel Sampling and Sample Preparation Procedures

40 C.F.R. § 63.7521(c)

At a minimum, you must obtain three composite fuel samples for each fuel type according to the procedures in paragraph (c)(1) or (2) of this section.

- If sampling from a belt (or screw) feeder, collect fuel samples according to paragraphs (c)(1)(i) and (ii) of this section.
 - (i) Stop the belt and withdraw a 6-inch wide sample from the full cross-section of the stopped belt to obtain a minimum two pounds of sample. Collect all the material (fines and course) in the full cross-section. Transfer the sample to a clean plastic bag.
 - (ii) Each composite sample will consist of a minimum of three samples collected at approximately equal intervals during the testing period.
- (2) If sampling from a fuel pile or truck, collect fuel samples according to paragraphs (c)(2)(I) through
 - (iii) of this section.
 - For each composite sample, select a minimum of five sampling locations uniformly spaced over the surface of the pile.
 - (ii) At each sampling site, dig into the pile to a depth of 18 inches. Insert a clean flat square shovel into the hole and withdraw a sample, making sure that large pieces do not fall off during sampling.
 - (iii) Transfer all samples to a clean plastic bag for further processing.

40 C.F.R. § 63.7521(d)

Prepare each composite sample according to the procedures in paragraphs (d)(1) through (7) of this section.

- (1) Thoroughly mix and pour the entire composite sample over a clean plastic sheet.
- (2) Break sample pieces larger than 3 inches into smaller sizes.
- (3) Make a pie shape with the entire composite sample and subdivide it into four equal parts.
- (4) Separate one of the quarter samples as the first subset.
- (5) If this subset is too large for grinding, repeat the procedure in paragraph (d)(3) of this section with the guarter sample and obtain a one-guarter subset from this sample.
- (6) Grind the sample in a mill.
- (7) Use the procedure in paragraph (d)(3) of this section to obtain a one-quarter subsample for analysis. If the quarter sample is too large, subdivide it further using the same procedure.

APPENDIX B EXAMPLE CALCULATIONS AND FIELD DATA SHEETS

EXAMPLE CALCULATIONS FOR VELOCITY, MOISTURE, AND ISOKINETICS

deta H

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), decf.

Where:

17.64 x Y x Ym x (Pb + ------) 13.6 Vm(std) = (Tas + 460)

Ven(sal) =	Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dsof.
Vm =	Volume of gas sample measured by the day gas meter at meter conditions, dof.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H ₂ O
Tm =	Average dry gas meter temperature , deg F.
¥ =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (\$28 deg R)
	to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, sef.

Vw(std) =	(0.04707 x Vwo) + (0.04715 x Wwag)
Where	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, sef.
Vet -	Volume of liquid condensed in impingers, ml.
Wwag -	Weight of water vapor collected in ailies gel, g.
0.04707 -	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 ib/ib-mole), the ideal gas constant
	21.85 (in. Hg) (R ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), abankste pressure at standard conditions (29.92 in. Hg), 8 ¹ /ml.
0.04715 -	Factor which includes the melecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hig) (ft ³)/fo-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), sheeksta
	preasure at standard conditions (29.92 in. Hg), and
	453.6 g/b, fl ³ /g.

3. Moisture content

1.

bas -

Vw(std)

Vw(std) + Vm(std)

Where:

bws = Properties of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

Md = 1-bws

Where:

Md = Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, Ibilb-mole.

MWd = (0.440 x % CO₂) + (0.320 x % O₂) + (0.280 x (% N₂))

Where:

MWd =	Dry molecular weight , lh/lb-mole.
% CO ₂ =	Percent carbon dioxide by volume, dry basis.
% O2 =	Percent oxygen by volume, dry basis.
% N2 =	Percent nitrogen by volume, dry basis.
0.440 =	Molecular weight of carbon disside, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 -	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lbfb-mole.

MWs = (MWd x Md) + (18 x (1 - Md))

Where:

MWs -	Molecular weight of wet gas, lb/b-mole.
18 -	Molecular weight of water, Ib/Ib-mole.

7. Average velocity of gas stream at actual conditions, filter.

$$V_8 = \frac{\text{Ts (avg)}}{\text{Ps x MWs}} \frac{\text{Ts (avg)}}{\text{Ps x MWs}}$$

Where:

Vs -	Average gas stream velocity, fi/sec.
	(fh/lb-mole)(in. Hg) ⁵²
85.49 -	Pitot tube constant, fl/sec x
	(deg R)(in H ₂ O)
Cp =	Pitot tabe coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg R = Ts, deg F + 460.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. HgO

12.4

8. Average gas stream volumetric flowrate at actual conditions, wacfinia.

Qs(act) =	60 x Vs x As
Where:	
Qs(sci) -	Volumetric flownsis of wet stack gas at actual conditions, watfimin.
As -	Cross-sectional area of stack, #1.

60 - Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flowrate at standard conditions, declimin.

	Pa	
Qs(std) -	17.64 x Md x x Qs(sct)	
	Ta	

Where:

Qs(sid) =	Volumetric flowratz of dry stack gas at standard
	conditions, declimin.

10. Isokinetic variation calculated from intermediate values, percent.

	17.327 x Ts x Vm(std)
1-	Vs x O x Ps x Md x (Dn) ²

Where:

.

EXAMPLE CALCULATIONS FOR HYDROGEN CHLORIDE AND CHLORINE

1. Hydrogen Chloride concentration, lb/dscf.

C1(HCl)	-	W(HCl) x 2.2046 x 10 ⁻⁶
		V _{dm} (std)
Where:		
W(HCI)	-	Weight of hydrogen chloride collected in sample, mg.
C1(HCl)	=	Hydrogen chloride concentration, lb/dscf.
Vdm(std)	=	Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.
2.2046x10 ⁻⁶	=	Conversion factor from mg to lbs.

2. Hydrogen Chloride concentration, ppmv.

C2(HCI)	-	385.35 x 10 ⁶ x C1(HCI) MW
Where:		
C2(HCI)	-	Concentration of hydrogen chloride in stack gas, parts per million by volume (dry basis).
385.35 x 10 ⁶ MW	-	Conversion factor from lbs/ppm. Molecular weight of hydrogen chloride (36.46).
3. Hydrogen Chloride mass emission rate, lb/hr.		

MR1(HCl) = C1(HCl) x Qs(std) x 60

Where:

MR1(HCl)	-	Hydrogen chloride mass emission rate, lb/hr.
Qs(std)	=	Volumetric flowrate of dry stack gas at standard conditions, dsct/min.

4. Chlorine concentration, lb/dscf.

	W(Cl ₂) x 2.2046 x 10 ⁻⁶
$CI(Cl_2) =$	
	V _{dm} (std)

Where:

W(Cl ₂)	=	Weight of Chlorine collected in sample, mg.
C1(Cl ₂)	-	Chlorine concentration, lbs/dscf.
2.2046x10* =		Conversion factor from mg to lbs.

5. Chlorine concentration, ppm/v.

		385.35 x 10 ⁶	
C2(Cl ₂)	-		x CI(CL2)
		MW	

Where:

C2(Cl ₂)	-	Concentration of Cl2 in stack gas, parts per
		million by volume (dry basis).
385.35 x 10^6	-	Conversion factor from lbs/ppm.
MW	-	Molecular weight of Chlorine (70.9).

6. Chlorine mass emission rate, ib/hr.

MRI(Cl ₂)	=	C1(Cl ₂) x Qs(std) x 60
Where:		
MR1(Cl ₂)	-	Chlorine mass emission rate, lb/hr.

EXAMPLE CALCULATIONS FOR FILTERABLE AND CONDENSIBLE PM-10 PARTICULATE MATTER

1. Filterable PM-10 particulate concentration, gr/dscf.

FPMwt FPMC1 = 15.432 x ----Vm(std)

Where:		
FPMC1 =	Filterable particulate concentration, gr/dscf.	
FPMwt =	Total weight of particulate caught on filter and pushs work adjusted for the rite black campler	

	and probe wash adjusted for the site blank samples.
Vm(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
15.432 -	Conversion factor from grams to grains.

2. Filterable PM-10 particulate mass emission rate, lb/hr.

0.008571 x FPMC1 x Qs(std)
Filterable particulate mass emission rate, lb/hr.
Volumetric flow rate of dry stack gas at standard conditions, dscf/min.
Conversion factor relating grains to pounds
and minutes to hours.

3. Condensible PM-10 particulate concentration, gr/dscf.

	CPMwt
CPMCI =	15,432 x
	Vm(sid)

Where:

CPMC1 =	Condensible particulate concentration, gr/dsof.
CPMwt =	Total weight of Organic particulate plus Inorganic particulate, corrected for blank train samples.
Vm(std) =	Volume of water vapor in the gas sample corrected to standard conditions, sof.
15.432 -	Conversion factor from grams to grains.

4. Condensible PM-10 particulate mass emission rate, lb/hr.

CPMRI = 0.008571 x CPMC	x Qs(std)
-------------------------	-----------

Where:

- CPMR1 = Condensible particulate mass emission rate, lb/hr.
- Volumetric flow rate of dry stack gas at standard conditions, dsc0min. Qs(std) =
- Conversion factor relating grains to pounds 0.008571 =
 - and minutes to hours.

5. Total PM-10 concentration, gr/dscf.

	CPMwt+FPMwt
TPMC1 =	15.432 x
	Vm(std)

Where:

TPMCI =	Total particulate concentration, gr/dscf.
TPMwt =	Total weight of Filterable particulate plus Condensible particulate minus blank correction.
Vm(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
15.432 =	Conversion factor from grams to grains.

6. Total PM-10 mass emission rate, lb/br.

TMRI =	0.008571 x TPMC1 x Qs(std)

Where:

TMRI =	Total particulate mass emission rate, lb/hr.	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dsc6/min.	
0.008571 =	Conversion factor relating grains to pounds	
	and minutes to hours.	

 \mathbb{R}^{2}

÷

9/11/20094:35 PM

¥2

EXAMPLE CALCULATIONS FOR LEAD

1. Lead concentration, lb/dscf.

C1 =

Where:

W = Weight of Lead collected in sample in ug (corrected for site blanks).

Ct = Lead concentration, lb/dscf

2.2046x10⁺ = Conversion factor from ug to pounds. Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to

standard conditions, dscf.

2. Lead mass emission rate, lb/hr.

$$MR1 = C_1 \times Qs(std) \times 60$$

Where:

MR1 - Lead mass emission rate, lb/hr.

60 = Conversion factor from minutes to hours.

Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

63

3. Lead concentration, ug/dscm.

Where:

C2 - Lead concentration, ug/dscm.

W - Weight of Lead collected in sample in ug.

35.31 = Conversion factor from cubic feet to cubic meters.

Note: Calculations identical for all target metals

.

EXAMPLE CALCULATION FOR BIAS CORRECTION OF OXYGEN AND CARBON DIOXIDE.

1. Bias corrected value of Oxygen and Carbon Dioxide, dry basis (%).

Where:

- Cd = O2 and CO2 concentration measured on a dry basis (percent by volume), bias corrected.
- AVG = Average O2 and CO2 concentration for the test run.
- Zbias = The average of pre and post test zero bias checks.
- Sbias = The average of pre and post test span bias check.
- SPAN GAS = The calibration gas closest to the gas stream concentration, was used for the BIAS check.

EXAMPLE CALCULATIONS FOR MOISTURE, BIAS, O₂ CORRECTION, AND MASS EMISSION RATES OF TOTAL VOC

1. Bias corrected value of total VOC as methane, dry basis (ppm/v).

	AVG - ZERO
C(cerr)	x SPAN GAS
	BIAS - ZERO

Where:

AVG	-	Average VOC concentration for the test run as methane as reported by the analyzer.
ZERO	-	The average of pre and post test zero bias check of the complete system with "zero" air.
BIAS	-	The average of pre and post test bias check of the complete system with the calibration span gas.
SPAN GAS	-	The calibration gas closest to the gas stream concentration, which was used for a BIAS check.

- C(corr) = The bias corrected VOC concentration as methane.
- 2. Moisture corrected value of VOC, dry basis (ppm/v).

		C(corr)
CVOC	-	***************************************
		(100 - % MOISTURE) / 100

Where:

C(corr)	-	The bias corrected VOC concentration as methane.
CVOC	-	The concentration of VOC, corrected for moisture, as methane.
% MOISTURE	-	The precentage of water vapor in the gas stream.

3. VOC concentration dry basis, ppm @ 7% O2.

VOC(corr) =	_	CVOCx [20.9 - 7% O2]
	-	[20.9 - O2(measured)]
Where:		
VOC(corr)	-	VOC concentration corrected to 7% O2.
CVOC	-	Average VOC concentration for the test run bias and moisture corrected.
O2(measured)	-	Average oxygen concentration for test run as measured, %.

4. VOC mass emission rate dry basis, ib/hr.

MR1(VOC) =		CVOC x Qs(std) x 16 x 60 min/hr		
	385.35 x 10^6			
Where:				
MRI(VOC)	-	VOC mass emission rate, lb/hr.		
Qs(std)	-	Average volumetric gas stream flow rate at standard coaditions, dscf/min.		
16	=	Molecular weight of methane.		
385.35x106	-	Conversion factor from ppm to lbs.		

WestonNaswoWASData/EmissionTestingData/AIRTEAMLWEC/Compliance Test/Blank Blas & Emission Rate-LW.xia

SAMPLE CALCULATIONS FOR DIOXIN/FURAN (METHOD 23)

2,3,7,8-TCDF concentration, lb/dscf.

C1 =

Vm_(red)

Where:

w	-	Weight of	2,3,7,8-TCDF	collected in	sample in pg.
---	---	-----------	--------------	--------------	---------------

C1 = 2,3,7,8-TCDF concentration, lb/dsef.

2.2046x10¹⁵ = Conversion factor from pg to pounds.
 Vm(std) = Volume of gas sampled measured by the dry gas meter, corrected to standard conditions, dscf.

2,3,7,8-TCDF concentration, ng/dscm.

Where:

C₂ = 2,3,7,8-TCDF concentration, ng/dscm. W = Weight of 2,3,7,8-TCDF collected in sample in ng. 35.316 = Conversion factor from cubic feet to cubic meters.

2,3,7,8-TCDF concentration, ng/dscm @ 7% O2.

C3 = C2 x (21 % - 7% O2) / (21% - Actual O2%)

Where:

C₃ = 2,3,7,8-TCDF concentration, ng/dscm @ 7% O2. Actual O2% = Percent O2 measured during the test run.

2,3,7,8-TCDF Toxic Equivalency concentration, ng/dsem @ 7% O2.

 $C_4 = C_3 \times TEF$

Where:

C4	-	2,3,7,8-TCDF concentration, ng/dscm @ 7% O2 corrected for the
		Toxic Equivalency Factors. (WHO TEF's/2005).
WHO-2005 TEF	=	The 20005 World Health Organization Toxic Equivalency Factor.

2,3,7,8-TCDF mass emission rate, lbs/hr.

MR1 = C1 x Qs(std) x 60

Where:

MRI	=	2,3,7,8-TCDF mass emission rate, lbs/hr.
60	=	Conversion factor from minutes to hours.
Qs(std)	-	Volumetric flowrate of dry stack gas at standard conditions, dscf/min.

SAMPLE CALCULATIONS FOR SEMI-VOLATILE ORGANIC COMPOUNDS (METHOD 0010)

1. 2-methylphenol concentration, lbs/dscf.

C	-	
50.40		Vm(std)
		17 IV

Where:

- W = Weight of 2-methylphenol collected in sample in ug.
- Ct = 2-methylphenol concentration, lbs/dscf.
- 2.2046x10⁻⁹ = Conversion factor from ug to lbs.

2. 2-methylphenol concentration, ug/dscm.

C ₂ = W/(Vm(std) x 0.02832)	C2 -	W/(Vm(std)	x 0.02832)
--	------	-----	---------	------------

Where:

- C2 = 2-methylphenol concentration, ug/dscm.
- 0.02832 = Conversion factor from cubic feet to cubic meters.

3. 2-methylphenol mass emission rate, lbs/hr.

MRI	*	C ₁ x Qs(std) x 60 min/hr	

Where:

MR1 = 2-methylphenol mass emission rate, lbs/hr.

÷

		Cler	nt			20	Operator
	Loa	tion/Plan	nt			-	Date
		Sourc	e				W.O. Number
	Duct Type Traverse			Circular Particulate	Traverse	0	Rectangular Duct Indicate appropriate type Velocity Traverse CEM Traverse
Distance fr	om far wall t	-	of por	t (in) = C		1	Fiow Disturbances
Port Depth	and the second	o outside	or por	durb-0			Upstream - A (ft)
	uct, diamete	$r(0n_i) = 0$	C-D	-		1	Downstream - B (ft)
Area of Du							Upstream - A (duct diameters)
and the second se	erse Points	-				1	Downstream - B (duct diameters)
	erse Points p	er Port				1	Diagram of Stack
Port Diame	eter (in.)(F	lange-Th	veaded	d-Hole)			
Monorall L	ength						
Rectangul	lar Ducts O	niy					
	uct, rectange			.)			
	s (rectangula		_				
Equivalent	Dlameter =	(2"L"W)	(L+W)			1	
	-						
	Tra	verse Po		cations			
Traverse Point	% of Duct	Distance Inside Wall	Duct		from Outside of fort (in)		
1							
2							(101)
3		_					Duct Diameters Upstream from Flow Disturbance (Diatance A)
4		_					50 51 1.0 1.5 2.0 2.5
5							
6							Stack Diameter > 24 inches
7							**- <u>`</u>
8							
9							Minimum Number of 8 + 6ke
10			_				30 Particulate Traverse Polytis 14 (croster) 25 (rectorgalar docts (
11		-		-			»
12	Carrier and	l. Desis interes		an a	ooroosa e		20
CEN	3 Point(Long M	lessurmert.	Line) Str	allSeaton Poly	A Locations		Towerse Paints for Velocity
1	0.167						12
2	0.50						10 - (Distuttance +Bend, Espansion, Contractice, elc.)
3 N	0.833 lote: If stack	dia < 12	inch us	e EPA Mer	fhod 1A	1	films (its or Psycholard (its = 10 - 24 instance
Note: If s	(Sample Nack dia >24* ck dia <24* th	e port up then adju en adjust me Point L	stream st trave traverse ocation f	of pitot por rse point to	1) 1 Inch from wall 5 Inch from wall	_	0 2 3 4 5 5 7 5 5 10 Deet Diameters Downstream from Flow Classification (Distance R)
	1 2 3	4 5	6	7 1		12	Number of Towards Points
7 1	14.6	6.7	4.4	3.2	2.6	2.1	T 1 250 167 125 180 83 7.1 63 56 50 45 43
3		25	29.6	19.4	14.6	11.8	4 2 750 900 375 309 150 244 188 147 150 136 125 4 3 853 625 900 447 157 353 278 250 227 308
		933	78.4	32.3	32.6	25	4 825 780 583 580 438 389 750 318 382
84 6			95.6	80.6	63.8	35.6	r 2 5 9400 750 643 561 580 450 429 37.5 8 8 6 91.7 78.6 54.8 61.1 550 380 45.8
4 1 7			-	19.5		51.4	* 1 7 929 813 122 650 98.1 342
P a 8			-	92.5	91.8	75	9 1 928 83.5 130 6822 62.5 9 944 650 175 188
11					91.4	88.2	1 10 95.0 96.4 19.2
1 11						93.3	n 11 955 875
12			-			97.9	112 958

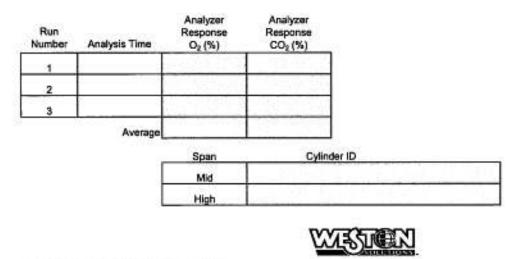
.

CXL STUE


Sample and Velocity Traverse Point Data Sheet - Method 1

Determination of Stack Gas Velocity - Method 2

	Client				Operator	tor Pitot Coeff (Cp)											
Lo	cation/Plant							Stack Area, ft ² (As)									
				v	V.O. Number		Pitot Tube/Thermo ID										
			Run Number														
			Time														
		ometric Pres															
		tic Press, in															
	5	ource Moistu	re, % (BWS) O ₂ , %														
			CO ₂ , %														
Guelen	ic Flow	1	003. //	Lash Oberta		Look Check g		Leak Check p									
	ination	Traverse	Location	Leak Check g Y/N		Y/N		Y/N									
Delta P at	Angle yeilding zero			0.4.0	Source Temp, F ^o	Dulla D	Source Temp, F*	Durbu D	Source Temp, F*								
0°	Delta P	Port	Point	Delta P	(Ts)	Delta P	(Ts)	Delta P	(T8)								
Avg Angle	-	Avn De	ta P & Temp														
and redie			√DetaP														
	Average of		locity, ft/sec.														
Vol. #	low rate @ ac																
	v rate at stand																
MWd = (0.32	•O ₂)+ (0.44 •	CO ₂)+(0.28*	(100-(CO2+	021		where:											
	a" (1- (BWS/10	-	-			MWd = Dry molecu		irce gas, lb/lb-mole.									
Tsa = Ts+		w.W.+/re_/or	ar 100			MWs = Wet moleca Tsa = Source Temp		urce gas, Ib/lb-mole. lute(oR)									
	400 Pstatic/13.6))				Ps = Absolute stack	k static pressu	ire, inches Hg.									
	Cp*avg		Tsa/iPs*MV	Vs)		Vs = Average gas : Qs(act) = Volumetr		y, fl/sec. wet stack gas at act	ual, wacl/min								
Qs(act)= 60		V.		,		Qs(std) = Volumetr	ic flow rate of	dry stack gas at star									
	17.64*(1	(BWS/100))*(Pe/Tee)" Qs(act)		conditions, dscf/mir	WW.	S CIMEN	N I								
	-			m			Ś	JUL L									


Comments_

Source Gas Analysis Data Sheet - Modified Method 3/3A

Analysis Number	Spen	Calibration Gas Value O ₂ (%)	Calibration Gas Value CO ₂ (%)	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	Zero				
2	Mid				- Hinter
3	High				

Run Number	Analysis Time	Analyzer Response O _z (%)	Analyzer Response CO ₂ (%)
1			
2			
3			and the second
	Average		

**Report all values to the nearest 0.1 percent

Determination of Moisture Content in Stack Gases - Method 4

	Location/Plant Source W.O. Number				Operator Meter Box ID ture °C or °F		Date Meter Box Y Sample Volume, ft ³ or L											
Run Number		Sampie Time (min)	Melar Volume, Vm	Meter Temp (c	or ambient temp ometer)	Meter Press, Deta H (in H ₂ O)	limpinger Exit Temp (*)	Impinger Valume, ml	Silice Gel Weight , g	Conscied Volume, Vm(sid)	Leok Rale Chuck							
				Inlet	Outet					10%	Initial							
	End Test										Final							
Baro Press., Po (in Hg)	Start Test					6				Moisture Volume, Vw(std)	Percent Moisture (%), BWS							
	Avg. or Total				53													
Run Number		Sample Time (min)	Nelar Volume, Vm		or embleri lerrip omeler)	Mater Press, Delta H (In HyD)	Impinger Exit Temp (11)	Impingor Volume, mi	Silica Gel Weight , g	Corrected Volume, Vm(ald)	Leak Rate Check							
		and the second		intel	Cullet						Initial							
	End Test										Final							
Baro Press. Pb (in Hg)	Start Test									Moisture Volume, Vw(sid)	Percent Moisture (%), BWS							
	Avg. or Total																	
Run Number	1	Sample Time (min)	Motor Volume, Vm	Motor Temp (x for rel	Meter Temp (or ambient twop Del for rotomatier)		Impinger Exit Temp (1)	impinger Volume, mi	Silca Gel Weight , g	Corrected Volume, Vm(std)	Look Rate Check							
				briet	Ovivi						lettel							
	End Test										Final							
Baro Press., Pb (in Hg)	Slart Test				- 14-11 - 14-11					Moisture Volume, Vw(sid)	Percent Moteture (%) BWS							
sselfer v.	Avg. or Total				W 52. —													

$$BWS = \left(\frac{Vw(std)}{Vw(std) + Vm(std)}\right)^* 100$$

Client

Vw(std)=(0 04707 * Vwc)+(0 04715 * Wwsg)

if Vm islitors than Vm = Vml * 28.32

if Tm is C*thanTm = (Tmc *1 8)+32

Vm(std) = 17.64 * Y * Vm * (Pb+ (deltaH/13.6)) (Tm + 460)

Vin(std)= Sample volume corrected to standard tomp and pressure, sof or L

Vm+ Actual sample volume, calculated, acf

Vmin Actual sample volume, calculated. Utens

Y= Dry gas mater calibration factor.

Pb- Barometric preasure, in Hg. delta H= Melar pressure, in H2O

Tron Average temperature of mater (DGM is used) or rotomter, degrees 'F

Timor Average temperature of meter (DGM is used) or rotomter, degrees "C

Vw(std)= Volume of water vapor at standard conditions, sof or L

Viece Volume of water condensed, ml.

Wwsg= Weight of Silica Gel, g

Use either It² or liters in celculations. DO NOT MIX CUBIC FEET AND LITERS IN ANY CALCULATION. As per EPA approval. The mater box may be ast-up to record the meter box outlet temperature only.

Final yes / no yes / Fail yes / no	COMMENTS	\square
Page of actor litial Mid-Point / no yes / no Pre-Test Set Pass / Fail		Max Temp App A
K Factor Initial yes / no Pre-T	SAMPLE TRAN VAC In Hg)	Max Temp Max Vac Max EPA 5 from 40CFR Part 60 App A
ks (In Hg) (R ¹) (R ²) smp e Response 2		Max Temp EPA 5 from 4
Leak Checks Sample Train (f ²) Sample Train (f ²) Leak Check (3 (in Hg) Pilot good Orsat good Orsat good Dest good Reference Temp Reference Temp PassaFal (+- 2 [*]) Temp Change Response	FILTER (F)	MinMax
	TEWP (7)	MinMax
	DOGM CUTLET TEMP (TP)	Avg Tm
H H الق د couple D (ft) Pts	DGM INLET	Ave
Meter Box ID Meter Box Y Meter Box Y Probe ID / Length Probe Material Plick / Thermocouple ID Plick / Thermocouple ID Avg Nozzle ID Avg Nozzle Dia (In) Area of Stack (It [*]) Sample Time Travense Pts	STACK TEMP ("F)	AvgTs
Actual	DRY GAS METER READING (M ¹)	Total Volume Comments:
EET Stack Conditions (n) Assumed (F) (F) h H40) (f) (f)	ORFICE PRESSURE Delta H (In H2O)	Avg Delta H Total Vo Avg Sign Del H Comments:
ISOKINETIC FIELD DATA SHEET Cleri M.O.# Stack Project ID Mode/Source ID Ran No.ID Ran No.ID	VELOCITY PRESSURE Delta	Avg Delta P Avg Sqrt Delta P
EIELD	CLOCK TME	528
	SAMPLE TIME (milit) O	
ISOKINE' Client W.O.# Project ID Mode/Source ID Samp. Loc. ID Run No. ID Run No. ID Run No. ID Run No. ID Run No. ID Sampia Date Sourcation Sourcation Sourcation Sourcation Date ID Sourcation Sourcation	TRAVERSE PONT NO	

SHEET
DATA
FIELD
INTELIC
SC

Page of

	_		_	 	 -	_	_	 _	_	_	_	_	_	_	_	_	_	_	_	 	 _	_	_	_	_	_		
		COMMENTS																										
		COND FILTER Temp OUT (F) < B5 F																									Max Temp	
		SAMPLE TRAIN VAC (In Hg)																									Max Vac	
	And in the local dataset	MPING EXIT TEMP (TF)																									Max Temp	
	And the second second	FILTER BOX TEMP (F)																									MinMax	
	Contraction of the	PROBE TEMP ("F)																									MinMax	
	Contraction of the	DGM OUTLET MEM																									Avg Tm	
	Constant and a second second	DGM INLET TEMP (*F)																									SWA	
	K Factor	STACK TEMP (*F)																									Avg Ts	
	The state of the s	DRY GAS METER READING (R)																									Total Volume	Comments:
	PERCENTION OF A DATA	ORIFICE PRESSURE Delta H (in H2O)																										Avg Sqrt Del H
Operator Run No.	Data	VELOCITY PRESSURE Dolta P (In H2O)																									Avg Sqrt Delta P	
	Contraction of the last of the	CLOCK TIME (plant time)																									न्त्र	21
	And and a support of the	SAMPLE TIME (min)																									の新聞の町とろう	
Client Source	Sample Loc.	TRAVERSE POINT ND.																									EV.	Ś

SAMPLE RECOVERY FIELD DATA

Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Implicities Implicities Implicities Implicities Contents Implicities Implicities Implicities Implicities Final Implicities Implicities Implicities Implicities Implicities Gain Implicities Implicities Implicities Implicities Implicities Gain Implicities Implicities Implicities Implicities Implicities Sample Color Implicities Implicities Implicities Implicities Implicities Sample I.D. Analyst Filter Number Implicities Implicities Implicities Sample I.D. Analyst Filter Number Implicities Recovery Date Implicities Sample I.D. Analyst Filter Number Implicities Recovery Date Implicities Initial Implicities Implicities Implicities Implicities Implicities	Client Location/Pla	int _			Source	W.O. # & Location						
Impinger Impinger Contents 1 2 3 4 5 6 7 Imp. Total 8 Total Final 1 2 3 4 5 6 7 Imp. Total 8 Total Initial 1					1							
1 2 3 4 5 6 7 Imp.Total 8 Total Contents												
Contents Image: State Gel		1	2	3	4			7	imp.Total	8	Total	
Initial Image Color <	Contents								State of the state	Silica Gel		
Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number 1 2 3 4 5 6 7 Imp. Total 8 Total Goin 1 2 3 4 5 6 7 Imp. Total 8 Total Final 1 2 3 4 5 6 7 Imp. Total 8 Total Gain 1 2 3 4 5 6 7 Imp. Total 8 Total Initial 1	Final											
Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample LD. Analyst Filter Number 1 2 3 4 5 6 7 Imp. Total 8 Total Contents Sitca Gel	Initial											
Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample LD. Analyst Filter Number 1 2 3 4 5 6 7 Imp.Total 8 Total Contents 1 2 3 4 5 6 7 Imp.Total 8 Total Final 1 2 3 4 5 6 7 Imp.Total 8 Total Initial 1	Gain											
Run No. Sample Date Racovery Date Sample LD. Analyst Filter Number 1 2 3 4 5 6 7 Imp.Total 8 Total Contents 1 2 3 4 5 6 7 Imp.Total 8 Total Final 1 2 3 4 5 6 7 Imp.Total 8 Total Final 1 2 3 4 5 6 7 Imp.Total 8 Total Initial 1 <td< td=""><td colspan="11">Impinger Color Labeled?</td></td<>	Impinger Color Labeled?											
Sample I.D. Analyst Filter Number 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Imp.Total 8 Total Stica Gel Stica Gel Final Impinger Imp	Silica Gel Co	ndition				Sealed?						
Impinger Imp. Total 8 Total Contents 1 2 3 4 5 6 7 Imp. Total 8 Total Final 1 </td <td>Run No.</td> <td></td> <td></td> <td></td> <td></td> <td>Sample Date</td> <td></td> <td></td> <td>Recove</td> <td>ary Date</td> <td></td>	Run No.					Sample Date			Recove	ary Date		
Impinger Imp. Total 8 Total Contents 1 2 3 4 5 6 7 Imp. Total 8 Total Final 1 </td <td>Sample I.D.</td> <td></td> <td></td> <td></td> <td></td> <td>Analyst</td> <td></td> <td></td> <td>Filter</td> <td>lumber</td> <td></td>	Sample I.D.					Analyst			Filter	lumber		
1 2 3 4 5 6 7 Imp.Total 8 Total Contents Image: State												
Final Imitial		1	2	3	4		6	7	Imp.Total	8	Total	
Initial Image: Color Labeled? Gain Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample I.D. Analyst Impinger Color Sample I.D. Analyst Filter Number	Contents									Silica Gel	1000	
Gain Impinger Color Labeled? Impinger Color Labeled? Silica Gel Condition Sealed? Run No. Sample Date Sample I.D. 1 2 3 4 5 6 7 Imp.Total 8 Total Contents	Final											
Impinger Color Labeled? Silica Gel Condition Sealed? Run No.	Initial											
Silica Gel Condition Sealed? Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number Impinger Impinger Silica Gel 1 2 3 4 5 6 7 Imp. Total 8 Total Contents Impinger Labeled? Impinger Impinger <thimpinger< th=""> Impinger<</thimpinger<>	Gain											
Run No. Sample Date Recovery Date Sample I.D. Analyst Filter Number 1 2 3 4 5 6 7 Imp.Total 8 Total Contents 1 2 3 4 5 6 7 Imp.Total 8 Total Final 1	Impinger Col	× _		_		Labeled?					,	
Sample I.D. Analyst Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Impinger	Silica Gel Co	ndition		_		Sealed?						
Sample I.D. Analyst Filter Number Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Impinger	Bun No					Samola Data			Recover	any Date		
Impinger 1 2 3 4 5 6 7 Imp.Total 8 Total Contents Silica Gel Silica Gel Final					,					-		
1 2 3 4 5 6 7 Imp. Total 8 Total Contents Imp. Total Imp. Total Imp. Total 8 Imp. Total 8 Imp. Total Final Imp. Total Imp. Total Imp. Total 8 Imp. Total 8 Imp. Total Initial Imp. Total Imp. Total Imp. Total 8 Imp. Total 8 Gain Imp. Total Imp. Total Imp. Total Imp. Total 8 Imp. Total Impinger Color Labeled? Imp. Total Imp. Total 1 Imp. Total 1 Imp. Total	Sample LD.								1 1001 1	Control Br		
Contents Silca Gel Final Initial Initial Initial Gain Initial Impinger Color Labeled?		1	2	3	4			7	Imp.Total	8	Total	
Initial	Contents								1.39		2024	
Gain Labeled?	Final											
Impinger Color Labeled?	Initial											
	Gain											
Silica Gel Condition Sealed?	Impinger Color Labeled?											
	Silica Gel Co	ndition			Sealed?							

Check COC for Sample IDs of Media Blanks

EPA METHOD 9

VISIBLE EMISSIONS OBSERVATION FORM

CLIENT											W.O.#
SOURCE ADDRESS											
Control De Emission P				Operating	a Mode	1					
Source Hel		arpuon:		ŧ.	-	Height	Relative	a to Obs	erver:		t
Distance fr		Ner:		ŧ.				Observ		Start	End:
Plume Typ										Start	End:
Description			oning, Fa	anning, Lo		Lofting,	or Fum	igating)		Start:	End:
Plume Cold Water Drop		Start: ant (Y)	ND		End			Plume	(Allach	ed. Detect	ed, or N/A)
Plume Bac				Start	-				End:	ed, beins	Background Color:
Point in Plu	me When			Determined	d:	~ 'fro	m stack	erit			
Sky Condit		Start		_	End						Ambient Temperature: Start: F* End: F
Wind Direct Relative Hu		Slart			End: End:						Wind Speed: Start: mph End: mpi Wet Bulb Temp: Start: F* End: F
		_	45	4	_		45	00	15	A	recourrenge dant <u>r</u> ene r
Min. 0	15	30	45	Avg	Min.	0	15	30	45	Avg	
0		<u> </u>			30		<u> </u>	<u> </u>	\vdash		SOURCE SKETCH LAYOUT
1		L			31			L			\cap
2					32						Emission North Arrow
3					33						Point
4					34						
5	+				35		-	<u> </u>			
	+	+	-					├	+		
6	+	<u> </u>	<u> </u>		36	<u> </u>	<u> </u>	<u> </u>	- 1		
7	+	_	L		37		<u> </u>	L			sun
8					38						
9					39						Wind 140°
10					40						
11					41						free and the second sec
12	+	\vdash			42						
	+	 _						-			Sun Direction Line
13	+	-	-		43		-	-	\vdash		Sun Direction Line
14	-	<u> </u>		_	44		<u> </u>	<u> </u>	\vdash		
15					45						
16					46						Highest six minute average:
17					47						
18					48						A six minute average greater than 20% opacity
19					49						occured times.
20	+	-			50		-	<u> </u>	\square		A six minute average greater than 40% opacity
	+	-	-				<u> </u>	<u> </u>	\vdash		
21	+		<u> </u>		51		┝──		1		occured times.
22		-	<u> </u>		52			<u> </u>	\square		Opacity Time: Start: End:
23	_	L	L		53			L			60-Minute Averge:
24					54						
25					55						Observer's Name:
26					56						Certified By: Penn State
27	+	<u> </u>			57			1	\vdash		
			<u> </u>	<u> </u>			-		\vdash		Certification #: Exp. Date:
28			 	<u> </u>	58		-		+	<u> </u>	Signature:Date:
29	1	1	L		59		1	1	I		

Boiler Number One EPA Section 114 Information Request Addendum to Emissions Test Protocol Revision 2

L'Anse Warden Electric Company, LLC. 157 South Main Street L'Anse, Michigan 49946

June 2016

I. Introduction

On May 17, 2016 L'Anse Warden Electric Company ("LWEC") submitted to US EPA, Region 5, via email, a revised stack test protocol in accordance with US EPA, Region 5's Section 114 Request of April 1, 2016. This April 1 request requires LWEC to conduct stack testing for various parameters upon the existing biomass boiler at the LWEC facility in L'Anse, Michigan. On May 25, 2016 LWEC provided notice to US EPA, via email, of its notice of intent to conduct during the week of June 20, 2016. On June 13, 2016 LWEC provided notice to US EPA, via email, of its notice of intent to conduct on July 6 and 7, 2016. US EPA has requested that test runs under the revised protocol commence no earlier than 9:00 AM. LWEC and its testing contractor, Weston Solutions, Inc. will accommodate this request.

In response to the submittal of the revised stack test protocol, US EPA conditioned its approval of the protocol as follows:

To facilitate the performance of the stack test, EPA requests the following parameters be addressed and included in the final testing execution and reporting process. These elements are essential for the acceptability of the test results and this approval is conditioned on LWEC's compliance with these conditions:

- LWEC must operate the creosote treated wood fuel (railroad ties) at a rate of 15 tons per hour (tph), plus or minus one-half ton. Reference Section 2.1.3 in the protocol.
- LWEC must operate the wood chip fuel at a rate of 7.5 tph, plus or minus one-half ton. Reference Section 2.1.3 in the protocol.
- In accordance with Item #10, in the April 1, 2015 Information Request, LWEC
 must collect fifteen separate fuel samples prior to the stack testing. These samples
 must be collected on separate days. Multiple samples cannot be taken in one day.
- 4. During the stack testing, LWEC must not blend or mix the wood chip fuel or the creosote treated wood fuel in the fuel storage facility/bins. The facility must be able to accurately track the hourly addition rate of each fuel into the boiler.
- As a part of the final stack test report, LWEC must include the following information:
- a. Exact location of the stack;
- b. Height of the stack;
- c. Diameter of the stack;
- d. Average exit velocity of the stack (at exit, not sampling port); and
- e. Average exit temperature of the stack (at exit, not sampling port).

To clarify the capability of the LWEC facility to meet US EPA's requirements as outlined above, LWEC submits this addendum to the previously submitted protocol.

II. Railroad Tie and Wood Chip Fuel Feed Rates

After several visits to the LWEC facility and reviewing LWEC's prior Section 114 responses, US EPA should understand that LWEC does not have the ability to separately weigh and feed various approved fuels on an hourly basis. (LWEC's permit allows for fuel feed averaging on a 24 hour basis.)

In order to accommodate US EPA's request that stack testing be conducted while railroad ties are fed to the boiler at the rate of 15 tons/hour and wood fed at the rate of 7.5 tons/hour, LWEC proposes,, prior to the testing, to grind and mix railroad tie and wood at a 2 to 1 ratio. Weights for this fuel mixture will be verified by weighing the fuels after grinding using a front-end loader and its weighometer. The 2 to 1 ratio will be established by mixing 2 loader buckets of ties with one loader bucket of wood.¹ The prepared railroad tie and wood mixture will be staged in the facility's fuel storage building for feeding to the boiler while stack testing is being conducted. The mixed material will be loaded to the 3 storage bins at the power plant. Hourly rates of the mixture as feed to the boiler will be calibrated in advance of the test runs. Actual feed rates may vary from a nominal rate of the mixed fuel of 22.5 tons/hour in order to maintain the plant within the MW rate range discussed in Section V (below).

However, LWEC recognizes that US EPA has requested that LWEC to not mix wood and railroad ties in the storage bins at the power plant. US EPA has requested that the LWEC boiler operator monitor the speed of the drag chain or "rake" from each fuel bin with separately sorted fuels in order to achieve a wood and railroad tie feed rate totaling 22.5 tons/hour at a tie to wood ratio of 2 to 1. LWEC wishes to clarify that the boiler operator does not have the ability to separately weigh and feed the various fuels on an hourly basis. The main fuel belt scale weighs mixed fuel (ties and wood chips). The operator does control the speed and height of the three reclaimer rakes assigned to each fuel bin. The rake speed and elevation are indicators for fuel feed rates, but they are not definitive for actual feed rates. The rakes draw fuel from the three fuel bin areas which typically have some overlapping or sloughing of fuel into adjoining bins.

For purposes of complying with US EPA's request to separately measure rates of fuel feed for wood and railroad ties during the course of the stack test runs, LWEC will adopt the following procedure:

- An indicator pointer will be established adjacent to where the three cables that raise and lower the rakes are located on the south side of the Fuel Storage Building.
- At times that will be recorded, a paint mark will be put on each cable at the indicator, signifying the elevation of the rake at that time.

¹ LWEC intends to have a professional engineer audit the mixing of the railroad ties and wood to verify the 2 to 1 ratio mixture.

- Individual bins will then be filled with the separate fuel types, with the tonnage of fuel added to each bin recorded. As the fuel is added, the rakes are raised up toward the top of each pile.
- 4. Stack testing will proceed for the specified run time.
- When the rakes once again reach the elevation where they started, signified by the paint mark on the cable re-aligning with the indicator, the time will be recorded.
- The known tonnage added to the bin will then be divided by the difference in times to yield a tons per hour for each bin for the testing day.
- 7. The above procedure will be repeated for the duration of the testing.

The fuel tonnage weights as received at the fuel bins will be determined based upon the fuel weights determined at the Fuel Aggregation Facility before delivery to the power plant and boiler.

While the above process will provide a reasonably accurate measurement of the tonnage of each fuel fed to the boiler over time, LWEC wishes to emphasize that its boiler operators must use their best judgments with regard to the necessary rake speed needed to approximate a feed rate of 15 tons per hour for railroad ties and 7.5 tons per hour for wood. As the operators cannot directly measure the weight of each fuel as it is added to the boiler, some variation from these feed rates may result.

III. Fuel Sample Collection

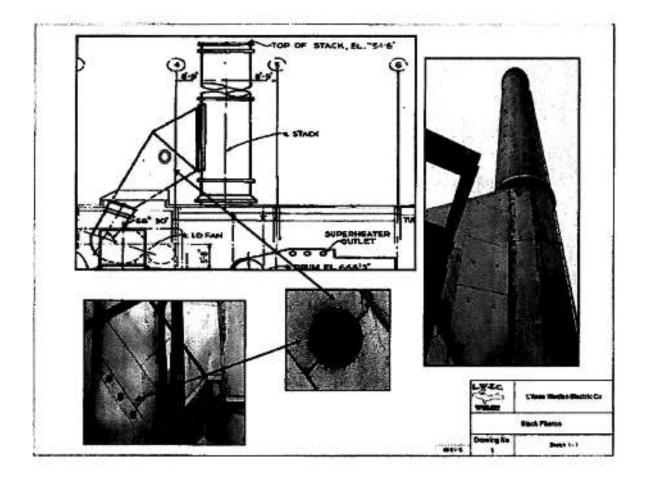
As specified in the previously submitted Emission Test Protocol, Rev.1, May 2016, LWEC will collect fuel samples in accordance the procedures specified in 40 CFR 63.7521. However, due to safety and operational necessity, the belt will not be stopped to collect fuel samples; fuel samples will be collected where they drop on to the belt. Analysis for the requested parameters will use the methods specified at page 29 of the May 2016 submittal except that EPA 5050/9056 will be used for chlorine concentration analysis.

LWEC has obtained approval from MISO for a scheduled maintenance outage to conduct routine maintenance on the boiler and maintenance on the turbine. The request for approval was first submitted in January of 2015 and a revised request was submitted in January of 2016. Under the MISO approval, the outage is schedule to begin on June 5, 2016 and to end on June 15, 2016. Because of the scheduled outage, LWEC has already commenced sample collection to assure that 15 days of sampling can be completed prior to the scheduled stack test.

IV. Stack Exit Accessibility

LWEC does not routinely access the top of the stack for any reason. In February of 2016 an independent firm conducted an inspection and noted repairs were needed on the upper portion of the stack and that access to the top of the stack could not be obtained consistent with OSHA requirements for worker safety. As a consequence, direct measurements of stack gas exit velocity and stack gas temperature at the exit from the stack cannot be obtained. LWEC's consultant, Weston Solutions advises that measuring temperature at the stack inlet duct (see Figure No.1) is the only safe access point and will be representative of exit temperature considering that the

stack is gunite lined and well insulated for a June test event. Please note this location is downstream of the sample ports shown in the 114 Test Protocol. Weston Solutions also advises that it can calculate the stack exit velocity based upon measurements at the sampling port and other relevant parameters. A calculation for stack exit velocity will be included in the final test report.


V. Boiler Capacity

1.0

LWEC wishes to clarify the "maximum rate of electricity production" under representative operating conditions for the stack test event. LWEC's gross annualized MW rate for years 2012 to 2015 ranged from a high of 16.37 to a low of 15.92. LWEC intends to operate within this range during the stack testing event.

L'Anse Warden H	Electric Company	, LLC
By: at -		
Its: Share	WALSH	CED
Date: 21 7		

Figure 1

.

END OF REPORT

THIS PAGE INTENTIONALLY LEFT BLAN