


# **Online Source Water Quality Monitoring**

For Water Quality Surveillance and Response Systems



### **Disclaimer**

The Water Security Division of the Office of Ground Water and Drinking Water of the EPA has reviewed and approved this document for publication. This document does not impose legally binding requirements on any party. The information in this document is intended solely to recommend or suggest and does not imply any requirements. Neither the United States Government nor any of its employees, contractors or their employees make any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use of any information, product, or process discussed in this document, or represents that its use by such party would not infringe on privately owned rights. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Version History: This 2019 version is the second release of the document, originally published in September 2016. This release includes updated component names (Enhanced Security Monitoring was changed to Physical Security Monitoring, Consequence Management to Water Contamination Response and Source Water Monitoring to Online Water Quality Monitoring in Source Water), an updated version of Figure 1.1 that reflects the component name changes and includes the Advanced Metering Infrastructure component, updates to figures to reflect name changes, updated target capabilities, an updated Glossary, and updated links to external resources.

Questions concerning this document should be addressed to <u>WQ\_SRS@epa.gov</u> or the following contacts:

Steve Allgeier EPA Water Security Division 26 West Martin Luther King Drive Mail Code 140 Cincinnati, OH 45268 (513) 569-7131 Allgeier.Steve@epa.gov

or

Matt Umberg EPA Water Security Division 26 West Martin Luther King Drive Mail Code 140 Cincinnati, OH 45268 (513) 569-7357 Umberg.Matt@epa.gov

### **Acknowledgements**

The document was developed by the EPA Water Security Division, with additional support provided under EPA contract EP-C-15-012. The following individuals contributed to the development of this document:

- Joel Allen, EPA, Office of Research and Development
- Steve Allgeier, EPA, Water Security Division
- Erin Cummings, Jacobs
- Jennifer Liggett, Jacobs
- Alan Lindquist, EPA, Office of Research and Development
- Christopher Macintosh, Jacobs
- Kenneth Thompson, Jacobs
- Matt Umberg, EPA, Water Security Division

Peer review of this document was provided by the following individuals:

- Alison Aminto, Philadelphia Water Department
- Kelly Anderson, Philadelphia Water Department
- Kevin R. Gertig, City of Fort Collins Utilities
- Terra Haxton, EPA, National Homeland Security Research Center
- Richard Lieberman, EPA, Standards and Risk Management Division
- Kevin Linder, Aurora Water
- Howard Rubin, EPA, Drinking Water Protection Division
- Debabrata Sahoo, Woolpert Inc.
- Rick Scott, Seattle Public Utilities
- David Travers, EPA, Water Security Division
- Tom Waters, EPA, Standards and Risk Management Division

# **Table of Contents**

| LIST OF FIGURES                                                                                                                                                  | II    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| LIST OF TABLES                                                                                                                                                   | ••••• |
| ABBREVIATIONS                                                                                                                                                    | I     |
| SECTION 1: INTRODUCTION                                                                                                                                          |       |
| 1.1 OVERVIEW OF ONLINE WATER QUALITY MONITORING IN SOURCE WATER                                                                                                  |       |
| 1.2 Purpose and Overview of this Document                                                                                                                        |       |
| SECTION 2: FRAMEWORK FOR DESIGNING ONLINE MONITORING SYSTEMS                                                                                                     | 6     |
| 2.1 Establish Design Goals                                                                                                                                       |       |
| 2.2 Establish Performance Objectives                                                                                                                             |       |
| 2.3 CONDUCT A RISK ASSESSMENT                                                                                                                                    | 10    |
| 2.4 DESIGN THE SYSTEM                                                                                                                                            | 13    |
| SECTION 3: MONITORING LOCATIONS                                                                                                                                  | 16    |
| 3.1 MONITORING LOCATIONS TO SUPPORT TREATMENT PROCESS OPTIMIZATION                                                                                               |       |
| 3.2 MONITORING LOCATIONS TO DETECT CONTAMINATION INCIDENTS                                                                                                       |       |
| 3.3 MONITORING LOCATIONS TO MONITOR THREATS TO LONG-TERM WATER QUALITY                                                                                           | 20    |
| SECTION 4: MONITORING PARAMETERS                                                                                                                                 | 22    |
| 4.1 USEFUL MONITORING PARAMETERS                                                                                                                                 |       |
| 4.2 PARAMETER SELECTION                                                                                                                                          | 24    |
| SECTION 5: MONITORING STATIONS                                                                                                                                   |       |
| 5.1 INSTRUMENTATION                                                                                                                                              |       |
| 5.2 SAMPLING                                                                                                                                                     |       |
| 5.3 POWER SUPPLY AND DISTRIBUTION                                                                                                                                |       |
| 5.4 COMMUNICATIONS                                                                                                                                               |       |
| 5.5 PACKAGING                                                                                                                                                    |       |
| SECTION 6: INFORMATION MANAGEMENT AND ANALYSIS                                                                                                                   |       |
| 6.1 ANALYSIS AND VISUALIZATION TECHNIQUES                                                                                                                        |       |
| 6.2 INFORMATION MANAGEMENT SYSTEM ARCHITECTURE                                                                                                                   |       |
| 6.3 INFORMATION MANAGEMENT SYSTEM REQUIREMENTS                                                                                                                   |       |
| SECTION 7: INVESTIGATION AND RESPONSE PROCEDURES                                                                                                                 |       |
| 7.1 PROCEDURES FOR INVESTIGATION OF AND RESPONSE TO OWQM-SW ALERTS<br>7.2 PROCEDURES FOR INVESTIGATION OF AND RESPONSE TO LONG-TERM SOURCE WATER QUALITY CHANGES |       |
| 7.2 PROCEDURES FOR INVESTIGATION OF AND RESPONSE TO LONG-TERM SOURCE WATER QUALITY CHANGES<br>7.3 IMPLEMENTATION OF OWQM-SW PROCEDURES                           |       |
|                                                                                                                                                                  |       |
| SECTION 8: EXAMPLE OF MONITORING DESIGN                                                                                                                          |       |
| 8.1 Design Approach<br>8.2 Monitoring Location Selection                                                                                                         |       |
| 8.3 MONITORING EDUCATION SELECTION                                                                                                                               |       |
| 8.4 MONITORING STATION DESIGN                                                                                                                                    |       |
| 8.5 INFORMATION MANAGEMENT AND ANALYSIS                                                                                                                          |       |
| 8.6 INVESTIGATION AND RESPONSE PROCEDURES                                                                                                                        | 78    |
| Section 9: Case Studies                                                                                                                                          | 80    |
| 9.1 GREENVILLE WATER                                                                                                                                             |       |
| 9.2 CITY OF FORT COLLINS UTILITIES                                                                                                                               | 81    |
| 9.3 CLERMONT COUNTY WATER RESOURCES DIVISION                                                                                                                     | 83    |
| 9.4 WEST VIRGINIA AMERICAN WATER                                                                                                                                 |       |
| 9.5 BRATISLAVA WATER COMPANY                                                                                                                                     |       |
| 9.6 Susquehanna River Basin Commission Early Warning System                                                                                                      |       |
| 9.7 RIVER ALERT INFORMATION NETWORK                                                                                                                              |       |
| 9.8 PHILADELPHIA WATER DEPARTMENT                                                                                                                                |       |
| RESOURCES                                                                                                                                                        |       |
| REFERENCES                                                                                                                                                       | 104   |

# List of Figures

| FIGURE 1-2. EXAMPLE SCHEMATIC OF OWQM-SW       4         FIGURE 1-3. MONITORING LOCATION VS. MONITORING STATION       4         FIGURE 2-1. ONLINE MONITORING SYSTEM DESIGN ELEMENTS       13         FIGURE 2-2. ONLINE MONITORING SYSTEM DESIGN ELEMENTS       13         FIGURE 3-1. MONITORING LOCATION SELECTED TO SUPPORT TREATMENT PROCESS OPTIMIZATION       17         FIGURE 3-2. A SINGLE UPSTREAM MONITORING LOCATION TO MONITOR MULTIPLE SW THREATS       20         FIGURE 3-3. MULTIPLE UPSTREAM MONITORING LOCATIONS TO MONITOR MULTIPLE SW THREATS       20         FIGURE 5-1. FUNCTIONAL BLOCK DLAGRAM OF A MONITORING STATION       37         FIGURE 6-1. TIME-SERIES PLOTS AND THRESHOLDS FOR TREATMENT PROCESS OPTIMIZATION       37         FIGURE 6-3. OWQM-SW DISPLAY SHOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION.       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD.       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       47         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW LIPORTATION PROCESS FLOW DIAGRAM.       57         FIGURE 6-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM.       57         FIGURE 6-2. EXAMPLE OF AN OWQM-SW ALERT                                    | FIGURE 1-1. INCORPORATION OF OWQM-SW INTO AN SRS                                       | 2  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----|
| FIGURE 2-1. ONLINE MONITORING IMPLEMENTATION FRAMEWORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FIGURE 1-2. EXAMPLE SCHEMATIC OF OWQM-SW                                               | 4  |
| FIGURE 2-2. ONLINE MONITORING SYSTEM DESIGN ELEMENTS.       13         FIGURE 3-1. MONITORING LOCATION SELECTED TO SUPPORT TREATMENT PROCESS OPTIMIZATION       17         FIGURE 3-2. A SINGLE UPSTREAM MONITORING LOCATION TO MONITOR MULTIPLE SW THREATS       19         FIGURE 3-3. MULTIPLE UPSTREAM MONITORING LOCATIONS TO MONITOR MULTIPLE SW THREATS       20         FIGURE 5-1. FUNCTIONAL BLOCK DIAGRAM OF A MONITORING STATION       32         FIGURE 6-1. TIME-SERIES PLOTS AND THRESHOLDS FOR TREATMENT PROCESS OPTIMIZATION       37         FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FIGURE 1-3. MONITORING LOCATION VS. MONITORING STATION                                 | 4  |
| FIGURE 3-1. MONITORING LOCATION SELECTED TO SUPPORT TREATMENT PROCESS OPTIMIZATION       17         FIGURE 3-2. A SINGLE UPSTREAM MONITORING LOCATION TO MONITOR MULTIPLE SW THREATS       20         FIGURE 3-3. MULTIPLE UPSTREAM MONITORING LOCATIONS TO MONITOR MULTIPLE SW THREATS       20         FIGURE 3-4. MONITORING LOCATIONS TO MONITOR THREATS TO LONG-TERM WATER QUALITY       21         FIGURE 5-1. FUNCTIONAL BLOCK DIAGRAM OF A MONITORING STATION       32         FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS.       39         FIGURE 6-3. OWQM-SW DISPLAY SIUOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION.       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       47         FIGURE 7-1. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-2. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       57         FIGURE 7-3. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-4. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       57         FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER      <      | FIGURE 2-1. ONLINE MONITORING IMPLEMENTATION FRAMEWORK                                 | 6  |
| FIGURE 3-2. A SINGLE UPSTREAM MONITORING LOCATION TO MONITOR MULTIPLE SW THREATS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIGURE 2-2. ONLINE MONITORING SYSTEM DESIGN ELEMENTS                                   | 13 |
| FIGURE 3-3. MULTIPLE UPSTREAM MONITORING LOCATIONS TO MONITOR MULTIPLE SW THREATS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIGURE 3-1. MONITORING LOCATION SELECTED TO SUPPORT TREATMENT PROCESS OPTIMIZATION     | 17 |
| FIGURE 3-4. MONITORING LOCATIONS TO MONITOR THREATS TO LONG-TERM WATER QUALITY       21         FIGURE 5-1. FUNCTIONAL BLOCK DIAGRAM OF A MONITORING STATION       32         FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR TREATMENT PROCESS OPTIMIZATION       32         FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS.       39         FIGURE 6-3. OWQM-SW DISPLAY SHOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION.       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD.       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       47         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-2. EXAMPLE OF A DEDICATED OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-3. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       57         FIGURE 7-4. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       57         FIGURE 7-5. EXAMPLE OF AND OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM      5          | FIGURE 3-2. A SINGLE UPSTREAM MONITORING LOCATION TO MONITOR MULTIPLE SW THREATS       | 19 |
| FIGURE 5-1. FUNCTIONAL BLOCK DIAGRAM OF A MONITORING STATION       32         FIGURE 6-1. TIME-SERIES PLOTS AND THRESHOLDS FOR TREATMENT PROCESS OPTIMIZATION.       37         FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS.       39         FIGURE 6-3. OWQM-SW DISPLAY SHOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION.       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD.       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       57         FIGURE 7-2. EXAMPLE OF A DEDICATED OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE OF A DEDICATED OWQM-SW ALERT NOTIFICATION MANAGEMENT SYSTEM       47         FIGURE 7-4. EXAMPLE OF A DEDICATED OWQM-SW ALERT INVESTIGATION MANAGEMENT SYSTEM       57         FIGURE 7-2. EXAMPLE OF A DEDICATED OWQM-SW ALERT NON PROCESS FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE OF A DEDICATED OWQM-SW ALERT NON PROCESS FLOW DIAGRAM       57         FIGURE 7-4. SCAMPLE FOOR OWQM-SW ALERT NONTORING NOT RESONT TRE | FIGURE 3-3. MULTIPLE UPSTREAM MONITORING LOCATIONS TO MONITOR MULTIPLE SW THREATS      | 20 |
| Figure 6-1. Time-Series PLots and Thresholds for Treatment Process Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIGURE 3-4. MONITORING LOCATIONS TO MONITOR THREATS TO LONG-TERM WATER QUALITY         | 21 |
| Figure 6-2. Time-Series PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS39         Figure 6-3. OWQM-SW DISPLAY SHOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIGURE 5-1. FUNCTIONAL BLOCK DIAGRAM OF A MONITORING STATION                           | 32 |
| FIGURE 6-3. OWQM-SW DISPLAY SHOWING ALERT STATUS AND TIME-SERIES DATA FOR AN OWQM-SW LOCATION.       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       45         ARCHITECTURE       45         FIGURE 7-1. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-2. EXAMPLE OF A NOWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-3. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE       60         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA       81         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWNING STATION       87         FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY MOWINTORING STATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION       80         FIGUR                                                                       | FIGURE 6-1. TIME-SERIES PLOTS AND THRESHOLDS FOR TREATMENT PROCESS OPTIMIZATION        | 37 |
| SW LOCATION       40         FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       45         ARCHITECTURE       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE       60         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA       81         FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION       85         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA       86         FIGURE 9-5. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION                                                                                       | FIGURE 6-2. TIME-SERIES PLOTS AND THRESHOLDS FOR DETECTION OF CONTAMINATION INCIDENTS. | 39 |
| FIGURE 6-4. TEXT MESSAGE AND DASHBOARD ALERT NOTIFICATIONS       41         FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD       44         FIGURE 6-6. GEOSPATIAL PRESENTATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       47         ARCHITECTURE       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE oF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER       73         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA       81         FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION       85         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA       86         FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION       88         FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION </td <td></td> <td></td>                                                |                                                                                        |    |
| FIGURE 6-5. EXAMPLE PLOTS OF MONTHLY AVERAGE AND YEARLY AVERAGE FOR SOURCE WATER TOC       43         FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD       44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA       45         ARCHITECTURE       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE       60         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER MONITORING STATION       85         FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION       85         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA       86         FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION.       88         FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITO                                                                       |                                                                                        |    |
| 43<br>FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD44<br>FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA<br>ARCHITECTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |    |
| FIGURE 6-6. GEOSPATIAL PRESENTATION SHOWING THE CHANGE IN TOC OVER A 10-YEAR PERIOD44         FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA         ARCHITECTURE       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE       60         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA       81         FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION       85         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA       86         FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION       88         FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION       89         FIGURE 9-9. RAIN MONITORING STATION       90         FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS       91         FIG                                                                                             |                                                                                        |    |
| FIGURE 6-7. OWQM-SW INFORMATION MANAGEMENT AS AN EXTENSION OF AN EXISTING SCADA         ARCHITECTURE       45         FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM       47         FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM       53         FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM       57         FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE       60         FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER       70         FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER       73         FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS       80         FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA       81         FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION       85         FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA       86         FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION       87         FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION       87         FIGURE 9-7. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION       89         FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION       90         FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS       91         FIGURE 9-11. RAIN INTERACTIVE DISPLAY       92                                                                                                          |                                                                                        |    |
| ARCHITECTURE45FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM47FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM53FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM57FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE60FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER MONITORING STATION87FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION90FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                    |                                                                                        | 44 |
| FIGURE 6-8. EXAMPLE OF A DEDICATED OWQM-SW INFORMATION MANAGEMENT SYSTEM47FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM53FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM57FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE60FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-9. RAIN MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |    |
| FIGURE 7-1. EXAMPLE OF AN OWQM-SW ALERT INVESTIGATION PROCESS FLOW DIAGRAM53FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM57FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE60FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |    |
| FIGURE 7-2. EXAMPLE TREATMENT OPTIMIZATION PROCEDURE FLOW DIAGRAM57FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE60FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |    |
| FIGURE 7-3. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE60FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |    |
| FIGURE 8-1. LOCATION OF HIGH-PRIORITY SW THREATS FOR ANYTOWN WATER.70FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |    |
| FIGURE 8-2. MONITORING LOCATIONS FOR ANYTOWN WATER73FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |    |
| FIGURE 9-1. GREENVILLE WATER OWQM-SW LOCATIONS80FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA81FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |    |
| FIGURE 9-2. EXAMPLE OF GREENVILLE WATER SCADA SYSTEM SCREEN FOR OWQM-SW DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |    |
| FIGURE 9-3. WEST VIRGINIA AMERICAN WATER MONITORING STATION85FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |    |
| FIGURE 9-4. SCREENSHOT OF WEST VIRGINIA AMERICAN WATER OWQM-SW DATA86FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |    |
| FIGURE 9-5. BRATISLAVA WATER COMPANY MONITORING STATION.87FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION.88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION.89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS.91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES.93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |    |
| FIGURE 9-6. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION87FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION88FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION89FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |    |
| FIGURE 9-7. SUSQUEHANNA RIVER BASIN REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |    |
| FIGURE 9-8. SUSQUEHANNA RIVER BASIN COMMISSION MONITORING STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIGURE 9-0. BRATISLAVA WATER COMPANY OWQM-SW ALERT NOTIFICATION                        | 8/ |
| FIGURE 9-9. RAIN MONITORING STATION90FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS91FIGURE 9-11. RAIN INTERACTIVE DISPLAY92FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES93FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIGURE 9-7. SUSQUEHANNA KIVER BASIN KEGION                                             | 88 |
| FIGURE 9-10. OVERVIEW OF RAIN MONITORING LOCATIONS       91         FIGURE 9-11. RAIN INTERACTIVE DISPLAY       92         FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES       93         FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE       95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIGURE 9-8. SUSQUEHANNA KIVER BASIN COMMISSION MONITORING STATION                      | 89 |
| FIGURE 9-11. RAIN INTERACTIVE DISPLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |    |
| FIGURE 9-12. OVERVIEW OF PWD'S SOURCE WATERSHEDS AND DRINKING WATER INTAKES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |    |
| FIGURE 9-13. EXAMPLE OF OWQM-SW DATA VISUALIZATION ON EWS HOMEPAGE95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIGURE 9-13. EXAMPLE OF OW QWI-SW DATA VISUALIZATION ON EWS HOMEFAGE                   |    |

# List of Tables

| TABLE 2-1. SCORING CONSIDERATIONS FOR RISK ASSESSMENT PARAMETERS BY DESIGN GOAL          |
|------------------------------------------------------------------------------------------|
| TABLE 4-1. OVERVIEW OF MONITORING PARAMETERS    22                                       |
| TABLE 4-2. MONITORING PARAMETERS THAT SUPPORT TREATMENT PROCESS OPTIMIZATION             |
| TABLE 4-3. MONITORING PARAMETERS THAT SUPPORT DETECTION OF CONTAMINATION INCIDENTS 26    |
| TABLE 4-4. MONITORING PARAMETERS THAT SUPPORT MONITORING OF LONG-TERM WATER QUALITY      |
|                                                                                          |
| TABLE 5-1. COMPARISON OF KEY ATTRIBUTES OF TWO SAMPLE MEASUREMENT OPTIONS       33       |
| TABLE 6-1. STATISTICAL ANALYSIS TECHNIQUES FOR CHARACTERIZING LONG-TERM WATER QUALITY    |
|                                                                                          |
| TABLE 6-2. EXAMPLES OF OWQM-SW INFORMATION MANAGEMENT FUNCTIONAL REQUIREMENTS 49         |
| TABLE 6-3. EXAMPLES OF OWQM-SW INFORMATION MANAGEMENT SYSTEM TECHNICAL                   |
| REQUIREMENTS                                                                             |
| TABLE 7-1. EXAMPLE OWQM-SW ALERT INVESTIGATION PROCESS DESCRIPTION                       |
| TABLE 7-2. TYPICAL INFORMATION RESOURCES USEFUL DURING THE INVESTIGATION OF AN OWOM-SW   |
| ALERT                                                                                    |
| TABLE 7-3. COMMON CAUSES OF INVALID AND VALID OWQM-SW ALERTS                             |
| TABLE 7-4. EXAMPLE TREATMENT PROCESS OPTIMIZATION PROCEDURE DESCRIPTION                  |
| TABLE 7-5. EXAMPLE SOURCE WATER CONTAMINATION INCIDENT RESPONSE DECISION TREE            |
| DESCRIPTION                                                                              |
| TABLE 7-6. EXAMPLE ROLES AND RESPONSIBILITIES DURING OWQM-SW ALERT INVESTIGATIONS AND    |
| TREATMENT OPTIMIZATION                                                                   |
| TABLE 7-7. EXAMPLE ROLES AND RESPONSIBILITIES DURING RESPONSE TO SOURCE WATER            |
| CONTAMINATION                                                                            |
| TABLE 7-8. TYPICAL INFORMATION RESOURCES USEFUL TO THE INVESTIGATION OF SUSTAINED CHANGE |
| IN SOURCE WATER QUALITY                                                                  |
| TABLE 7-9. EXAMPLE ROLES AND RESPONSIBILITIES FOR MONITORING THREATS TO LONG-TERM WATER  |
| QUALITY                                                                                  |
| TABLE 8-1. HIGH-PRIORITY SW THREATS OF SOURCE WATER CONTAMINATION FOR ANYTOWN WATER      |
|                                                                                          |
| TABLE 8-2. HIGH-PRIORITY SW THREATS TO LONG-TERM SOURCE WATER QUALITY FOR ANYTOWN        |
| WATER                                                                                    |
| TABLE 8-3. PARAMETERS SELECTED TO SUPPORT TREATMENT PROCESS OPTIMIZATION FOR ANYTOWN     |
| WATER                                                                                    |
| TABLE 8-4. PARAMETER SELECTED TO DETECT CONTAMINATION INCIDENTS AND MONITOR THREATS TO   |
| LONG-TERM WATER QUALITY FOR ANYTOWN WATER75                                              |
| TABLE 8-5. FINAL OWQM-SW STATION DESIGNS FOR ANYTOWN WATER                               |
| TABLE 9-1. FORT COLLINS UTILITIES MONITORING STATIONS                                    |
| TABLE 9-2. CLERMONT COUNTY WATER RESOURCES DIVISION MONITORING STATIONS                  |

# **Abbreviations**

|                              | A newslar Detection Contern                                                   |
|------------------------------|-------------------------------------------------------------------------------|
| ADS                          | Anomaly Detection System<br>American National Standards Institute             |
| ANSI                         |                                                                               |
| ASME-ITI                     | American Society of Mechanical Engineers Innovative Technologies Institute    |
| AWWA                         | American Water Works Association                                              |
| CERCLIS                      | Comprehensive Environmental Response, Compensation, and Liability Information |
| CIO                          | System<br>Chief Information Officer                                           |
| CIO                          | Climate Resilience Evaluation and Awareness Tool                              |
| CREAT                        |                                                                               |
| DBP<br>DO                    | Disinfection Byproduct                                                        |
| DOC                          | Dissolved Oxygen<br>Dissolved Organic Carbon                                  |
| DWMAPS                       | Drinking Water Mapping Application to Protect Source Waters                   |
| ECHO                         | Enforcement and Compliance History Online                                     |
| EPA                          | United States Environmental Protection Agency                                 |
| ERP                          | Emergency Response Plan                                                       |
| EWS                          | Early Warning System                                                          |
| GAC                          | Granular Activated Carbon                                                     |
| GIS                          | Geographic Information System                                                 |
| HAB                          | Harmful Algal Bloom                                                           |
| HMI                          | Human Machine Interface                                                       |
| IT                           | Information Technology                                                        |
| LIMS                         | Laboratory Information Management System                                      |
| NEMA                         | National Electrical Manufacturers Association                                 |
| NH <sub>3</sub>              | Ammonia                                                                       |
| NH <sub>4</sub> <sup>+</sup> | Ammonium                                                                      |
| NO <sub>3</sub>              | Nitrate                                                                       |
| NO <sub>2</sub>              | Nitrite                                                                       |
| NPDES                        | National Pollutant Discharge Elimination System                               |
| NTU                          | Nephelometric turbidity units                                                 |
| NWIS                         | National Water Information System                                             |
| ORP                          | Oxidation-Reduction Potential                                                 |
| OWQM                         | Online Water Quality Monitoring                                               |
| OWQM-SW                      | Online Water Quality Monitoring in Source Water                               |
| PAC                          | Powdered Activated Carbon                                                     |
| PLC                          | Programmable Logic Controller                                                 |
| PWD                          | Philadelphia Water Department                                                 |
| RAIN                         | River Alert Information Network                                               |
| RCRAInfo                     | Resource Conservation and Recovery Act Information                            |
| S&A                          | Sampling and Analysis                                                         |
| SCADA                        | Supervisory Control and Data Acquisition                                      |
| SDWA                         | Safe Water Drinking Act                                                       |
| SRBC                         | Susquehanna River Basin Commission                                            |
| SRS                          | Water Quality Surveillance and Response System                                |
| SW Threat                    | Source Water Threat                                                           |
| SWC                          | Source Water Collaborative                                                    |
| TOC                          | Total Organic Carbon                                                          |
| TRI                          | Toxic Release Inventory                                                       |
| TSCA                         | Toxic Substances Control Act                                                  |
|                              |                                                                               |

| USGS | United States Geological Survey    |
|------|------------------------------------|
| UV   | Ultra-violet                       |
| VSAT | Vulnerability Self-Assessment Tool |
| WCR  | Water Contamination Response       |
| WVAW | West Virginia American Water       |

### **Section 1: Introduction**

**Source water**<sup>1</sup> is water from natural resources (e.g., aquifers, lakes, rivers, and streams) that is treated to produce drinking water for a community. Online Water Quality Monitoring in Source Water (OWQM-SW), as defined in this document involves the use of online *water quality instruments* for *real-time* measurement of water quality in a source water. The understanding gained through OWQM-SW enables drinking water utilities to more efficiently treat the source water, identify significant changes in water quality, implement appropriate treatment strategies, and take actions to protect the source water for its intended use.

OWQM-SW can be implemented as a stand-alone monitoring program, or it can be incorporated into a *Water Quality Surveillance and Response System* (SRS). An SRS is a framework developed by the United States Environmental Protection Agency (EPA) to support monitoring and management of water quality from source to tap. The system consists of one or more *components* that provide information to guide drinking water utility operations and enhance a utility's ability to quickly detect and respond to water quality changes. An SRS overview can be found in the *SRS Primer*. Figure 1-1 illustrates the manner in which OWQM-SW can be integrated into an SRS.

The design of an SRS is flexible and can include any combination of components shown in Figure 1-1. However, it is recommended that all SRS designs include at least one surveillance component and basic capabilities for *Sampling and Analysis* (S&A) and *Water Contamination Response* (WCR). S&A is important because the surveillance components of an SRS, including OWQM-SW, typically provide only a general indication of a potential water quality problem; S&A establishes capabilities for confirming or ruling out specific contaminants or contaminant classes. WCR establishes procedures and relationships with response partners for responding to serious water quality problems such as contamination.

The guidance provided in this document treats OWQM-SW as an application of the **Online Water Quality Monitoring** (OWQM) component within an SRS. This allows many of the elements of an SRS, such as **information management systems**, visualization tools, S&A capabilities, and contamination incident response plans, to be leveraged to support OWQM-SW operations. Furthermore, there is a substantial body of SRS guidance that can support the design of OWQM-SW. These resources are cited throughout the document, where applicable.

<sup>&</sup>lt;sup>1</sup> Words in bold italic font are terms defined in the Glossary at the end of this document.

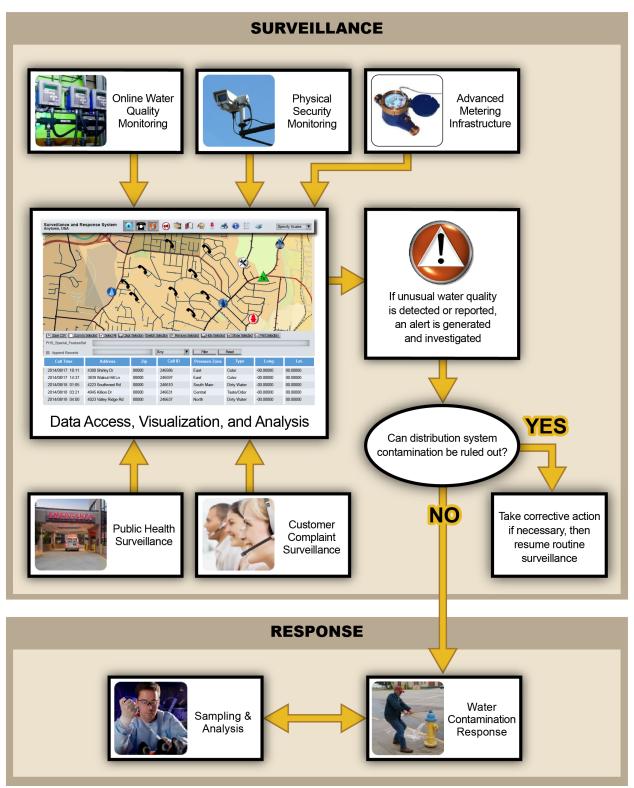



Figure 1-1. Incorporation of OWQM-SW into an SRS

### 1.1 Overview of Online Water Quality Monitoring in Source Water

Treatment plants are designed and operated to treat contaminants known to occur in source water, comply with drinking water standards, and meet customer expectations. Unanticipated changes in quality or the

presence of unusual contaminants in source water can adversely impact the ability of a utility to meet these objectives. OWQM-SW can improve a utility's ability to detect variations in source water quality.

OWQM-SW involves the measurement of various water quality parameters in source water or watersheds. A *monitoring location* is the site in a waterbody where water is sampled for measurement. Monitoring locations are selected relative to *control points*, which are locations where a treatment process can be modified (e.g., addition of pretreatment chemicals) or a response action can be implemented (e.g., closing an intake). *Monitoring stations* are installed at or near monitoring locations and consist of online water quality instruments that measure parameters and communications equipment that transmits data to a central location, such as a utility *control center*. A schematic of an example OWQM-SW system is shown in **Figure 1-2**.

#### REASONS TO IMPLEMENT ONLINE WATER QUALITY MONITORING IN SOURCE WATER

- Provide information to facilitate protection of the public water supply for all intended uses
- Observe long-term trends in source water quality to prepare for future challenges or regulations
- Detect and respond to contamination incidents
- Optimize treatment processes to improve finished water quality and reduce costs
- Develop information that supports regulatory compliance
- Investigate and identify pollution sources and potentially responsible parties

The physical location where the monitoring station is installed may not be the same as the monitoring location. For example, source water can be pumped from a monitoring location to a monitoring station installed at a different site. **Figure 1-3** shows a monitoring station installed at the monitoring location (Exhibit A) and a monitoring station installed away from the monitoring location (Exhibit B).

The scale of an OWQM-SW system can extend from an individual drinking water utility monitoring at its treatment plant intake to systems that monitor an entire watershed. The latter typically involve multiple organizations to provide coverage of a large area (e.g., an entire watershed or river basin) and share the cost required to install, operate, and maintain the system. Benefits of a watershed-scale OWQM-SW system include the ability to achieve extensive geographic coverage and maintain more monitoring locations than could be maintained by any single organization. However, such systems require sustained commitment by all partners and can present challenges if partner organizations decide to end their support.

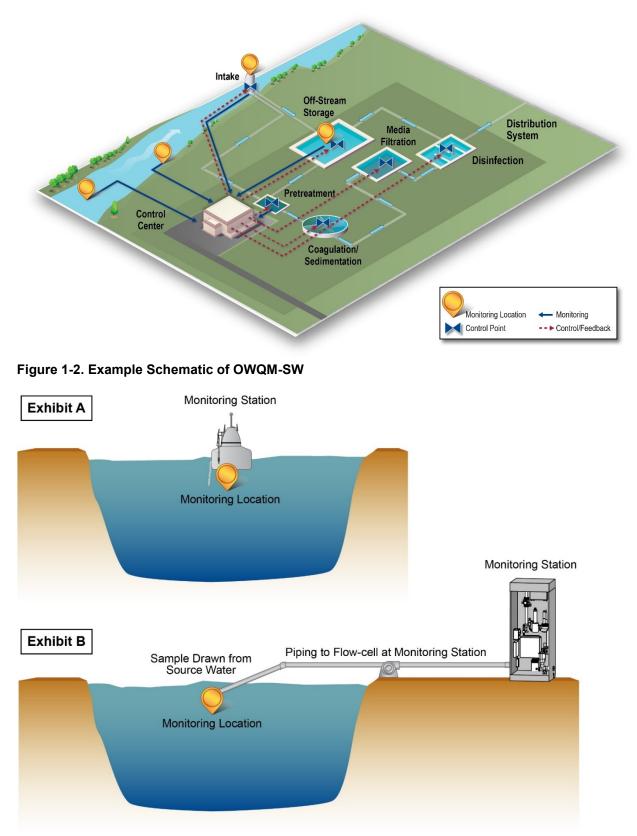



Figure 1-3. Monitoring Location vs. Monitoring Station

### **1.2 Purpose and Overview of this Document**

This document provides guidance on the design of an OWQM-SW system that is based on best practices and lessons learned from existing OWQM-SW systems. It introduces key concepts, provides examples, and directs the reader to additional resources for guidance on specific technical elements of OWQM-SW.

This document is primarily intended for use by water sector professionals, but might also be useful to organizations or individuals with an interest in source water quality. These additional stakeholders might include those responsible for assuring the quality of water for recreational purposes, those involved in aquaculture or other commercial ventures, those responsible for environmental protection, and those concerned with the quality of natural resources.

The remaining sections of this document cover the following topics:

### APPLICABILITY OF GUIDANCE

The methodology presented in this document can be used to design OWQM-SW systems that vary widely in complexity—from a simple system monitoring a single parameter at a single location to a system that monitors multiple parameters at several locations in a watershed.

- Section 2 describes a framework for designing an OWQM-SW system, introduces three highlevel design goals for OWQM-SW, and presents a process for identifying and prioritizing potential source water threats.
- Section 3 provides guidance on the selection of monitoring locations to support each of the three design goals for OWQM-SW.
- Section 4 provides guidance on selecting water quality parameters to achieve each of the three design goals for OWQM-SW.
- Section 5 provides guidance on the selection of monitoring equipment and the design of stations for OWQM-SW.
- Section 6 provides guidance on the development of an information management system and analysis techniques to support each of the three OWQM-SW design goals.
- Section 7 provides guidance on developing investigation and response procedures to support OWQM-SW.
- Section 8 presents an example of the OWQM-SW design process described in the previous sections.
- Section 9 presents OWQM-SW case studies that illustrate a variety of designs and implementation approaches.
- **Resources** presents a comprehensive list of documents, tools, and other sources cited in this document, including a summary of and link to each resource.
- **Glossary** provides definitions of terms used in this document, which are indicated by bold, italic font at first use in the body of the document.

# Section 2: Framework for Designing Online Monitoring Systems

The design process for OWQM-SW follows the principles of project management and master planning that are described in Sections 2 and 3 of *Guidance for Developing Integrated Water Quality Surveillance and Response Systems* (referred to throughout this document as *SRS Integration Guidance*). This section presents a framework for implementing OWQM-SW as shown in **Figure 2-1**. While depicted as a linear process, in practice it is iterative. Decisions or findings in downstream steps can require that earlier steps be revisited.

| <ul> <li>Optimize treatment<br/>processes</li> <li>Detect contamination<br/>incidents</li> <li>Monitor threats to<br/>long-term water<br/>quality</li> <li>Sustainability</li> <li>Information reliability</li> <li>Sustainability</li> <li>Prioritize SW threats<br/>based on their<br/>relative risk</li> <li>Design monitoring<br/>stations</li> <li>Develop information<br/>management and<br/>analysis tools</li> <li>Develop investigation</li> </ul> | Establish<br>Design Goals                                                                                         | Establish<br>Performance<br>Objectives      | Conduct Risk<br>Assessment                                                                     | Design the<br>Monitoring System                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>processes</li> <li>Detect contamination incidents</li> <li>Monitor threats to long-term water</li> </ul> | <ul> <li>Information reliability</li> </ul> | <ul><li>characterize SW<br/>threats</li><li>Prioritize SW threats<br/>based on their</li></ul> | <ul> <li>locations</li> <li>Select water quality<br/>parameters</li> <li>Design monitoring<br/>stations</li> <li>Develop information<br/>management and<br/>analysis tools</li> <li>Develop investigation<br/>and response</li> </ul> |

Figure 2-1. Online Monitoring Implementation Framework

### 2.1 Establish Design Goals

**Design goals** are the specific benefits a utility expects to achieve by implementing OWQM-SW. The establishment of design goals is critical to ensuring that OWQM-SW will be useful to the utility.

Three common, high-level design goals for OWQM-SW are to (1) optimize treatment processes, (2) detect *contamination incidents*, and (3) monitor threats to long-term water quality. These design goals are presented and discussed in order of increasing complexity, with complexity generally defined in terms of the number of parameters monitored, the number of monitoring locations, and the area covered by monitoring locations. OWQM-SW designed for treatment process optimization is simplest in that it requires one to a few monitoring locations for specific parameters that are directly related to the performance of treatment processes. Designing for detection of contamination incidents generally requires the addition of upstream monitoring locations and parameters capable of detecting a wider range of water quality changes along with more sophisticated *data analysis* methods. Even more monitoring locations may be necessary to monitor threats to long-term water quality.

These high-level design goals cover most OWQM-SW applications. However, a utility planning to implement OWQM-SW should first establish the overall purpose of OWQM-SW and the decisions that OWQM-SW data is intended to support. This will inform the development of detailed design goals to guide OWQM-SW implementation.

### **Optimize Treatment Processes**

OWQM-SW data can be used to optimize treatment processes by monitoring water quality parameter variations that impact the performance of treatment processes, such as pH, turbidity, and total organic carbon (TOC).

The primary decisions that guide the design of OWQM-SW to optimize treatment processes include these:

- Identify specific treatment targets. This decision will guide the selection of parameters to monitor. Examples might include removal of particulate matter, removal of organic contaminants, or removal of algal toxins.
- Determine the treatment processes that support these targets. This information will help identify control points in the treatment plant that can be adjusted based on the information generated by OWQM-SW. For example, the following processes can be adjusted in response to a change in source

#### FACTORS TO CONSIDER WHEN REFINING DESIGN GOALS TO OPTIMIZE TREATMENT PROCESSES

- Flexibility in utilization of the source, such as withdrawal at different depths at the intake, off-stream storage, etc.
- Treatment process control points that can be manipulated to handle variable source water quality
- Options to limit impact of poor-quality source water on treatment processes, such as booms, pump and treat, adsorptive barriers, diversion, etc.

water quality: pretreatment with powdered activated carbon (PAC), pretreatment with permanganate, coagulation/sedimentation, and disinfection.

• Determine the time necessary to implement treatment process changes. This time period is that between validation of a change in source water quality and adjustment of treatment processes in response to that validated change. The time available will influence the selection of monitoring locations and the required frequency at which water quality instruments generate data.

### **Detect Contamination Incidents**

OWQM-SW can be used to detect transient source water contamination incidents that may upset or pass through a water treatment process. This includes detection of contamination resulting from accidents (e.g., chemical releases from spills on or near the source water), unusual discharges (e.g., untreated sewage discharge), and natural events (e.g., seasonal algal blooms).

The primary decisions that guide the design of OWQM-SW to detect contamination incidents include these:

- Identify the specific types of contamination incidents that OWQM-SW should be able to detect. A *risk assessment* should be undertaken to develop a prioritized list of *source water threats* (SW threats) that have the potential to contaminate the source water. This will guide the selection of both parameters to monitor and monitoring locations.
- Evaluate the response options available to mitigate the impacts of each type of contamination incident identified. Consideration should be given to both the efficacy of the response actions in reducing the consequences of

#### FACTORS TO CONSIDER WHEN REFINING DESIGN GOALS TO DETECT CONTAMINATION INCIDENTS

- □ Characteristics of SW threats and their associated contaminants
- □ Likelihood of natural events such as wildfires, floods, and harmful algal blooms that could contaminate the source water
- Hydrologic parameters affecting contaminant fate and transport
- Limitations of existing treatment processes to treat or remove identified contaminants
- Options for responding to various types of contamination incidents

contamination as well as the cost associated with implementing the response actions. The cost of implementing a response action will influence the necessary reliability of the information

generated by OWQM-SW (i.e., more costly response actions will generally require a higher degree of information reliability).

• Determine the time necessary to implement response options. This is the time period between detection and investigation of a water quality change and implementation of an effective response. The time available from detection to response will influence the selection of monitoring locations and the necessary frequency of data generation and analysis.

### Monitor Threats to Long-Term Water Quality

OWQM-SW can be used to monitor the impact of SW threats on long-term water quality in the source water and surrounding watershed. OWQM-SW provides the information needed to assess the suitability of the source to serve as a drinking water supply, provide recreational opportunities, and support a healthy ecosystem. OWQM-SW can also be used to monitor the impacts of climate change on source water quality.

The primary decisions that guide the design of OWQM-SW to support monitoring of threats to long-term water quality include these:

- Identify factors that influence long-term source water quality. This understanding will guide the selection of monitoring parameters and locations. A risk assessment can be conducted to identify and prioritize SW threats to long-term water quality.
- Identify stakeholders in maintaining source water quality. Coordination with stakeholders can provide opportunities to collect additional data and identify other uses of the data collected.

#### FACTORS TO CONSIDER WHEN REFINING DESIGN GOALS TO MONITOR THREATS TO LONG-TERM WATER QUALITY

- Seasonal variations in source water conditions such as temperature, precipitation, and flow
- □ Characteristics of SW threats and their associated contaminants
- □ Land use in the watershed
- Projected impacts of climate change in the region
- Uses of the source water beyond a drinking water supply
- Identify potential mitigation strategies. Monitoring long-term trends in source water quality can provide a better understanding of gradual changes in water quality and support selection of strategies for maintaining acceptable source water quality.

Another factor to consider during OWQM-SW design is that a single incident can alter source water quality in a number of ways over different time periods. As an example, consider a wildfire, which can produce a high loading of silt and ash during runoff events immediately following the fire. This transient contamination incident may require a utility to implement highly unusual, short-term treatment modifications. Long-term effects of wildfires might include an increase in TOC loading for multiple years, which would require sustained treatment plant optimization. Finally, long-term source water quality monitoring can provide stakeholders with information that can be used to gauge the effectiveness of watershed restoration efforts such as reseeding.

### 2.2 Establish Performance Objectives

**Performance objectives** and their associated metrics are measurable indicators of how well OWQM-SW meets the design goals established by a utility. Throughout design, implementation, and operation of OWQM-SW, a utility can use performance objectives to determine whether the system is operating within acceptable tolerances. While specific performance objectives should be developed by each utility in the context of its unique design goals, common performance objectives are described as follows.

### **Operational Reliability**

Operational reliability is the degree to which an OWQM-SW system is performing at a level capable of achieving the established design goals. It depends on proper maintenance of equipment and information management systems necessary to operate the system. Considerations for operational reliability include accessibility of monitoring stations for maintenance, suitability of *water quality sensors* to the chemistry and quality of a source (e.g., turbidity, pH), environmental impact on monitoring stations (e.g., source water temperature, humidity, and ambient temperatures), and adequacy of training for personnel responsible for maintaining the OWQM-SW equipment. Example metrics used to monitor operational reliability include the following:

- Percentage of time that the OWQM-SW system is fully operational
- Average response time to correct equipment problems

### Information Reliability

Information reliability is the degree to which information produced by a monitoring station is of sufficient quality to support decision-making. Specifically, utility personnel must be able to interpret the difference between typical water quality variability and changes indicative of a water quality issue requiring a response action or treatment process change. Considerations for information reliability include the representativeness of the water monitored at each monitoring location, compatibility of the sensors with the water chemistry, sensor capabilities (e.g., detection limits), maintenance of sensors, and data analysis methods.

Information reliability can be characterized through *data quality objectives*, which are metrics or criteria that establish the quality and quantity of data needed to support decisions. Examples of data quality objectives that might be considered for OWQM-SW include:

- Data *accuracy*
- Data *completeness*
- Number of *invalid alerts* per month

Establishing data quality objectives is an element of quality control/quality assurance that is important for any environmental monitoring program. Further information about quality assurance for online water quality data can be found in *Quality Assurance (ACRR) Matrix*.

### Sustainability

Sustainability is the degree to which benefits derived from information generated by OWQM-SW justify the cost and level of effort required for its implementation and operation. Benefits are largely determined by the design goals that OWQM-SW data supports. For example, an annual reduction in chemical usage or sludge production can be achieved due to more efficient chemical dosing guided by OWQM-SW data. Other benefits may be difficult to quantify, such as increased confidence of utility managers and operators in their ability to detect source water quality problems. However, these benefits should still be captured and described as they are important to gauging the sustainability of the OWQM-SW system. Costs include the capital and ongoing expenditures required to implement and operate the equipment and systems, as well as the effort required to analyze the OWQM-SW data and investigate *alerts*. Example metrics for sustainability include the following:

- Improvements in finished water quality and operations due to treatment process optimization
- Consequences avoided through early detection of and response to contamination incidents
  - Value of non-monetary benefits gained from the operation of OWQM-SW
  - Lifecycle cost to implement and maintain OWQM-SW

### 2.3 Conduct a Risk Assessment

A risk assessment is a systematic process for analyzing and prioritizing threats to inform the selection and

implementation of risk mitigation strategies. The results of a risk assessment can guide the design of OWQM-SW by ensuring that the resulting system addresses the most serious threats. The most widely accepted and broadly applicable risk assessment methodology for the water sector is the <u>J100 Standard</u>. In the context of this guidance document, the J100 methodology is used to assign values to the following three risk assessment parameters for each SW threat:

• *Likelihood* is the probability that an SW threat will contaminate the source water and can range in value from 0 (contamination will not occur) to 1 (contamination is certain to occur). The

#### RISK ASSESSMENT TOOL

EPA has developed the <u>Vulnerability Self-</u> <u>Assessment Tool (VSAT)</u>, which guides a water utility through the risk assessment process in a manner consistent with the J100 Standard.

likelihood value may be based on previous contamination incidents caused by the SW threat (or similar SW threats) or on projections and models.

- *Vulnerability* is the probability that a utility or its customers would be impacted by an SW threat and can range in value from 0 (no adverse impact will occur) to 1 (adverse impact is certain to occur). The vulnerability value is generally based on the ability of the utility to effectively respond to an SW threat, preventing or mitigating consequences to utility infrastructure, operations, and customers.
- *Consequences* are the adverse effects of an incident experienced by a utility (e.g., damaged infrastructure) or its customers (e.g., illness). Where possible, consequences are expressed in terms of monetary damage, providing a standard measure of consequence across all threats. However, it is not always possible to accurately monetize consequences, and values may need to be derived from qualitative factors. In such cases consequences can be normalized such that the SW threat with the greatest consequence has a value of 100 while the values for all other SW threats are less than 100.

The values for these three risk parameters are used to calculate the overall risk score, as shown in **Equation 2-1**.

#### $R = L \times V \times C$

Where:

- R = Risk of a specific threat to a utility or its customers
- L = Likelihood that a specific threat will occur (score range: 0 to 1)
- V = Vulnerability of a utility to a specific threat (score range: 0 to 1)
- C = Consequences of the specific threat (score range: 0 to 100)

Equation 2-1. Risk Equation

### Identify and Characterize Potential SW Threats

To conduct a risk assessment, SW threats must first be identified and characterized. SW threats include any facility, discharge, land use, weather event, or other feature within a watershed that has the potential to degrade source water quality and impair its intended use. SW threats can be stationary or mobile.

Stationary threats are present at fixed, known locations such as:

• Chemical storage facilities (e.g., oil and gas storage facilities)

- Industrial facilities that use chemicals (e.g., tanneries, automotive body shops, dry cleaners)
- Agricultural facilities (e.g., concentrated animal feeding operations, large fertilized areas)
- Urban areas (e.g., runoff over impervious contaminated surfaces)
- Oil and natural gas extraction operations
- Wastewater treatment plant outfalls
- Stormwater outfalls

Mobile threats present a variable point of potential contaminant entry into the source water, making them more difficult to monitor. Examples of mobile threats include:

- Transportation corridors (e.g., vehicular traffic, rolling stock on railway tracks)
- Watercraft (e.g., barges and other vessels)
- Natural disasters (e.g., wildfires, floods, hurricanes, landslides)

A variety of resources are available to identify and characterize SW threats, some of which are described below. Additional information about these resources, including where to find them, is available in the Resources section.

- <u>State Primacy Agency Source Water Assessments</u> provide an inventory of known and potential SW threats within a state. This information can be used to identify known and potential sources of contamination and to characterize the vulnerability of source water to these threats.
- Drinking Water Mapping Application to Protect Source Waters (DWMAPS) is a geographic information system (GIS)-based tool developed by EPA that provides layers of spatially referenced data using information from databases such as National Pollutant Discharge Elimination System (NPDES); Enforcement and Compliance History Online (ECHO); Toxic Release Inventory (TRI); Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS); Resource Conservation and Recovery Act Information (RCRAInfo); and Toxic Substances Control Act (TSCA). DWMAPS provides information about potential SW threats including their locations and details of discharge permits.
- Land Use Maps are often developed and maintained by a city, county, or state. These maps may be useful for identifying current and future potential SW threats, such as areas of urban or commercial expansion.

Each SW threat identified should be characterized to the fullest extent possible, capturing information such as the following:

- Location of the SW threat and the distance from the threat to the source water
- Owner or operator of the property or facility where the SW threat is located
- Potential contaminants associated with the SW threat (e.g., chemicals stored on site, pesticides or fertilizers applied to the land)
- Volume or mass of potential contaminants stored at the location of an SW threat or discharge rates from SW threats, such as outfalls
- Characteristics of the potential contaminants stored at the location of an SW threat (e.g., solubility, toxicity), which may be available in material safety data sheets that are required to be on file at the location where a chemical is stored or used
- Estimates of contaminant dispersion and dilution in the source water during a contamination incident from the SW threat (e.g., results from hydrology model simulations or tracer studies)
- Existing risk mitigation strategies to protect the source water from the threat (e.g., leak detection, spill containment, runoff control)

Some of this information may not be available for all types of SW threats, but the characterization of each SW threat should be as complete as possible. A detailed characterization of SW threats is useful not only for the risk assessment, but also for selecting monitoring parameters and locations as well as for response planning.

The process for identifying SW threats is the same for flowing water systems (e.g., rivers and streams), and still water systems (e.g., ponds and lakes). Some aspects of this process also apply to groundwater sources, which face some similar and unique risks as compared to surface water. The characteristics of the source water will inform the identification of SW threats as well as the assignment of values to the risk assessment parameters.

### Prioritize Risk of Potential SW Threats

The risk assessment needs to provide a relative prioritization of the SW threats to ensure that OWQM-SW is designed to focus on the highest priority SW threats within the available budget. As such, it is important to assign values to each of the risk parameters in a consistent manner. For example, where SW threats are identified that do not have appreciably different characteristics that would influence likelihood, vulnerability, or consequence, the same or similar values should be assigned to the risk parameters for these similar threats.

A risk assessment is useful for designing an OWQM-SW system to detect contamination incidents and/or monitor threats to long-term water quality because it prioritizes the SW threats to be monitored. If the OWQM-SW system is intended to meet both of these design goals, it may be useful to identify and prioritize two sets of SW threats: (1) those that pose an acute risk to source water quality due to a contamination incident and (2) those that pose a chronic risk to long-term water quality. This strategy ensures that the OWQM-SW design will consider the highest priority SW threats to both short-term and long-term water quality. A risk assessment is generally not used to optimize treatment processes because this design goal is intended to meet specific treatment targets by adjusting treatment processes in response to typical source water quality variability.

The attributes of SW threats considered when assigning values to each risk assessment parameter will be different when assessing risk for the design goals of detection of contamination incidents and monitoring of threats to long-term water quality, as illustrated in **Table 2-1**.

|                              | Scoring Considerations                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk Assessment<br>Parameter | Detect Contamination Incidents<br>(Short-Term Risks)                                                                                                                                                                                                                                                                                                                                                | Monitor Threats to Long-Term Water<br>Quality (Long-Term Risks)                                                                                                                                                                                                                                                                                              |
| Likelihood                   | The probability that an SW threat will cause<br>a significant yet transient degradation in<br>source water quality. The frequency of<br>occurrence of previous, similar incidents can<br>be used to estimate a likelihood score.<br>Existing mitigation strategies at the SW<br>threat such as leak detection systems,<br>secondary containment, and spill response<br>plans can reduce likelihood. | The probability that an SW threat will cause<br>a sustained change in water quality (e.g.,<br>longer than one year). Characteristics of the<br>SW threat, such as discharge rates or<br>contaminant loading rates, can be used to<br>estimate a likelihood score. Existing<br>mitigation strategies such as runoff control<br>systems can reduce likelihood. |
| Vulnerability                | The probability that a contamination incident<br>caused by an SW threat will adversely<br>impact the utility or its customers. The ability<br>of the utility to respond to a contamination<br>incident in a manner that mitigates the<br>consequences of the incident can be used to                                                                                                                | The probability that a sustained change in<br>water quality caused by an SW threat will<br>adversely impact the utility or its customers.<br>The ability of the utility to adapt to changing<br>source water quality can be used to estimate<br>a vulnerability score. Implementation of a                                                                   |

### Table 2-1. Scoring Considerations for Risk Assessment Parameters by Design Goal

|             | estimate a vulnerability score. Availability of treatment that can remove or neutralize a contaminant can reduce vulnerability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | source water protection plan, which<br>considers threats to long-term water quality,<br>can reduce vulnerability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consequence | The damage or negative impacts to the<br>utility or its customers resulting from a<br>contamination incident caused by an SW<br>threat. Potential consequences include<br>disruption or upsets to treatment plant<br>operations, aesthetic changes that make the<br>water unacceptable to customers, or<br>adverse health effects in exposed<br>customers. A consequence score may be<br>determined by estimating the number of<br>customers impacted, the duration of a<br>disruption in service, or the cost of restoring<br>a system to normal operations following a<br>contamination incident. | The impact of a long-term water quality<br>change on treatment plant operations or<br>finished water quality. Potential<br>consequences may include difficulty in<br>meeting treatment targets, failure to comply<br>with drinking water standards, aesthetic<br>changes that are unacceptable to<br>customers, or diversion of utility resources to<br>modify the treatment plant in response to the<br>water quality change. A consequence score<br>may be determined through an analysis to<br>estimate the impact of degraded source<br>water quality on utility operations. |

The results of a risk assessment are used to develop (1) a prioritized list of SW threats of contamination

(short-term risks) and (2) a prioritized list of SW threats to long-term water quality design goal (long-term risks). These lists are used to identify high-priority threats that will be considered in an OWQM-SW design. It is also important to understand that risks may change over time and that the risk assessment may need to be updated when new potential SW threats are identified. A Template for Conducting a Risk Assessment for Source Water Threats can be opened and



#### OWQM-SW Risk **Assessment Template** (Microsoft Word)

\*Note that the document that is currently open may need to be downloaded and opened offline to access this checklist.

edited in Microsoft<sup>®</sup> Word by clicking the icon in the callout box.

### 2.4 Design the System

The major design elements associated with OWQM-SW are summarized in Figure 2-2 and briefly described in this section. Detailed guidance on each design element is presented in Sections 3 through 7.



### Figure 2-2. Online Monitoring System Design Elements

### Select Source Water Monitoring Locations

Monitoring locations should be selected based on design goals established for OWQM-SW as well as the results from a source water risk assessment. Typical monitoring locations include the raw water intake to a treatment plant, various locations and depths in rivers and lakes, and strategic locations in the watershed. Monitoring locations for groundwater sources will generally be limited to an intake structure (for centralized groundwater treatment facilities), the wellhead, or monitoring wells. This document does not present methods for locating monitoring wells within an aquifer. Guidance on the selection of monitoring locations is discussed in detail in Section 3.

### Select Source Water Monitoring Parameters

The selection of monitoring parameters is based on design goals established for OWQM-SW, as well as the results from a source water risk assessment. In particular, the contaminants associated with specific SW threats can inform the selection of monitoring parameters. The parameters monitored determine the types of water quality variations, incidents, or trends that can be detected. Guidance on the selection of monitoring parameters is discussed in detail in Section 4.

### **Design Source Water Monitoring Stations**

The design of monitoring stations is based on the locations and parameters selected for OWQM-SW. It includes selection of the specific water quality instruments and ancillary equipment necessary to bring sensors into contact with a water sample and transmit data. The station design can dramatically impact capital costs, operating costs, data accuracy, and data completeness. Guidance on the design of monitoring stations is discussed in detail in Section 5.

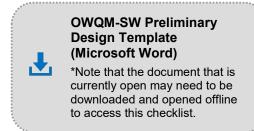
### Develop Information Management and Analysis Tools

Information management systems receive, process, analyze, store, and present data generated by monitoring stations. An information management system may include data analysis tools that generate alerts and send notifications to designated personnel when water quality *anomalies* are detected. Information management and analysis are discussed in detail in Section 6.

### Develop Investigation and Response Procedures

Once a water quality *anomaly* has been detected, an investigation should be undertaken to determine the cause of the anomaly and guide response actions appropriate to the situation. The procedure for responding to a water quality anomaly will depend on the design goals for the system. To optimize treatment processes, a response procedure will guide adjustments to treatment process settings to meet treatment targets. For detection of contamination incidents, a response procedure will guide actions that prevent potentially contaminated water from entering a treatment plant or finished water. Investigative activities that support monitoring long-term water quality involve the analysis of data over multiple years to determine whether a source water quality *baseline* is changing. Investigation and response procedures are discussed in detail in Section 7.

OWQM-SW designed to realize multiple design goals can be implemented in phases to progressively expand the system to meet these goals. An example of this approach is an initial phase with a single monitoring location at an intake for treatment process optimization, followed by phases to provide capabilities for the detection of contamination incidents and monitoring of threats to long-term water quality. Subsequent phases would build on the previous installations, adding capabilities to meet additional goals.


If multiple potential designs emerge during the design process, an evaluation of alternatives should be conducted to consider the cost and benefits associated with each. For example, some alternatives may offer tradeoffs between the number of parameters monitored and the number of monitoring locations. Each of these alternatives will have different capabilities and a different cost for procurement, If an OWQM-SW system will be part of a larger SRS, it should be incorporated into a master plan, as described in Section 3 of <u>Guidance for</u> <u>Developing an Integrated</u> <u>Water Quality Surveillance</u> <u>and Response System</u>. Master planning for an SRS involves the development of a complete SRS design, which is implemented in phases based on available resources.

operation, and maintenance throughout the life of the system. Framework for Comparing Alternative

### Water Quality Surveillance and Response Systems

provides a systematic process for comparing alternative designs that considers both the capabilities and cost of each design.

Once the OWQM-SW design elements have been developed, they should be captured in a design document. A *Template for Developing an OWQM-SW Preliminary Design Document* can be opened and edited in Microsoft<sup>®</sup> Word by clicking the icon in the callout box.



#### **OWQM-SW FUNDING OPPORTUNITIES**

Both financial and personnel resources are required to implement OWQM-SW. There are a variety of methods to fund the project, a few of which are described below. This list is not intended to be comprehensive, but it provides an indication of the types of funding options that may be available.

**Pay-as-you-go.** Funding OWQM-SW through a pay-as-you-go strategy involves incorporating the cost of implementation into the annual budget. This can be done through allocating existing cash reserves or developing new revenue sources such as capital improvement fees, increased property taxes, or tapping a portion of water sales revenue. This funding mechanism works best for a phased OWQM-SW implementation where pieces of the system are gradually deployed as the capital becomes available.

**Bonds/Loans.** Funding OWQM-SW through bonds or loans incurs debt at the beginning of the project, which is typically paid back over a 10- or 20-year period. The debt may be serviced through implementation of new revenue sources such as capital improvement fees, increased property taxes, or a portion of water sales revenue. Financing OWQM-SW using bonds or loans can allow for significant expenditures at the beginning of the project, accelerating design and implementation.

**Grants/Federal Loans.** Funding OWQM-SW through grants or federal loans (usually provided at or below market interest rates) involves applying to a government agency or other organization. To improve the likelihood of an award, the project description should meet all requirements specified in the grant/loan application. The following organizations are potential sources of grant funding for OWQM-SW:

- Bureau of Reclamation. Significant grant funding opportunities are available for systems that reduce energy consumption, address climate-related risks, and support sustainability of water systems. (http://watersmartapp.usbr.gov/WaterSmart)
- **Department of Agriculture.** Districts that provide water to agricultural customers, and possibly along with urban customers, can apply for grants related to improving water quality and water availability for agricultural customers. To be eligible for these grants, at least 30 percent of water production should go to agricultural use. (http://www.rd.usda.gov/)
- Drinking Water State Revolving Fund. These federal loans must address a serious risk to public health, bring the systems into compliance with the Safe Drinking Water Act, consolidate water supplies, or replace aging infrastructure. (<u>https://www.epa.gov/drinkingwatersrf</u>)
- Global City Teams Challenge. Provides funding for Smart Cities projects. (<u>https://www.us-ignite.org/globalcityteams/</u>)
- **Public-private partnership.** Funding OWQM-SW through public-private partnerships involves working with a private entity that would benefit from financing some aspect of OWQM-SW.

Some of these funding opportunities may require development and approval of specific documentation such as a Quality Assurance Project Plan, Data Management Plan, or Health and Safety Plan. To secure funding and support for an OWQM-SW project, a business case should be developed that clearly articulates the benefits of OWQM-SW.

## **Section 3: Monitoring Locations**

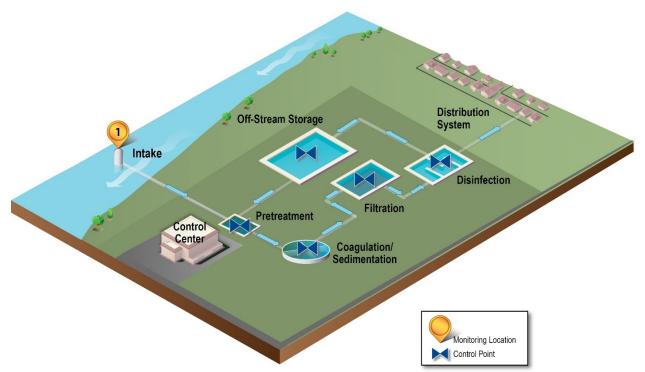
A monitoring location is the site in a source water where water is sampled for measurement. Selection of monitoring locations should be guided by the design goals established for the system and the time required to implement a response action relative to the time a water quality change is detected. Monitoring locations are selected relative to control points, which are locations where a treatment process can be modified (e.g., addition of pretreatment chemicals) or a response action can be implemented (e.g., closing of an intake). For detection of contamination incidents and monitoring of threats to long-term water quality, monitoring location selection should also be informed by the location of high-priority SW threats.

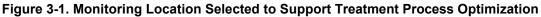
#### TARGET CAPABILITY

OWQM-SW locations are sufficient to fully achieve selected monitoring goals

Selection of monitoring locations and OWQM-SW installation sites will also be influenced by a variety of site-specific considerations, such as accessibility and natural hazards as discussed in <u>Guidelines and</u> <u>Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation,</u> <u>and Data Reporting</u>. Performance objectives, such as operational reliability and sustainability should also be considered when selecting these locations. The final selection of monitoring locations will be a compromise between the ideal location that meets the design goals and practical implementation considerations.

The following sections present a series of examples demonstrating how each of the three design goals covered in this document influence the selection of monitoring locations. All of these examples are based on a single hypothetical utility with a river source. The sequence of the examples is intended to illustrate how an OWQM-SW system can be expanded from a single monitoring location at an intake to multiple monitoring locations throughout the source water and watershed.


### 3.1 Monitoring Locations to Support Treatment Process Optimization


To support treatment process optimization, OWQM-SW data needs to be available to operators in sufficient time to make process adjustments in response to changes in source water quality. Many common treatment process adjustments, such as changes to chemical feed rates, process loading rates, and

filter backwash frequency, can be made in a matter of minutes. As such, a monitoring location selected for treatment optimization does not need to be far from control points in a treatment plant to provide adequate time for operators to respond. Monitoring locations within the infrastructure that conveys water from the intake to the treatment plant may provide sufficient time to make operational changes, simplifying monitoring station installation and ensuring that the water sampled by the monitoring station is representative of the water to be treated. Where water is drawn from multiple sources, monitoring water quality at the intake for each source can provide information that guides decisions to switch sources or adjust the blend ratio from different sources. **Figure 3-1** shows a monitoring location at the intake structure for the plant.

#### **MONITORING AT THE INTAKE**

While monitoring source water quality at the intake offers several advantages, it may not always be the best choice. If pretreatment chemicals are added at the intake, it may be preferable to conduct monitoring upstream of the intake to provide adequate time between detection of a water quality change and adjustment to a pretreatment process.





# **3.2 Monitoring Locations to Detect Contamination Incidents**

The process of selecting monitoring locations for the purpose of detecting contamination incidents, such as chemical spills, is an iterative process consisting of the following steps:

- 1. Calculate the time required to investigate a water quality change and implement a response.
- 2. Determine the *critical detection point*.
- 3. Select the monitoring locations based on the results of Steps 1 and 2.

### Calculate Investigation and Response Times

The investigation and response time should be calculated for each unique action that may be taken in response to a source water quality change. It is the sum of the following two segments:

- The time to confirm that a water quality change is real and requires a response. Once a change in source water quality is detected, the change should be investigated to ensure that it is not due to an equipment problem. The time required for this investigation can be estimated using data from previous investigations or using the results from drills and exercise. The process for investigating a source water quality change is described in detail in Section 7.
- The time to implement a response action. After determining that a change in source water quality requires a response, a specific response action is selected and implemented. A range of response actions should be considered for different source water contamination scenarios. The time to implement each response action can be estimated using information from previous implementation of those actions and/or the experience of utility operators. Response actions are described in detail in Section 7.

### **Determine Critical Detection Point**

The critical detection point is the location on the source water where detection of a water quality change provides enough lead time to implement a response action. Conservatively, the critical detection point is determined using the response action that takes the most time to implement or the response action associated with the control point furthest upstream. The distance from the control point to the critical detection point is calculated by multiplying the flow rate for the source water by the total response time. Use of a conservative (high) source water flow rate for calculating the distance to the critical detection point is recommended. If source water is piped to sensors in a flow-cell, as described in Section 5, the time for the water sample to travel from the source to the sensors should be added to the total response time to determine the critical detection point.

### STILL WATER

In still water, such as lakes and reservoirs, a contaminant will generally spread slowly and persist for an extended period of time. Thus, it is generally not necessary to determine a critical detection point in lakes and reservoirs for the purpose of selecting monitoring locations. Monitoring at or near the intake typically provides sufficient time to implement a response.

Any monitoring location upstream of the critical detection point should provide adequate time to implement a response action. Monitoring locations farther upstream and closer to an SW threat may be selected to increase the likelihood of detecting a water quality change caused by the SW threat (i.e., by minimizing the opportunities for dilution as a contaminant plume flows downstream from the SW threat).

If there is a high-priority SW threat downstream of the critical detection point, the hydraulic travel time from the SW threat to the control point where it can be mitigated (e.g., an intake structure that can be closed) should be calculated to develop an alternative response that, although not ideal, can still provide a level of mitigation. It is recommended that hydraulic travel time be calculated using a conservative (high) source water flow rate.

### Select the Monitoring Locations

The process for selecting monitoring locations should consider the location of the critical detection point, the locations of SW threats, and the locations of control points associated with response actions. The practicalities of monitoring station installation, as discussed in Section 5, will impact monitoring location selection as well.

Several examples follow to illustrate the selection process. Note that all of these examples include OWQM-SW Location 1 at the intake (see Figure 3-1). While Location 1 was selected to support treatment process optimization, it is also available to support detection of contamination incidents.

The simplest OWQM-SW design can be implemented when all SW threats are upstream of the critical detection point. This situation requires only one additional monitoring location (OWQM-SW Location 2) to be selected downstream of the SW

### ations of SW threats, with response on installation, as g location selection

depth on the ability of the sensor to detect a water quality change. For example, if the contaminant associated with the SW threat floats, select a monitoring depth near the surface of the waterbody. Additional guidance on these considerations is available in other resources such as the <u>Guidance</u> and Standard Procedures for <u>Continuous Water Quality</u> <u>Monitors: Station Operation,</u> <u>Record Computing, and Data</u> <u>Reporting</u>.

threat closest to the intake (SW Threat A) but upstream of the critical detection point, as shown in **Figure 3-2** (this figure is zoomed out from Figure 3-1 to show a longer stretch of the river). This approach uses the minimum number of monitoring locations and provides enough hydraulic travel time between the monitoring location and the control point to implement an appropriate response. A single monitoring

location may also be sufficient in situations where SW threats upstream of the critical detection point are clustered (not shown).

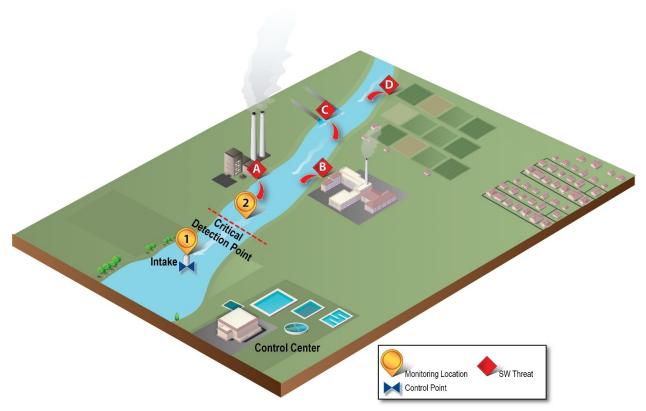
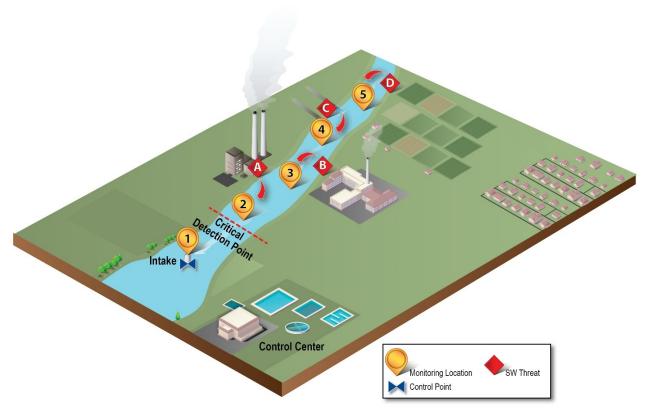




Figure 3-2. A Single Upstream Monitoring Location to Monitor Multiple SW Threats

There may be situations where it is desirable to include a monitoring location near each SW threat, as shown in **Figure 3-3**, such as:

- When the benefit of early detection outweighs the cost of additional monitoring stations
- When attribution of an incident, such as a spill, to a specific SW threat is important
- When SW threats involve contaminant volumes or flows that can rapidly dilute to a concentration that is difficult to detect but still high enough to present a risk to the utility or its customers
- When there is a need to follow the progression of a contaminant plume and provide confirmation of the initial detection





The monitoring locations shown in Figures 3-2 and 3-3 were selected based on the location of stationary threats. Mobile SW threats, such as road or rail traffic moving adjacent to a long stretch of source water or a vessel on the source water, require a different approach to monitoring location selection. One

approach to monitoring for mobile OWQM-SW threats is to locate a monitoring station at the critical detection point, which would allow adequate time to respond to a spill from a mobile threat that occurs upstream of this point. Also, the monitoring location at the intake (OWQM-SW Location 1 in the figures) would provide detection capability for mobile SW threats. While monitoring at the intake would not provide time for an optimal response, it can still detect a water quality change in time to implement a response that will mitigate the consequences of the incident.

### **ALTERNATIVE NOTIFICATIONS**

Notifications of spills, leaks, or discharges from an SW threat owner can provide another means of detecting contamination incidents. This method can be particularly useful for SW threats downstream of the critical detection point.

### 3.3 Monitoring Locations to Monitor Threats to Long-Term Water Quality

Monitoring locations can be selected to monitor threats to long-term water quality. **Figure 3-4** is a zoomed-out image of Figure 3-3 that shows areas of future industrial and agricultural expansion that could degrade water quality in the tributaries feeding the river source. To monitor these SW threats, additional monitoring locations were selected in the tributaries, upstream of their confluence with the river, as indicated by OWQM-SW Locations 6 and 7.

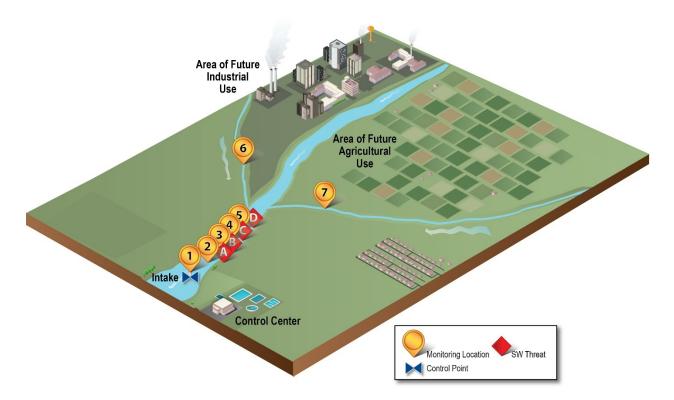



Figure 3-4. Monitoring Locations to Monitor Threats to Long-Term Water Quality

The examples presented in this section consider each of the three design goals separately and identify monitoring locations accordingly. However, it can be seen that careful placement can allow individual monitoring locations to support more than one design goal. OWQM-SW Location 1 is an example where a single location supports all three design goals. Also, while OWQM-SW Locations 2 through 5 were selected for detection of contamination incidents, they could also monitor threats to long-term water quality. The ability of a single monitoring station to support multiple design goals will improve the sustainability of the OWQM-SW system.

# **Section 4: Monitoring Parameters**

This section describes water quality parameters that may be useful to optimize treatment processes, detect contamination incidents, and monitor threats to long-term water quality.

### TARGET CAPABILITY

The OWQM-SW parameters monitored are sufficient to fully achieve selected monitoring goals.

### 4.1 Useful Monitoring Parameters

**Table 4-1** provides an overview of water quality parameters that are potentially useful for OWQM-SW and that can be monitored using online instruments. Additional information about the online instruments used to measure these parameters is available in *List of Available OWQM Monitoring Instruments*.

| Parameter                     | Parameter Description                                                                                                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ammonia (NH <sub>3</sub> )    | Concentration of dissolved ammonia (NH <sub>3</sub> ) in solution                                                                                                                                                                 |
|                               | Can occur naturally or originate from agricultural and urban runoff, wastewater treatment plants, or sanitary sewer overflows                                                                                                     |
|                               | • Can impact drinking water treatment and distribution operations (e.g., chlorine demand, nitrification)                                                                                                                          |
|                               | Can be highly toxic to aquatic organisms                                                                                                                                                                                          |
| Alkalinity                    | • Measure of a water's buffering capacity (i.e., its ability to resist a change in pH when an acid or base is added), typically measured in carbonate equivalents                                                                 |
|                               | Can result from pollutant loadings (e.g., metals) from transportation                                                                                                                                                             |
|                               | • Will impact the quantity of treatment chemicals (e.g., coagulant, acid, or base) that need to be added to achieve acceptable process performance                                                                                |
|                               | Will influence the stability of finished water pH in distribution systems                                                                                                                                                         |
|                               | • Can affect the bioavailability of contaminants, particularly metals, in natural systems                                                                                                                                         |
| Dissolved Oxygen (DO)         | • Concentration of dissolved oxygen in solution (the location of the DO sensor can influence DO concentration measured)                                                                                                           |
|                               | • DO concentrations can be reduced by pollutants in stormwater runoff and sanitary sewer overflows                                                                                                                                |
|                               | • Low DO concentrations can impact oxidation-reduction potential, adversely impacting the performance of some treatment processes, although mixing during pumping and flocculation can bring DO concentrations to near saturation |
|                               | Low DO can be lethal to certain aquatic organisms                                                                                                                                                                                 |
| Dissolved Organic             | Concentration of organic carbon (compounds that contain carbon and hydrogen)                                                                                                                                                      |
| Carbon (DOC)                  | TOC includes suspended and dissolved organic carbon                                                                                                                                                                               |
| Total Organic Carbon<br>(TOC) | • DOC is the fraction of organic carbon that passes through a filter with a 0.45 micrometer pore size                                                                                                                             |
|                               | Decaying natural organic matter may increase DOC/TOC concentrations                                                                                                                                                               |
|                               | Presence of DOC/TOC during chlorination results in disinfection byproducts                                                                                                                                                        |
|                               | Assimilable organic carbon can support biological regrowth in distribution systems                                                                                                                                                |

Table 4-1. Overview of Monitoring Parameters

| Parameter                              | Parameter Description                                                                                                                                                |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrocarbons                           | <ul> <li>Concentration of long-chain, unsaturated organic compounds that include hydrogen<br/>and carbon</li> </ul>                                                  |
|                                        | <ul> <li>Can occur due to urban runoff, transportation, or spills</li> </ul>                                                                                         |
|                                        | Can be an indicator of source water contamination with petroleum products                                                                                            |
|                                        | <ul> <li>Can impart an objectionable odor to water, and can be difficult to remove from<br/>distribution system and household plumbing materials</li> </ul>          |
|                                        | Can be toxic to aquatic organisms                                                                                                                                    |
| Nitrate and Nitrite                    | <ul> <li>Concentration of nitrate (NO<sub>3</sub>) and nitrite (NO<sub>2</sub>) in solution</li> </ul>                                                               |
|                                        | <ul> <li>Can occur in wastewater treatment plant discharge, agricultural runoff, or urban<br/>runoff</li> </ul>                                                      |
|                                        | <ul> <li>Regulated contaminants that can be difficult to remove through conventional treatment</li> </ul>                                                            |
|                                        | Can promote algal and bacterial growth                                                                                                                               |
| Orthophosphates                        | Concentration of inorganic compounds consisting of phosphorus and oxygen                                                                                             |
|                                        | Can occur naturally or originate from agricultural and urban runoff                                                                                                  |
|                                        | <ul> <li>Used to protect drinking water distribution pipelines and household plumbing from corrosion</li> </ul>                                                      |
|                                        | Can promote algal and bacterial growth                                                                                                                               |
| Oxidation-Reduction<br>Potential (ORP) | <ul> <li>Measure of the potential flow of electrons between reducers and oxidizers, which<br/>characterizes the oxidizing or reducing power of a solution</li> </ul> |
|                                        | <ul> <li>Low ORP can reduce the efficacy of oxidation treatment processes</li> </ul>                                                                                 |
|                                        | • Can serve as an indicator of natural processes in source water (e.g., turnover)                                                                                    |
| рН                                     | Negative logarithm of the concentration of hydrogen ions in an aqueous solution                                                                                      |
|                                        | <ul> <li>Fundamental to understanding aqueous chemistry</li> </ul>                                                                                                   |
|                                        | <ul> <li>pH variation can be caused by natural biological and chemical processes</li> </ul>                                                                          |
|                                        | Can affect the performance of coagulation/sedimentation treatment processes                                                                                          |
|                                        | <ul> <li>Changes in pH can affect chemical and biological processes in source water</li> </ul>                                                                       |
|                                        | Significant changes in pH levels are often toxic to aquatic organisms                                                                                                |
| Photosynthetic Pigments                | <ul> <li>Amount of chemicals present that are used by photosynthetic organisms to capture<br/>solar energy in chemical bonds</li> </ul>                              |
|                                        | Includes chlorophyll a and phycocyanin (direct measure of cyanobacteria levels)                                                                                      |
|                                        | <ul> <li>Can be an indicator of autotrophic biomass and algal blooms</li> </ul>                                                                                      |
|                                        | In-vivo fluorescence can characterize the relative proportion of algal species                                                                                       |
| Specific Conductance                   | <ul> <li>Measure of the ionic strength of a solution and commonly used as a surrogate for<br/>total dissolved solids</li> </ul>                                      |
|                                        | <ul> <li>Can increase due to sanitary sewer overflows, combined sewer overflows, and<br/>wastewater treatment plant discharges</li> </ul>                            |
|                                        | Can indicate salt water or brackish water intrusion                                                                                                                  |
|                                        | Can interfere with osmotic balance in aquatic organisms                                                                                                              |
| Spectral Absorbance                    | Measure of wavelength absorption across the ultra-violet (UV)/visible spectrum                                                                                       |
|                                        | <ul> <li>Spectral absorption profiles of a source water can provide a baseline spectral fingerprint used to detect anomalous water quality</li> </ul>                |
|                                        | • Can provide derived measurements for other water quality parameters (e.g., nitrate and nitrite)                                                                    |
|                                        | • Spectral absorption at 254 nm (UV-254) is commonly used as a surrogate for the concentration of natural organic matter                                             |

| Parameter                             | Parameter Description                                                                                                                                                                                               |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Streaming Current<br>(Zeta Potential) | <ul> <li>Determination of the surface charge (zeta potential) by measuring particle velocities<br/>when a potential difference is applied</li> </ul>                                                                |  |
|                                       | <ul> <li>Commonly used as a process monitoring tool for coagulation, sedimentation, and<br/>filtration</li> </ul>                                                                                                   |  |
| Temperature                           | Measure of the thermal energy in water                                                                                                                                                                              |  |
|                                       | <ul> <li>Influences chemical equilibrium and kinetics, which may impact treatment process<br/>performance</li> </ul>                                                                                                |  |
|                                       | <ul> <li>Can indicate blending of water from different sources (e.g., wastewater treatment<br/>plant effluent blending with a source water)</li> </ul>                                                              |  |
|                                       | <ul> <li>Integrated into water quality sensors that measure temperature-dependent<br/>parameters (e.g., pH, specific conductance) to enable temperature compensation to<br/>those parameter measurements</li> </ul> |  |
| Toxicity                              | <ul> <li>Aggregate measure of the adverse effects to aquatic organisms resulting from<br/>exposure to chemicals in their environment</li> </ul>                                                                     |  |
|                                       | <ul> <li>Indicator of the presence of chemicals or toxins in water that could harm people or<br/>aquatic organisms</li> </ul>                                                                                       |  |
| Turbidity                             | Measure of the cloudiness of water due to suspended particles                                                                                                                                                       |  |
|                                       | <ul> <li>Can increase due to sanitary sewer overflows, combined sewer overflows, and<br/>wastewater treatment plant discharges</li> </ul>                                                                           |  |
|                                       | <ul> <li>High turbidity levels can overload some treatment processes due the associated<br/>increase in suspended solids</li> </ul>                                                                                 |  |
|                                       | <ul> <li>Can serve as an indicator of bacteria and other particulate pollutants</li> </ul>                                                                                                                          |  |
|                                       | <ul> <li>High turbidity levels can decrease light passage, impacting the subsurface ecosystem</li> </ul>                                                                                                            |  |

# **4.2 Parameter Selection**

This section describes the monitoring parameters useful for each of the design goals presented in Section 2.1. When selecting parameters, consider that some provide innate benefits while others may complement other monitored parameters, providing more useful information when measured together. For example, pH impacts ammonia speciation, with lower pH levels shifting the equilibrium toward the ammonium ion  $(NH_4^+)$ , which is more toxic to aquatic organisms. Thus, both ammonia and pH should be monitored if ammonia is a known or potential source water contaminant.

The following sections list parameters that could be potentially useful for specific applications under each of the three design goals. The parameters listed for each application are generally complementary, meaning that monitoring multiple parameters would more effectively meet the listed design goal. However, parameter selection should always be informed by the monitoring location and other site-specific considerations.

### Parameter Selection to Optimize Treatment Processes

The parameters useful to optimize treatment processes will depend on the processes that will be optimized. **Table 4-2** lists monitoring parameters that are useful for optimizing conventional treatment processes.

| Treatment Process             | Parameters                 | Rationale for Parameter Selection                                                                                                                                                                                                                                                                                               |
|-------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permanganate<br>Pretreatment  | ORP                        | ORP can indicate the presence of reducing agents in the source water, which would increase the required dose of permanganate.                                                                                                                                                                                                   |
|                               | DO                         | Low DO concentrations in the source water can indicate a reducing<br>environment, increasing the required dose of permanganate.                                                                                                                                                                                                 |
|                               | DOC/TOC                    | High DOC/TOC concentrations in the source water can exert an oxidant demand, increasing the required dose of permanganate.                                                                                                                                                                                                      |
|                               | Spectral<br>Absorbance     | Removal of iron and manganese is often the treatment target for pre-<br>oxidation using permanganate. Spectral absorbance can be used to<br>measure the iron and manganese concentrations in the source water,<br>which can be used to determine the permanganate dose needed to<br>achieve iron and manganese removal targets. |
|                               | рН                         | pH can impact the efficacy of permanganate as a pre-oxidant.                                                                                                                                                                                                                                                                    |
| PAC Pretreatment              | Photosynthetic<br>Pigments | PAC may be added to remove harmful algal toxins and byproducts. An increase in photosynthetic pigments can provide a direct indication of algal activity and thus might serve as a trigger for PAC addition.                                                                                                                    |
|                               | DOC/TOC                    | High DOC/TOC concentrations can compete for active adsorption<br>sites on PAC particles, thus increasing the concentration of PAC<br>needed to achieve other treatment targets, such as removal of harmful<br>algal toxins or taste and odor-causing compounds.                                                                 |
|                               | рН                         | pH can impact the efficacy of PAC in adsorbing specific contaminants.                                                                                                                                                                                                                                                           |
| Coagulation/<br>Sedimentation | Turbidity                  | Turbidity can be used to determine the coagulant dose necessary to meet process effluent water quality targets.                                                                                                                                                                                                                 |
|                               | DOC/TOC                    | The treatment target for enhanced coagulation is typically established<br>as either a percent removal of DOC/TOC during conventional<br>treatment or a target DOC/TOC concentration in filter effluent.<br>DOC/TOC data can be used to determine the coagulant dose needed<br>to achieve optimized coagulation.                 |
|                               | рН                         | pH has a significant impact on the performance of coagulation processes and the ability to achieve enhanced coagulation.                                                                                                                                                                                                        |
|                               | Spectral<br>Absorbance     | Spectral absorbance can detect changes in the chemical composition<br>of a source water, which may impact the performance of coagulation<br>processes.                                                                                                                                                                          |
|                               | Alkalinity                 | Alkalinity can impact the amount of coagulant or acid/base that needs to be dosed to reach a pH range necessary for optimized coagulation.                                                                                                                                                                                      |
| Filtration                    | N/A                        | Because upstream conventional treatment processes alter the water<br>quality parameters important to filtration performance, most notably<br>turbidity, source water quality data has little application to optimization<br>of filtration.                                                                                      |
| Disinfection                  | Ammonia                    | Ammonia is generally not removed by upstream conventional treatment processes, thus, changes in the concentration of ammonia in the source water can impact the chlorine dose required for breakpoint chlorination and adequate disinfection.                                                                                   |

| Table 4-2. Monitoring Parameters that Support Treatment Process Optimization |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

Note: Temperature should also be monitored for each of these treatment processes due to its impact on reaction rates and process performance.

### Parameter Selection to Detect Contamination Incidents

**Table 4-3** lists several contaminant groups, potentially useful monitoring parameters, and the rationale for how each parameter can support detection of the listed contaminant group. The information in this table is general, and parameter selection should be guided by the specific contaminants associated with SW threats identified during the risk assessment. Parameter selection can also be guided by studies, such as *Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results*, that have evaluated the responsiveness of various water quality parameters to different contaminant in drinking water. The ability of any of the listed parameters to detect the presence of a contaminant is contingent upon a contaminant concentration that is sufficiently high to change the parameter value from the baseline. Detection capabilities are also dependent on the configuration of the data analysis tools used to detect anomalies as described in Section 6.

| Contaminant Group and<br>Associated SW Threats                                                                                                                                          | Parameters           | Rationale for Parameter Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorganic Industrial<br>Chemicals<br>from SW threats, such as:<br>• Chemical storage tanks<br>• Pesticide and fertilizer<br>storage tanks<br>• Transportation corridors<br>• Watercraft | Spectral Absorbance  | Some inorganic chemicals absorb in the UV-visible<br>spectrum. As such, a change in spectral absorption<br>may indicate contamination with an inorganic industrial<br>chemical. Furthermore, some spectral instruments<br>allow users to add spectral fingerprints to a library. If<br>the spectral fingerprint for a specific inorganic<br>chemical associated with an SW threat is produced, it<br>can be added to a utility's fingerprint library to facilitate<br>future detection of the contaminant. |
|                                                                                                                                                                                         | Specific Conductance | Some inorganic chemicals have charged functional<br>groups that can dissociate and form ionic species<br>when dissolved in water. An increase in specific<br>conductance could indicate the presence of inorganic<br>industrial chemicals.                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                         | Toxicity             | Toxicity provides a general indication of the presence<br>of a potentially toxic substance and thus may detect<br>the presence of toxic industrial chemicals. Note that<br>toxicity monitors vary widely in how they respond to<br>different chemicals.                                                                                                                                                                                                                                                    |
| Organic Industrial Chemicals<br>from SW threats, such as:<br>• Chemical storage tanks<br>• Pesticide and fertilizer                                                                     | DOC/TOC              | DOC/TOC can be used to determine the carbon<br>concentration associated with organic compounds,<br>including organic industrial chemicals. Thus, an<br>increase in DOC/TOC may indicate the presence of an<br>organic industrial chemical.                                                                                                                                                                                                                                                                 |
| storage tanks <ul> <li>Transportation corridors</li> <li>Watercraft</li> </ul>                                                                                                          | Spectral Absorbance  | Many organic chemicals absorb in the UV-visible<br>spectrum. Thus, a change in spectral absorption can<br>indicate contamination from an organic industrial<br>chemical. Furthermore, some spectral instruments<br>allow users to add spectral fingerprints to a library. If<br>the spectral fingerprint for a specific organic chemical<br>associated with an SW threat is produced, it can be<br>added to a utility's fingerprint library to facilitate future<br>detection of the contaminant.          |
|                                                                                                                                                                                         | Specific Conductance | Some organic chemicals have charged functional<br>groups that can dissociate and form ionic species<br>when dissolved in water. An increase in specific<br>conductance could indicate the presence of organic<br>industrial chemicals.                                                                                                                                                                                                                                                                     |

Table 4-3. Monitoring Parameters that Support Detection of Contamination Incidents

| Contaminant Group and<br>Associated SW Threats                                                                                                                                     | Parameters              | Rationale for Parameter Selection                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organic Industrial Chemicals<br>from SW threats, such as:<br>• Chemical storage tanks<br>• Pesticide and fertilizer<br>storage tanks<br>• Transportation corridors<br>• Watercraft | Toxicity                | Toxicity provides a general indication of the presence<br>of a potentially toxic substance and thus may detect<br>the presence of toxic industrial chemicals. Note that<br>toxicity monitors vary widely in how they respond to<br>different chemicals. |
| Petroleum Products<br>from SW threats, such as:<br>• Petroleum storage tanks                                                                                                       | DOC/TOC                 | DOC/TOC can be used to determine the carbon<br>concentration associated with petroleum products. An<br>increase in DOC/TOC could indicate the presence of<br>petroleum products.                                                                        |
| <ul> <li>Shale gas and oil drilling</li> <li>Transportation corridors</li> </ul>                                                                                                   | Hydrocarbons            | Hydrocarbon monitoring can provide a direct measure of hydrocarbon concentrations in a source water.                                                                                                                                                    |
| Watercraft                                                                                                                                                                         | Toxicity                | Toxicity provides a general indication of the presence<br>of a potentially toxic substance and thus may detect<br>the presence of petroleum products. Note that toxicity<br>monitors vary widely in how they respond to petroleum<br>products.          |
| Algal Toxins/Harmful Algal<br>Blooms (HABs)<br>from SW threats, such as:                                                                                                           | Ammonia                 | Ammonia can be monitored to detect increases in nutrient loading that can support harmful algal bloom formation.                                                                                                                                        |
| <ul><li>Agricultural runoff</li><li>Urban runoff</li></ul>                                                                                                                         | DO                      | Sharp decreases in DO concentrations can indicate the formation of algal blooms.                                                                                                                                                                        |
| <ul> <li>Wastewater treatment<br/>plant discharges</li> </ul>                                                                                                                      | Nitrate and Nitrite     | Nitrate and nitrite can be monitored to detect increases<br>in nutrient loading that can support harmful algal<br>bloom formation.                                                                                                                      |
|                                                                                                                                                                                    | Orthophosphates         | Orthophosphates can be monitored to detect increases in nutrient loading that can support harmful algal bloom formation.                                                                                                                                |
|                                                                                                                                                                                    | Photosynthetic Pigments | An increase in photosynthetic pigments can provide a direct indication of algal activity.                                                                                                                                                               |
|                                                                                                                                                                                    | рН                      | Increases in pH can occur due to photosynthetic activity and microbial respiration and thus may be an indication of algal bloom formation.                                                                                                              |
|                                                                                                                                                                                    | Turbidity               | Increased turbidity can indicate the formation of algal blooms.                                                                                                                                                                                         |
|                                                                                                                                                                                    | Toxicity                | Toxicity provides a general indication of the presence<br>of a potentially toxic substance and thus may detect<br>the presence of toxins. Note that toxicity monitors vary<br>widely in how they respond to algal toxins.                               |
| Wastewater<br>from SW threats, such as:<br>• Wastewater outfall                                                                                                                    | Ammonia                 | Ammonia is typically the most prominent nitrogen<br>species in raw wastewater. Thus, monitoring for<br>ammonia can be an effective method of detecting<br>wastewater discharges.                                                                        |
| <ul><li>Wastewater holding ponds</li><li>Spray field runoff</li></ul>                                                                                                              | DO                      | Sharp decreases in DO concentrations can indicate<br>the release of wastewater, which would elevate the<br>bio-chemical oxygen demand.                                                                                                                  |
|                                                                                                                                                                                    | Nitrate and Nitrite     | Nitrate and nitrite concentrations can be significant in<br>wastewater effluent from plants that practice<br>nitrification. Thus, monitoring for nitrate and nitrite can<br>be an effective method of detecting wastewater<br>discharges.               |

| Contaminant Group and<br>Associated SW Threats                        | Parameters           | Rationale for Parameter Selection                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wastewater<br>from SW threats, such as:<br>• Wastewater outfall       | Orthophosphates      | Phosphates can be present in wastewater effluent. As such, monitoring for orthophosphates can be an effective method of detecting wastewater discharges.                                                                                                           |
| <ul><li>Wastewater holding ponds</li><li>Spray field runoff</li></ul> | DOC/TOC              | DOC/TOC can be used to determine the carbon concentration associated with all organic compounds. An increase in DOC/TOC could indicate the release of wastewater.                                                                                                  |
|                                                                       | Specific Conductance | Some contaminants in wastewater have charged<br>functional groups that increase the ionic strength of a<br>solution. An increase in specific conductance could<br>indicate a higher concentration of wastewater.                                                   |
|                                                                       | Toxicity             | Toxicity provides a general indication of the presence<br>of a potentially toxic substance and thus may detect<br>the presence of toxic chemicals present in wastewater.<br>Note that toxicity monitors vary widely in how they<br>respond to different chemicals. |
|                                                                       | Turbidity            | An increase in turbidity can indicate an increase in the concentration of suspended solids and microorganisms that may be present in wastewater.                                                                                                                   |

Note: It is recommended that pH and temperature be selected for all contaminant groups and SW threats as these parameters are important for the fundamental understanding of aqueous chemistry.

### Parameter Selection to Monitor Threats to Long-Term Water Quality

The parameters useful for monitoring of threats to long-term water quality will depend on the specific contaminants associated with high-risk SW threats. Selected parameters should be capable of providing useful information about the specific contaminants or contaminant classes identified during the risk assessment. **Table 4-4** lists several contaminant groups, potentially useful monitoring parameters, and the rationale for how parameters can be used to detect contaminant groups. For this design goal, parameter selection should consider how the SW threats are likely to alter water quality over time.

| Contaminant Group and Associated SW Threats                                                                                                                                                                     | Parameters          | Rationale for Parameter Selection                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Wastewater/stormwater</u><br>from SW threats, such as:<br>• Wastewater outfalls<br>• Wastewater holding ponds<br>• Stormwater outfalls<br>• Combined sewer overflows<br>• Septic systems<br>• Climate change | Ammonia             | Elevated concentrations of ammonia can harm<br>aquatic life, adversely impact beneficial uses (e.g.,<br>fisheries), and adversely impact treatment<br>processes such as disinfection.                                                                                                                                          |
|                                                                                                                                                                                                                 | DO                  | Insufficient DO can damage the aquatic ecosystem<br>and adversely impact beneficial uses (e.g.,<br>recreational activities).                                                                                                                                                                                                   |
|                                                                                                                                                                                                                 | DOC/TOC             | Elevated concentrations of DOC/TOC can indicate<br>higher pollutant loading, which would be harmful to<br>the overall health of the waterbody. In extreme<br>cases, a sustained increase in DOC/TOC may<br>require modifications to treatment processes.                                                                       |
|                                                                                                                                                                                                                 | Nitrate and Nitrite | Elevated concentrations of nitrate and nitrite can<br>indicate higher nutrient loading, with the potential to<br>trigger algal blooms and HABs. In extreme cases, a<br>sustained increase in nitrate and nitrite may require<br>the addition of a treatment process for nitrate<br>removal to meet drinking water regulations. |

Table 4-4. Monitoring Parameters that Support Monitoring of Long-Term Water Quality

| Contaminant Group and<br>Associated SW Threats                                                              | Parameters              | Rationale for Parameter Selection                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wastewater/stormwater<br>from SW threats, such as:<br>• Wastewater outfalls                                 | Orthophosphates         | Elevated concentrations of orthophosphates can<br>indicate higher nutrient loading with the potential to<br>trigger algal blooms and HABs.                                                                                                                                                                                                                                                                                              |
| <ul> <li>Wastewater holding ponds</li> <li>Stormwater outfalls</li> <li>Combined sewer overflows</li> </ul> | Photosynthetic Pigments | An increase in photosynthetic pigments is a direct indicator of the level of algal activity and the potential for HABs.                                                                                                                                                                                                                                                                                                                 |
| <ul><li>Septic systems</li><li>Climate change</li></ul>                                                     | Specific Conductance    | Elevated specific conductance could result in an<br>exceedance of secondary drinking water standards<br>and decreased customer acceptance of the water.<br>If bromide is one of the inorganic chemicals<br>contributing to the increase, it could result in higher<br>concentrations of disinfection byproducts (DBPs),<br>potentially requiring source water blending or<br>addition of advanced treatment (e.g., reverse<br>osmosis). |
|                                                                                                             | Toxicity                | Can indicate the presence of toxins that are<br>harmful to aquatic life and degrade the overall<br>health of the waterbody. Specific toxins could<br>require additional treatment processes.                                                                                                                                                                                                                                            |
|                                                                                                             | Turbidity               | Increased turbidity could adversely impact the<br>overall health of a waterbody by reducing the depth<br>of sunlight penetration. A significant and sustained<br>increase in turbidity could require treatment<br>process adjustments to maintain acceptable<br>effluent water quality.                                                                                                                                                 |
| Inorganic and organic nutrients<br>from SW threats, such as:<br>• Agricultural runoff                       | Ammonia                 | Elevated concentrations of ammonia can harm<br>aquatic life, adversely impacting beneficial uses<br>(e.g., fisheries), and can adversely impact<br>treatment processes such as disinfection.                                                                                                                                                                                                                                            |
| <ul><li>Urban runoff</li><li>Wastewater outfalls</li><li>Wildfires</li></ul>                                | DO                      | Insufficient DO can damage the aquatic ecosystem<br>and adversely impact beneficial uses (e.g.,<br>recreational activities).                                                                                                                                                                                                                                                                                                            |
| Climate change                                                                                              | DOC/TOC                 | Elevated concentrations of DOC/TOC can indicate<br>higher pollutant loading, which would be harmful to<br>the overall health of the waterbody. In extreme<br>cases, a sustained increase in DOC/TOC may<br>require modifications to treatment processes.                                                                                                                                                                                |
|                                                                                                             | Nitrate and Nitrite     | Elevated concentrations of nitrate and nitrite can<br>indicate higher nutrient loading, with the potential to<br>trigger algal blooms and HABs. In extreme cases, a<br>sustained increase in nitrate and nitrite may require<br>the addition of a treatment process for nitrate<br>removal to meet drinking water regulations.                                                                                                          |
|                                                                                                             | Orthophosphates         | Elevated concentrations of orthophosphates can<br>indicate higher nutrient loading with the potential to<br>trigger algal blooms and HABs.                                                                                                                                                                                                                                                                                              |
|                                                                                                             | Photosynthetic Pigments | An increase in photosynthetic pigments is a direct indicator of the level of algal activity and the potential for HABs.                                                                                                                                                                                                                                                                                                                 |

| Contaminant Group and<br>Associated SW Threats                                                                                                                      | Parameters           | Rationale for Parameter Selection                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Inorganic and organic nutrients<br>from SW threats, such as:<br>• Agricultural runoff<br>• Urban runoff<br>• Wastewater outfalls<br>• Wildfires<br>• Climate change | Specific Conductance | Elevated specific conductance could result in an<br>exceedance of secondary drinking water standard<br>and decreased customer acceptance of the water<br>If bromide is one of the inorganic chemicals<br>contributing to the increase, it could result in higher<br>concentrations of DBPs, potentially requiring<br>source water blending or addition of advanced<br>treatment (e.g., reverse osmosis). |  |
| Pesticides and herbicides<br>from SW threats, such as:<br>• Agricultural runoff<br>• Urban runoff                                                                   | DOC/TOC              | An increase in DOC/TOC can indicate a higher<br>loading of pesticides and herbicides, which may<br>adversely impact the overall health of the<br>waterbody and require significant treatment<br>modification.                                                                                                                                                                                            |  |
| <ul> <li>Transportation runoff</li> </ul>                                                                                                                           | Spectral Absorbance  | An increase in spectral absorbance can indicate a<br>higher loading of pesticides and herbicides, which<br>may adversely impact the overall health of the<br>waterbody and require significant treatment<br>modification.                                                                                                                                                                                |  |
|                                                                                                                                                                     | Toxicity             | An increase in the toxicity of a waterbody could be directly attributed to increased loading of pesticides and herbicides.                                                                                                                                                                                                                                                                               |  |

Note: It is recommended that pH and temperature be selected for all contaminant groups and SW threats as these parameters are important for the fundamental understanding of aqueous chemistry.

# **Section 5: Monitoring Stations**

Once monitoring locations and parameters have been selected, monitoring stations can be designed. Each monitoring station will consist of the water quality instruments used to measure the selected parameters and the ancillary equipment needed to bring a sample into contact with sensors, power the station, communicate data to a utility control center, and protect the station from the environment, vandalism, or tampering. The actual design of a station will depend on:

- Monitoring location
- Parameters to be monitored at the location
- Practical considerations for installation and maintenance of the station at the location

#### TARGET CAPABILITY

OWQM-SW stations are designed to fully achieve selected monitoring goals.

A basic functional block diagram of a monitoring station is shown in **Figure 5-1**, which delineates the monitoring station functions as follows:

- Instrumentation. Provides the means to measure selected water quality parameters.
- **Computing element.** Facilitates the transfer of OWQM-SW data and other datastreams to the communications function, enables remote control of monitoring stations, and provides processing capabilities at stations.
- **Communications.** Provide a means to transfer data collected by a monitoring station to a control center and instructions from a control center to a station.
- **Power supply and distribution.** Supplies sufficient power to energize equipment in a monitoring station.
- Accessories. Perform other functions not defined above.
- **Station structure.** Provides a means to mount and protect instrumentation and ancillary equipment both from the environment and potential tampering.

The following sections describe each of the functions identified in Figure 5-1.

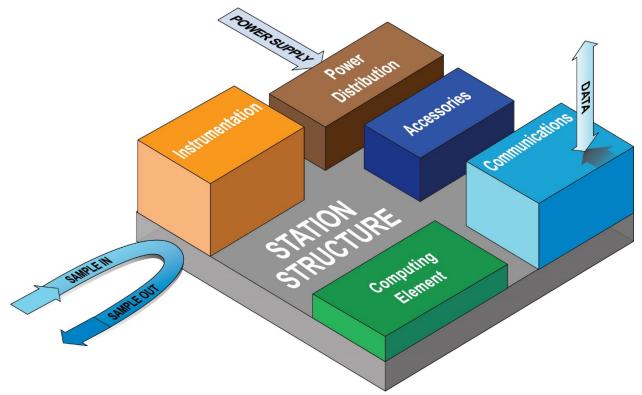



Figure 5-1. Functional Block Diagram of a Monitoring Station

# 5.1 Instrumentation

In many cases, multiple sensor technologies are available to measure a given parameter, and specific instruments will need to be selected for a monitoring station. Several factors warrant consideration when selecting an instrument, including instrument performance, sampling and analysis interval, environment at the OWQM-SW installation site, lifecycle cost, and vendor support. An overview of monitoring parameters and related sensor technologies, as well as factors that should be considered during the selection process, are covered in *List of Available OWQM Instruments*.

# 5.2 Sampling

Two commonly used approaches to source water sampling for online measurement are:

- Immersion of sensors directly into a waterbody
- Pumping the source water to sensors housed in a flow-cell

Immersion of sensors directly into a waterbody ensures that the sensors are measuring water quality with minimal disturbance or change to the sample. This sampling method is useful for parameters such as DO, which can change due to mixing and transport to a flow-cell. Many parameters can be monitored by sensors that can be immersed directly into a waterbody. A sensor designed for use in this manner is usually equipped with a protective housing and a means of cleaning the measurement surface using wipers, brushes, or compressed air.

The second sampling approach involves pumping a water sample to sensors inserted into a flow-cell that is not immersed in the waterbody. This method requires installation of a pump and associated piping to move the sample to the monitoring station and a flow-cell to ensure steady flow to all sensors. Some sensors designed for use in a flow-cell are equipped with wipers, brushes, or compressed air to control fouling. Flow-cells are useful in the following situations:

- When using sensors that only operate correctly at specific flow rates and pressures, and cannot be placed directly into a waterbody (e.g., many ammonia sensors).
- When using instruments that require a controlled environment to operate correctly.
- When instruments use reagents that cannot be discharged directly into a waterbody.

### **REPRESENTATIVE SAMPLES**

When sampling a waterbody, the sample represents only the actual point where it was taken. A waterbody is complex in its composition in all three dimensions, so a truly representative view of the waterbody would require profiling in three dimensions, which is impractical to do in real time. However, sensors placed at thoughtfully selected positions in a waterbody can provide information needed for a specific OWQM-SW application.

A comparison of the key attributes of the two sample measurement options (immersion and flow-cell) is provided in **Table 5-1**. The attributes used for the comparison are:

- **Measurement Interference.** The degree to which the sampling method introduces artifacts that could interfere with measurement.
- **Measurement Delay.** The degree to which the sampling method increases the time between when a sample is taken from a source water and when a sensor makes a measurement.
- **Exposure to Environment.** The degree to which the sampling method exposes instrumentation to variable or hostile environmental conditions.
- Lifecycle Cost. The degree to which the sampling method increases the cost of installing and maintaining the instrumentation.
- **Maintainability.** The degree to which the sampling method increases the time and effort necessary to maintain the instrumentation.

| Attribute                   | Immersion | Flow-cell | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Measurement<br>Interference | •         | •         | Placing sensors directly in the waterbody eliminates many<br>sources of measurement interferences that may be introduced<br>when using a flow-cell, such as turbulence and potential<br>contamination from pumps and piping.                                                                                                                                                                                                                    |  |
| Measurement<br>Delay        | •         | 0         | When sensors are immersed in the source, measurement delay is<br>negligible. When a flow-cell is used, the sample is pumped from<br>the point it is extracted from the source to the sensors in the flow-<br>cell. The transit time to the flow-cell is determined by the distance<br>between the monitoring location and station as well as the flow<br>rate. This delay can vary from minutes to hours depending on the<br>distance and flow. |  |
| Exposure to<br>Environment  | 0         | ●         | Use of a flow-cell allows for more control over the environment in which the instruments operate.                                                                                                                                                                                                                                                                                                                                               |  |
| Lifecycle Cost              | Ŷ         | Ŷ         | The use of a flow-cell requires additional piping and possibly pumps, which can increase installation costs. However, sensors installed directly into a waterbody may be more costly to maintain.                                                                                                                                                                                                                                               |  |

Table 5-1. Comparison of Key Attributes of Two Sample Measurement Options

| Attribute       | Immersion | Flow-cell | Comments                                                                                                                                                                       |
|-----------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintainability | 0         | Φ         | Use of a flow-cell allows the sensors to be placed in a more convenient location for maintenance. However, this option also requires piping and pumps that must be maintained. |

Rating: • = Positive; • = Neutral;  $\circ$  = Negative

If reagents are used during measurement, the effluent sample stream should be properly disposed. This may require disposal into a sewer unless there is an NPDES permit to discharge the effluent sample stream into a waterbody. In cases where reagentless sensors are used and nothing is added to the sample stream, it may be possible to return the effluent sample stream to the source water following measurement.

# 5.3 Power Supply and Distribution

The choice of power supply for a monitoring station will be limited by the location where the monitoring station will be installed as well as the power requirements for the station equipment. Where it is readily available, grid power is often the simplest and least expensive power supply. However, if grid power is not available nearby, extending it to a monitoring station may be equally or more expensive than using an alternative supply (e.g., wind or solar supported by batteries). When using grid power, it is suggested that the monitoring stations have a dedicated circuit on the main breaker panel or a line conditioner to avoid erratic voltage or circuit breaker trips. To ensure continued operation of a monitoring station during minor power outages, an uninterruptible power supply should also be installed. Additional guidance on power distribution is available in *Guidance for Building Online Water Quality Monitoring Stations*.

# **5.4 Communications**

The selection of a communications solution to transmit data from a monitoring station to a control center is strongly influenced by the station's location. Communications solutions may include wired and wireless technologies. One potential advantage of using a flow-cell for sampling is that wired communication methods may be available near a monitoring station installation site. <u>Guidance for Designing Communications Systems for Water Quality Surveillance and Response Systems</u> provides further details for common communications options as well as a set of evaluation criteria to support the selection process.

# 5.5 Packaging

Packaging for a monitoring station includes the materials and devices used to mount or house sensors and ancillary equipment. To achieve the various design goals and performance objectives, monitoring stations may need to be installed in buildings, near other equipment, or in remote areas near or directly in the source water, all of which will influence the station packaging. Monitoring stations are typically

constructed using one of five primary design types:
Wall-mounted racks are assembled by securing instruments and related equipment to a mounting panel that is attached to a wall.

- **Free-standing racks** are constructed by securing instruments and related equipment to a mounting panel that is attached to an open, structural frame that provides access on both sides of the panel.
- **Enclosed stations** house instruments and related equipment inside a custom-made, prefabricated, or National Electrical Manufacturers Association (NEMA) enclosure.
- **Compact stations** are smaller versions of enclosed stations that can be designed around one or two reagent-based instruments or a reagentless instrument that measures multiple parameters.

• **Floating platforms** allow for a station to be located on the surface of a waterbody. These stations typically consist of one or more cabinets containing instrumentation and electronics, which are mounted on a pontoon or buoy. Only reagentless instruments are used on floating platforms to avoid the difficulties associated with replacing reagents and properly disposing of the waste stream.

Details for each of these monitoring station designs are provided in *Guidance for Building Online Water Quality Monitoring Stations*.

# **Section 6: Information Management and Analysis**

The data generated by the monitoring stations must be converted into actionable information to achieve the selected design goals and provide the utility with the maximum value for its investment in OWQM-SW. Actionable information is produced by analyzing OWQM-SW data, along with supporting information, and presenting relevant results to the end user in a manner that is easy to understand. To achieve these objectives, an OWQM-SW information management system must provide data storage, access, analysis, notification, and visualization capabilities.

#### TARGET CAPABILITY

An information management system is used to provide data storage, access, analysis, notification, and visualization capabilities.

The development process discussed in this section is consistent with the general principles of information management system design presented in Section 4 of the <u>SRS Integration Guidance</u>, with additional considerations that are specific to an OWQM-SW information management system. This section covers the following topics:

- Analysis and visualization techniques
- OWQM-SW information management system *architecture*
- OWQM-SW information management system requirements

## 6.1 Analysis and Visualization Techniques

OWQM-SW data is analyzed to identify changes in source water quality that require attention from utility personnel and may prompt actions to meet the OWQM-SW design goals. Analysis of OWQM-SW data generates information that visualization tools display in a manner that is easily interpreted

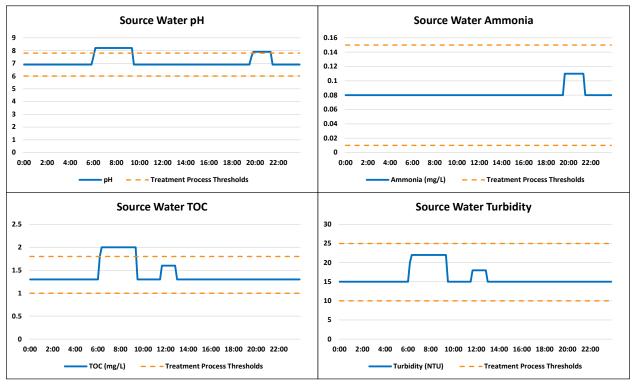
#### INFORMATION UTILIZATION

During a forum with chief information officers (CIOs) from 50 major utilities across the United States, the CIOs estimated that only 10 to 15 percent of the information gathered by their organizations is properly evaluated. Automated analysis and effective visualization of data can help to address this underutilization of collected data.

and applied by utility personnel. Analysis and visualization techniques will vary for each design goal as described below.

#### PREPARATION FOR OWQM-SW DATA ANALYSIS

To use OWQM-SW data effectively, it is first necessary to verify that it meets data quality objectives (e.g., *accuracy* and completeness) and characterize normal variability:


- 1. Verify that the data being used for analysis meets data quality objectives. All available water quality sensors produce data that exhibits an inherent level of noise and outliers on occasion. When performing the types of analyses described in this document, it is important to have reliable data that meets data quality objectives. Before using the data collected from monitoring stations, obvious errors should be removed or corrected, a process referred to as data validation. Data validation may be performed by a computer at a monitoring station or as part of the analytics layer of a centralized information management system as described in Section 6.2.
- 2. Establish the normal variability, or *baseline*, for OWQM-SW water quality data. The data analysis approaches described in this section rely on understanding the normal variability for each parameter at each monitoring location to establish a baseline.

Additional guidance on techniques for data validation and establishment of a baseline can be found in <u>Exploratory</u> <u>Analysis of Time-series Data to Prepare for Real-time Online Water Quality Monitoring</u>.

#### Analysis and Visualization to Optimize Treatment Processes

OWQM-SW for treatment process optimization involves monitoring OWQM-SW data in real time to identify changes in source water quality that require treatment process adjustments. It requires an understanding of the relationships between source water quality and the process adjustments necessary to improve treatment process performance. This knowledge can be gained through bench- or pilot-scale studies, or through application of institutional knowledge developed through operation of the full-scale plant. Two methods of analyzing OWQM-SW data to support treatment optimization are *thresholds* and *treatment process models*.

The use of thresholds to optimize treatment processes involves real-time monitoring of the parameters that affect the treatment process performance and adjusting the process when the monitored parameters cross previously defined thresholds. Most processes are impacted by multiple parameters, so individual parameter thresholds should not be considered in isolation. To help operators identify potentially significant changes in water quality, an alert can be generated based on a parameter crossing a threshold (minimum or maximum). Threshold analysis is often visualized using time-series plots that show a moving window of recently measured values along with the minimum and maximum thresholds, as illustrated in **Figure 6-1**. The thresholds, shown as dashed orange lines, represent the range of variability in which the current treatment process settings can achieve optimized treatment. In this example, the x-axis displays the time of day in hours and the y-axis displays the parameter concentration in the units specified in the legend. The information provided through these plots, along with operator knowledge about the treatment process, can then be used to make process adjustments.



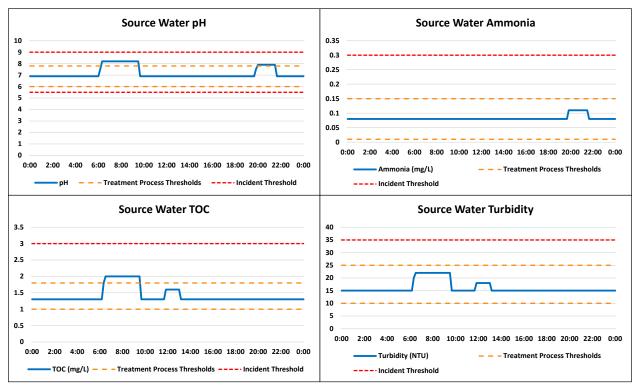
Note that this figure displays idealized data, without noise, to clearly demonstrate the concept of threshold analysis. Figure 6-1. Time-Series Plots and Thresholds for Treatment Process Optimization

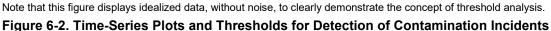
Thresholds must be defined for each monitored parameter and each treatment process. A combination of statistical analysis of historic water quality data and knowledge of treatment process performance can be used to establish thresholds for treatment optimization. Statistical analysis can be used to develop thresholds based on typical variability in a water quality parameter over a relevant time period (e.g., daily or weekly for highly variable parameters, monthly or seasonally for less variable parameters). Knowledge of treatment process performance can help to correlate process settings with different source water quality types. A five to ten percent factor of safety should be applied to thresholds such that a process will continue to produce water of acceptable water quality as the parameter value begins to cross the threshold. This provides operators with time to investigate and respond to a source water quality change.

The second analysis approach involves the use of treatment process models. These models codify the relationship among influent water quality, treatment process settings, and treatment process effluent water quality. Models for treatment processes can be categorized as mechanistic, statistical, or knowledge-based (McEwen, 1998). Mechanistic models relate inputs and outputs to the fundamental properties of the processes and use empirically determined coefficients to calibrate the model to a specific treatment plant. Statistical models are used when reliable mechanistic models are unavailable; inputs are related to outputs based on statistical analysis of historic data. Knowledge-based models use techniques such as neural networks and expert systems to describe complex systems where there is a limited understanding of the specific principles that drive the system. These models use knowledge of the inputs, outputs, human experience, and past performance to predict future process performance.

Treatment process models use validated OWQM-SW data, current treatment process settings, and process effluent water quality to determine the process adjustments necessary (e.g., chemical dosing, loading rates) to maintain optimized treatment. If the model is connected to a supervisory control and data acquisition (SCADA) system, it could be configured to automatically adjust treatment process settings. If not, operators can manually adjust treatment process settings as described in Section 7.1.

### Analysis and Visualization for Detection of Contamination Incidents


OWQM-SW for detection of contamination incidents involves monitoring OWQM-SW data in real-time to identify water quality anomalies. Two methods of using OWQM-SW data to support detection of contamination incidents are threshold analysis and automated *anomaly detection systems* (ADSs).


A simple approach for detecting contamination incidents uses thresholds for individual monitoring parameters. The thresholds are based on the normal variability of each parameter at each location so that a threshold exceedance is indicative of a water quality anomaly. The use of individual parameter thresholds for the detection of contamination incidents in drinking water distribution systems is discussed in detail in the article *Parameter Set Points: An Effective Solution for Real-Time Data Analysis* (Umberg and Allgeier, 2016).

Thresholds can be established using statistical analysis of historical data gathered over a representative period, although it may be necessary to use specialized software packages to analyze the large volume of OWQM-SW data needed to perform these analyses. Alternatively, the analytics necessary to calculate statistically derived thresholds may be built into an information management system. Threshold values are generally set to avoid excessive invalid alerts while maintaining sufficient sensitivity to detect contamination incidents. If there are significant shifts in water quality, such as seasonal changes, unique thresholds may need to be established for each time period with a significantly different water quality baseline.

#### Online Water Quality Monitoring in Source Water

An example of a visualization technique to support threshold analysis is shown in **Figure 6-2**. In this example, the thresholds used for treatment process optimization are shown as dashed orange lines, as described in Figure 6-1. The red dashed lines indicate thresholds for detection of contamination incidents, which are set at the 99.9<sup>th</sup> *percentile*, as calculated from a statistical analysis of six months of data. In this figure, the thresholds for detection of contamination incidents are further from the typical parameter values compared with the thresholds for treatment optimization. Also, with the exception of pH, only upper thresholds were established for detection of contamination incidents because a contamination incident would not be expected to decrease ammonia, TOC, or turbidity. The reason for the differences between thresholds for treatment optimization and contamination incident detection is that the former are intended to guide treatment process changes in response to typical water quality changes, whereas the latter are intended to identify anomalies that are outside of the range of typical water quality variability.





More complex ADSs use software-based algorithms that are generally able to analyze the behavior of multiple parameters measured at a single monitoring location to identify anomalies. Some ADSs require manual input of algorithm coefficients based on guidelines provided by the developer and basic knowledge of the monitored datastreams. These ADSs use an initial set of coefficients that can then be modified as typical water quality patterns are better characterized. Some ADSs learn normal variability using training datasets to balance the number of invalid alerts against the possibility of missing a true anomaly. These software tools may include features that allow a user to assign a specific cause to alerts and classify each as valid or invalid, which can reduce the future occurrence of invalid alerts without compromising detection capabilities.

### ANOMALY DETECTION SYSTEMS

ADSs that were evaluated as part of the <u>Water Quality</u> <u>Event Detection System</u> <u>Challenge</u> under EPA's SRS program include:

- CANARY (EPA)
- ana::tool (s::can)
- Hach Event Monitor (Hach)

Prior to selecting an ADS, a utility should evaluate multiple options using representative historical data to determine which option is able to most reliably differentiate between true water quality anomalies and typical water quality variability at each monitoring location.

A *dashboard* is a visually oriented user interface that integrates and displays data from multiple sources spatially and graphically. An example of a GIS-based dashboard designed to display data from monitoring locations and United States Geological Survey (USGS) stations is shown in **Figure 6-3**. Additional information resources that support the interpretation of water quality data, such as weather and streamflow data, can be incorporated into a dashboard design. Presenting information from a variety of resources in a spatial context can be valuable during the investigation of a water quality anomaly as discussed in Section 7.1. Additional information about the features and design of dashboards is available in *Dashboard Design Guidance for Water Quality Surveillance and Response Systems*.

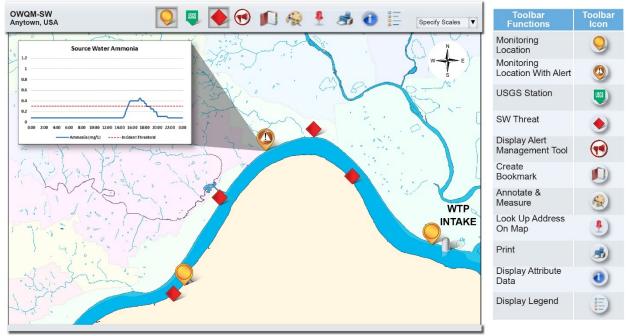



Figure 6-3. OWQM-SW Display showing Alert Status and Time-Series Data for an OWQM-SW Location

To support real-time analysis of OWQM-SW data, water quality baselines should be regularly updated to reflect recent conditions. When there is a change in the baseline, threshold values or ADS settings will need to be updated accordingly. The required frequency of these updates depends on the variability of the monitored parameters at each monitoring location. For example, updates to the baseline may coincide with seasonal changes. Many ADSs can automatically adapt to a changing baseline as part of their learning algorithms.

When potential water quality anomalies are detected by any method, OWQM-SW information systems should generate an alert and provide notifications to operators to inform them of water quality changes that require attention. As operators may not have the time to frequently review new data as it is generated, notifications should be provided using flashing icons on a screen, emails, or text messages. Where possible, notifications should contain details about the alert (e.g., time, monitoring location, alerting parameter, current parameter value). An example of a text message notification of an OWQM-SW alert, and the associated alert details available through the dashboard, is shown in **Figure 6-4**.

| Aug 18, 2016, 04:02 AM       | ID  | Management To<br>Status | Component                                                     | Туре                          | Pressure<br>Zone | Date/Time     |
|------------------------------|-----|-------------------------|---------------------------------------------------------------|-------------------------------|------------------|---------------|
| OWQM-SW Alert generated on   | 108 | Acknowledge             | ed OWQM-SW                                                    | Turbidity                     |                  | 2016/07/05 09 |
| 2016/08/18 at 04:00.         | 109 | Acknowledge             | ed OWQM-SW                                                    | pН                            | Intake           | 2016/07/30 13 |
| Alert location = River Bend. | 110 | Acknowledge             | ed OWQM-SW                                                    | тос                           | South Flats      | 2016/08/03 11 |
| and specific conductance.    | 111 | Acknowledge             | ed OWQM-SW                                                    | TOC                           | River Bend       | 2016/08/18 04 |
|                              |     | Add Comment:            | 2016/08/18 04:08<br>naintenance record<br>River Bend. No issu | is for the monifies reported. | oring station at |               |
|                              |     |                         | Map Even                                                      | Update Statu                  | 5                | 1             |
|                              |     |                         |                                                               |                               |                  |               |

### Figure 6-4. Text Message and Dashboard Alert Notifications

#### Analysis and Visualization for Monitoring Threats to Long-Term Water Quality

Monitoring threats to long-term water quality relies on the ongoing analysis of OWQM-SW data over the course of multiple years to identify trends and sustained changes in the baseline. Information derived from OWQM-SW can inform development of strategies to respond to a deterioration in source water quality that impacts utility operations and water quality goals.

Multiple years of data should be analyzed for a given parameter and location to distinguish statistically significant changes in the baseline from typical seasonal patterns. After each parameter at each location has been characterized, a systematic analysis can be performed to determine whether (1) the baseline for multiple parameters has changed at a specific monitoring location and (2) the baseline for a given parameter has changed at multiple monitoring locations. These results can help to assess whether the change is widespread throughout the source water and watershed or isolated to a specific area.

A variety of visual and statistical techniques can be used to identify significant, sustained changes in the baseline for a parameter. Examples include graphical analysis, hypothesis testing, correlations, and trend analysis, as briefly described in **Table 6-1**. More detail about the types of statistical analysis appropriate for characterizing long-term water quality are provided in *Statistical Methods in Water Resources*.

| Type of Analysis                      | Statistical Methods     | Example Applications                                                                                                          |  |
|---------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Graphical Data Analysis               | Time Series             | Display temporal trends in the data                                                                                           |  |
|                                       | Histograms              | Display data sorted into meaningful categories                                                                                |  |
|                                       | Box and Whisker Plots   | Compare statistics for OWQM-SW data from<br>different monitoring locations                                                    |  |
|                                       | Scatterplots            | Explore a potential relationship between two variables, such as flow and turbidity                                            |  |
| Hypothesis Testing<br>(Nonparametric) | T-Test                  | Confirm that a specific parameter has changed over a defined period of time                                                   |  |
|                                       | Rank-Sum Test           | Determine whether the values of a parameter at two different locations are similar or different                               |  |
|                                       | Matched Pair Testing    | Determine whether a parameter has changed from year to year                                                                   |  |
| Correlation                           | Correlation Coefficient | Establish the strength of the relationship<br>between two items, e.g., recreational river<br>usage and source water turbidity |  |
|                                       | Linear Regression       | Determine whether there is a statistically significant relationship between two items, e.g., source water TOC and turbidity   |  |
|                                       | Multivariate Analysis   | Consider the combined impact of multiple variables on a system or process                                                     |  |
| Trend Analysis                        | Mann-Kendall Test       | Determine whether values either only increase<br>or only decrease                                                             |  |
|                                       | Seasonal Kendall Test   | Determine whether parameters have changed<br>over time, taking into account seasonal<br>variability                           |  |

 Table 6-1. Statistical Analysis Techniques for Characterizing Long-Term Water Quality

**Figure 6-5** provides an example of a time-series plot used to display a long-term trend in water quality. This figure shows a plot of monthly TOC averages as the blue line and the yearly TOC averages as the red dotted line. The increasing trend in yearly TOC averages over a 10-year period can be clearly seen in this chart. This is one of the simpler visualization approaches for exploring potential trends, and the results of such simple analyses may lead to the use of more complex statistical techniques as presented in Table 6-1.

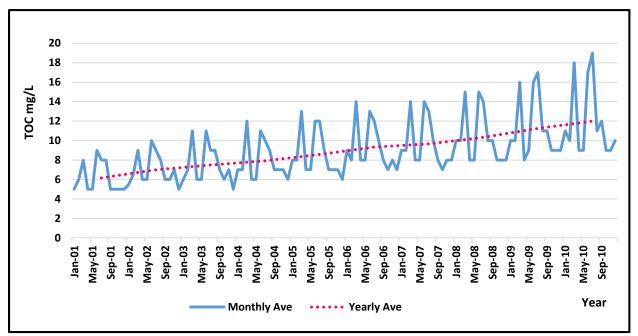



Figure 6-5. Example Plots of Monthly Average and Yearly Average for Source Water TOC

When considering multiple monitoring locations in a watershed, a GIS-based presentation can provide an overview of parameter changes across the entire monitored area. The example in **Figure 6-6** shows the GIS display of the watershed with the monitoring locations color-coded to indicate the change in TOC over a 10-year period.

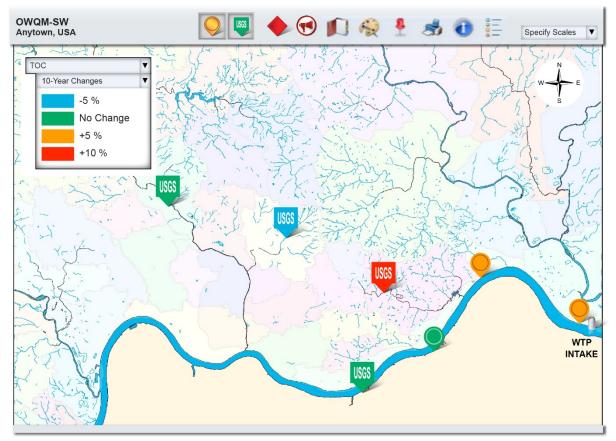



Figure 6-6. Geospatial Presentation Showing the Change in TOC over a 10-Year Period

# 6.2 Information Management System Architecture

OWQM-SW information management functions can be integrated into an existing information management system, or a dedicated OWQM-SW information system can be developed. In either case, a system will likely be centralized (e.g., at a utility's control center), and data will be transmitted from remote monitoring locations to this centralized system. The design of the information management system will be captured in the architecture, which is a conceptual representation of hardware, software, and processes that are part of the system.

Options for an OWQM-SW information management system architecture discussed in this document include:

- SCADA system. Integrating OWQM-SW functions into an existing SCADA system.
- **Dedicated information management system.** Implementing a dedicated information management system to provide the functions required for OWQM-SW, such as analysis, notification, and visualization.
- Cloud-based solutions. Using cloud services to provide the functions required for OWQM-SW.

### SCADA System

Monitoring stations can be added to an existing SCADA system, such as that used to monitor and control a treatment plant. Familiarity with SCADA may make it relatively simple and inexpensive to incorporate datastreams generated by OWQM-SW. An example of a SCADA architecture expanded to include OWQM-SW is shown in **Figure 6-7**. This arrangement leverages existing SCADA elements, such as a historian for data storage and a human machine interface (HMI) for visualization of OWQM-SW data. The same type of Programmable Logic Controllers (PLCs) used at existing monitoring locations can be used to provide monitoring and control functions at monitoring stations. However, an existing SCADA system may impose some limitations on OWQM-SW information management, such as the functionality for visualization, the number of users that can access the HMI, and the types of water quality instrumentation that can be used. Furthermore, utility information security policies may regulate connectivity outside of the utility, limiting connections to external sources of information that may be useful for understanding the source water and assisting with an investigation.

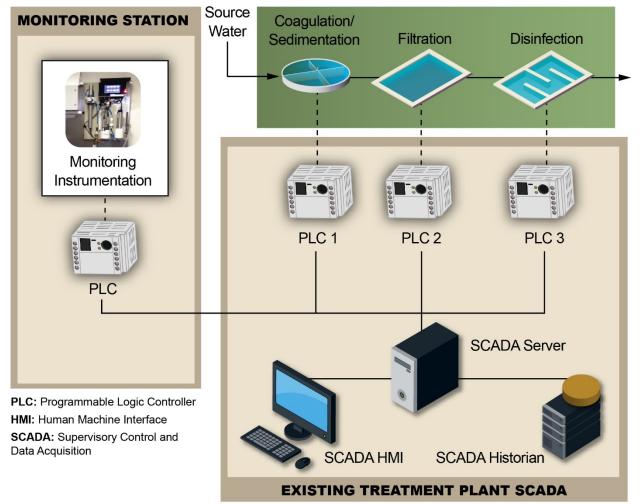



Figure 6-7. OWQM-SW Information Management as an Extension of an Existing SCADA Architecture

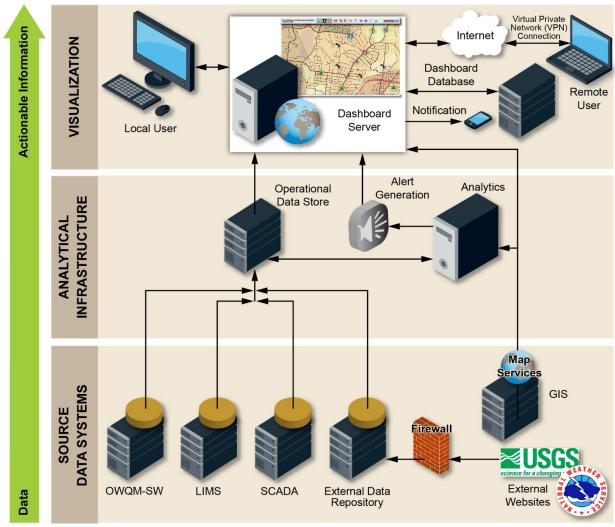
### Dedicated Information Management System

A dedicated information management system for OWQM-SW may be useful when:

- OWQM-SW produces data that is difficult to store in a SCADA historian. For example, spectral absorbance over multiple wavelengths can generate a spectral profile as an array of 256 data points for each sample. The design of some SCADA historians is not optimal for storing such arrays, but alternate database structures can be built to store these complex datastreams efficiently.
- OWQM-SW requires access to data on networks that cannot be accessed by the SCADA system due to security policies. For example, a requirement to display weather data or USGS flow data via an internet connection may preclude the use of SCADA.
- Remote access to OWQM-SW data is required, and security policies prohibit remote access to the SCADA system.

The use of a dedicated OWQM-SW information management system provides greater flexibility for achieving the required functionality, and it allows for connection with other information management systems within and external to the utility. **Figure 6-8** illustrates a conceptual architecture for a dedicated OWQM-SW information management system with connections to a treatment plant SCADA system, laboratory information management system (LIMS), and external data from the National Weather Service and USGS. This type of architecture can also incorporate more powerful analytics and visualization tools to assist with the investigation process.

### Cloud-Based Solutions


Cloud-based solutions provide another option for OWQM-SW information management. There are three types of cloud-based solutions:

- A hosted cloud is owned and maintained by a third party where the utility pays only for the portion of the cloud that it uses, usually on a lease-type of arrangement.
- A private cloud is owned by the utility, and uses cloud technology to provide the required services.
- Proprietary clouds are provided by vendors of many water quality instruments to interact with the instruments and collect the data generated.

Both SCADA-based and dedicated OWQM-SW information management systems can be implemented using cloud technology.

A hosted cloud may be attractive for a utility that wants to contract development and operation of the information management system as a third-party service rather than maintain the information technology (IT) infrastructure in-house. This approach may also allow for expedited implementation of the OWQM-SW information management system. The main advantage of a hosted system is that there is little capital expenditure required as the utility does not need to purchase hardware and software for the system.

A private cloud provides the same capabilities as a hosted cloud except that the utility owns the hardware and software. This requires capital expenditure to set up; however, the cloud would be under the utility's control.



OWQM-SW: Online Water Quality Monitoring in Source Water SCADA: Supervisory Control and Data Acquisition LIMS: Laboratory Information Management System

### Figure 6-8. Example of a Dedicated OWQM-SW Information Management System

Proprietary clouds provided by instrumentation vendors are used to collect, store, and process data, and provide a user interface for their specific sensors. This service often provides a low-cost and readily available method for manually or automatically accessing the data directly for each one of the devices, which can be useful when a small number of devices are deployed. However, this approach can present challenges when the data in the proprietary cloud requires integration with data that resides within other utility information management systems. In many cases, this integration may require the development of unique software (often referred to as "listener" software) to identify that new data has been uploaded to the cloud and transfer it to the utility system for further processing and storage.

# 6.3 Information Management System Requirements

OWQM-SW information management systems are unique for every utility due in part to differences in existing information management systems and capabilities, expertise of utility personnel responsible for developing and using the information management system, and resources available to develop an information management system to support OWQM-SW. Each utility will also establish unique design goals and performance objectives for OWQM-SW. These factors collectively influence the manner in which the OWQM-SW information management system is utilized by utility personnel and thus impact the requirements.

To develop an information management system that meets users' expectations and provides them with the information they need when they need it and in a usable format, information management requirements must be defined. This section references Section 4.2 of the <u>SRS Integration Guidance</u>, which describes a methodical, end-user driven process for developing requirements and selecting an information management system.

Two categories of requirements need to be developed for an OWQM-SW information management system:

- *Functional requirements* define key features and attributes of the system that are visible to end users. Examples of functional requirements include the manner in which data can be accessed, the types of tables and plots that can be produced through the user interface, the means by which alerts are transmitted to utility personnel, and the ability to generate custom reports. Functional requirements should be informed by end users.
- **Technical requirements** are system attributes and design features that are often not readily apparent to end users but are essential to meeting functional requirements and other design constraints. Examples include attributes such as system availability, information security and privacy, backup and recovery, data storage needs, and integration requirements. Technical requirements are generally developed by IT personnel or derived from IT standards.

### Functional Requirements

Before developing functional requirements, expected uses of the OWQM-SW information management system should be defined. Expected uses are simply the manner in which users expect to interact with the system. For example, users may want to review recent source water quality data daily to guide treatment plant operations, be notified of anomalous water quality conditions, and access a variety of information resources to investigate the cause of a source water quality anomaly. The expected uses of an information management system will guide the development of detailed functional requirements such as the examples described in **Table 6-2**.

| Title                                                  | Description                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentation of Monitoring<br>Station Operating Status | Colored icons are used to identify the current operating status of each monitoring station on the GIS display using the following attributes:<br>• Green – Normal operation, all systems functioning properly                                                                                                                          |
|                                                        | <ul> <li>Yellow – Some of the subsystems (e.g., sensors) malfunctioning</li> <li>Grey – Station not communicating and assumed to be offline</li> <li>Red – Station producing an ADS alert</li> </ul>                                                                                                                                   |
| Mouse Over and Drill Down                              | When users hover over an icon on the map, a pop-up box appears that displays detailed data associated with the icon (e.g., values, time-stamps, location, instrument status). A hyperlink is available in the pop-up box that opens a detailed data history in the user interface (e.g., time-series plots for monitoring parameters). |
| External Data Sources                                  | The OWQM-SW information management system will provide a connection to and obtain the latest information from:                                                                                                                                                                                                                         |
|                                                        | USGS river flow and water quality data                                                                                                                                                                                                                                                                                                 |
|                                                        | National Weather Service data                                                                                                                                                                                                                                                                                                          |
| Display of Overlays                                    | Multiple overlays can be displayed at the same time. Overlays that may be<br>displayed concurrently include:                                                                                                                                                                                                                           |
|                                                        | <ul> <li>Monitoring station location and status</li> </ul>                                                                                                                                                                                                                                                                             |
|                                                        | Current source water flow data                                                                                                                                                                                                                                                                                                         |
|                                                        | <ul> <li>Recent water quality data from grab samples</li> </ul>                                                                                                                                                                                                                                                                        |
|                                                        | Active spill reports                                                                                                                                                                                                                                                                                                                   |
| Generation of<br>Monitoring Station Reports            | Reports can be manually generated for any time period, and a report can be generated for a selected station that includes box-and-whisker plots for the parameters at the station and statistics on station equipment diagnostics.                                                                                                     |
| Remote Access                                          | Notifications and summary information can be accessed remotely using mobile devices, such as smartphones or tablets, over a secure connection.                                                                                                                                                                                         |
| Automated<br>Report Generation                         | The system will automatically generate customizable reports that provide validated data, analysis output, time-series plots, and statistical summaries even when there are no alerts produced in the reporting period.                                                                                                                 |
| Parameter Adjustment                                   | The system will include a user interface that provides users with the ability to easily adjust key parameters and display features without modifying the underlying code.                                                                                                                                                              |

Table 6-2. Examples of OWQM-SW Information Management Functional Requirements

### **Technical Requirements**

Technical requirements are often dependent on the functional requirements and should be developed after the functional requirements have been defined. Generally, development of technical requirements is the responsibility of IT personnel who consider the technical aspects of the OWQM-SW information management system design that are necessary to meet the functional requirements. Technical requirements will also be informed by IT policies, such as security protocols, and the need to adapt the system over time to incorporate new functions, datastreams, and features. Examples of technical requirements are provided in **Table 6-3**.

| Title                                                                | Description                                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Encryption                                                           | All interactions with the OWQM-SW information management system will be encrypted via Secure Socket Layer.                                                                                                                                                              |  |
| Map Service Utilization                                              | The OWQM-SW information management system will be able to read and display map services provided by the utility's GIS using a configurable list of map services.                                                                                                        |  |
| Size of the Operational<br>Data Store                                | The operational data store will provide ready access to the last 90 days of data for all source data systems used in the OWQM-SW information management system.                                                                                                         |  |
| Parameter Data Storage                                               | The OWQM-SW information management system will provide storage of datastreams for spectral profiles (256 data points per sample) and toxicity monitors.                                                                                                                 |  |
| External Data Sources                                                | National Weather Service and USGS data will be accessed via a secure connection.<br>Information resources associated with specific SW threats (e.g., spill reports, leak detection alerts from SW threats, discharge rates) will be accessed using a secure connection. |  |
| Design Flexibility and<br>Ability to Accommodate<br>New Requirements | Because the OWQM-SW system will be implemented in phases and expanded in the future, the system will have the flexibility to incorporate additional datastreams, monitoring locations, and external data sources.                                                       |  |

Table 6-3. Examples of OWQM-SW Information Management System Technical Requirements

The *Information Management Requirements Development Tool*, a software package designed to help users define and prioritize requirements for an information management system, can be used to develop and document the requirements for an OWQM-SW information management system. This tool is populated with common functional and technical requirements for an information management system designed to support OWQM operations. It also provides a feature for generating a consolidated list of functional and technical requirements that can be used to develop design and/or bid documents as appropriate.

# **Section 7: Investigation and Response Procedures**

Utilization of OWQM-SW data to guide utility decisions related to treatment operations and response to water quality anomalies requires an investigation into the cause of a change in source water quality. Procedures should be developed to guide these activities.

#### TARGET CAPABILITY

A procedure that facilitates timely and efficient investigation of OWQM-SW alerts has been developed, documented, and put into practice.

Investigation and response activities will be different for transient water quality anomalies versus sustained, long-term water quality changes. Thus, this section provides guidance on the development of two unique procedures, as briefly described below:

- **Investigation of and Response to OWQM-SW Alerts.** This procedure supports treatment optimization and detection of contamination incidents. Both of these design goals rely on alerts generated when a transient water quality anomaly is detected. The procedure involves the investigation of an alert to determine its cause and decide on immediate response actions to address a change in source water quality. Examples of response actions include adjusting treatment process settings to maintain optimized treatment or closing a source water intake if the source water has been contaminated. Guidance for developing this procedure is provided in Section 7.1.
- Investigation of and Response to Long-Term Water Quality Changes. This procedure supports monitoring of threats to long-term water quality. It involves the investigation of sustained changes to source water quality to determine the cause and inform the development of long-term strategies to manage significant changes in the source water quality baseline. An example of such a strategy is the implementation of a runoff control program to reduce contaminant loadings from non-point sources of pollution. Guidance for developing this procedure is provided in Section 7.2.

Once investigation and response procedures for the relevant design goals have been developed, they should be tested and refined before putting them into practice. Section 7.3 provides guidance on the steps necessary to implement these procedures, including training, *preliminary operation*, and real-time operation.

## 7.1 Procedures for Investigation of and Response to OWQM-SW Alerts

For OWQM-SW design goals that rely on rapid response to transient changes in source water quality, such as treatment optimization and detection of contamination incidents, the OWQM-SW information management system should include a means of identifying an anomaly and generating an alert in real time (see Section 6.1). This section provides guidance on developing procedures for investigating and responding to OWQM-SW alerts. The elements of this procedure should cover the following:

- *Alert Investigation Process.* A detailed, sequential list of steps for investigating the cause of an alert, as well as information resources to support an investigation.
- **Response Actions to Optimize Treatment Processes.** A process for making treatment process adjustments in response to a change in source water quality to maintain optimal performance.
- **Response Actions for Detection of Contamination Incidents.** A process for making decisions in response to a *possible* source water contamination incident.

• **Roles and Responsibilities.** A list of all personnel who have a role in the investigation of an alert or a response to a verified water quality anomaly.

•

The *Template for Developing OWQM-SW Investigation and Response Procedures* includes editable process flow diagrams, checklists, and tables that can be used to build utility-specific OWQM-SW procedures. The template can be opened in Microsoft<sup>®</sup> Word by clicking the icon in the callout box. Examples of alert investigation tools that support these procedures (e.g., quick reference guide, alert investigation record) can be found in Section 5 of the <u>SRS</u> <u>Integration Guidance</u>.



\*Note that the document that is currently open may need to be downloaded and opened offline to access this checklist.

### Alert Investigation Process

An alert investigation process can be visually represented in a diagram that shows the progression of steps from beginning to end. This simplified representation of the process allows individuals with responsibilities for discrete steps to see how their activities support the overall investigation. **Figure 7-1** provides an example of an alert investigation process flow diagram.

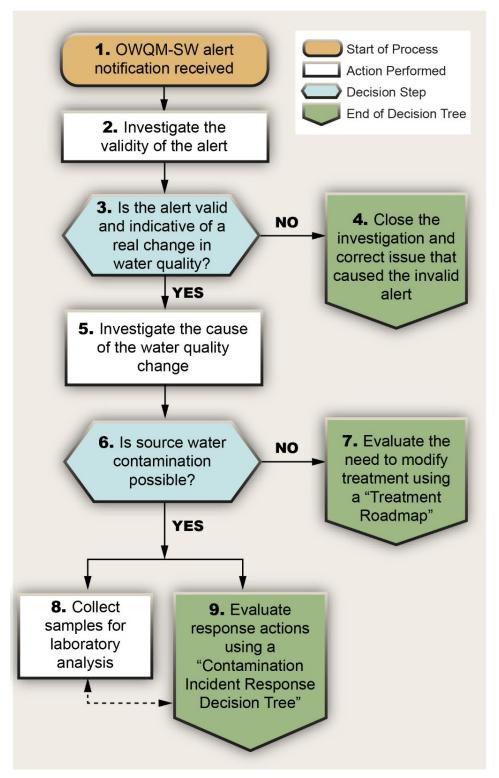



Figure 7-1. Example of an OWQM-SW Alert Investigation Process Flow Diagram

**Table 7-1** describes the steps of the alert investigation process depicted in Figure 7-1 providing:

- Instructions for completing the step
- The individual or position assigned to complete the step
- Information resources that should be consulted during the step (see Table 7-2 for descriptions)

| Table 7-1. Exam | ple OWQM-SW A | lert Investigation | Process Description |
|-----------------|---------------|--------------------|---------------------|
|                 | p.e. e e      |                    |                     |

| ID | Name                                                                                                                                                                                                                                                                                                                                                                                   | Assigned To                 | Information Resources                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Designated personnel receive OWQM-SW alert notification.                                                                                                                                                                                                                                                                                                                               | On-duty<br>plant operator   | <ul><li>OWQM-SW user<br/>interface</li><li>Smartphone</li></ul>                                                                                                                                                                                                                                   |
| 2  | <b>Investigate the validity of the alert.</b><br>Evaluate recent monitoring station maintenance<br>records and compare data from the alerting station<br>against patterns typical of equipment malfunction. If<br>possible, inspect the monitoring station to determine<br>whether it is functioning properly.                                                                         | Instrument<br>technician    | <ul> <li>Monitoring station<br/>maintenance records</li> <li>Sensor diagnostic tools</li> <li>Data patterns for known<br/>instrument problems</li> <li>Results of monitoring<br/>station inspection</li> </ul>                                                                                    |
| 3  | <ul> <li>Is the OWQM-SW alert valid and indicative of a real change in source water quality?</li> <li>No – Go to Step 4.</li> <li>Yes – Go to Step 5.</li> </ul>                                                                                                                                                                                                                       | On-duty plant<br>operator   | • Findings from Step 2 of the investigation                                                                                                                                                                                                                                                       |
| 4  | <b>Close the investigation.</b><br>The OWQM-SW alert is not due to a real water<br>quality change. Correct the issue that caused the<br>invalid OWQM-SW alert.                                                                                                                                                                                                                         | Instrument<br>technician    | <ul> <li>Findings documented in<br/>alert investigation record</li> </ul>                                                                                                                                                                                                                         |
| 5  | <ul> <li>Investigate the cause of the water quality change.</li> <li>Review available information resources to determine if the following caused the OWQM-SW alert: <ul> <li>Change in source supplying the treatment plant</li> <li>Weather (e.g., rainfall)</li> <li>Natural disasters (e.g., floods, fires)</li> <li>Known pollution incident (e.g., spills)</li> </ul> </li> </ul> | Water quality<br>specialist | <ul> <li>On-duty plant operator</li> <li>National Weather Service<br/>or local weather stations</li> <li>USGS online stream and<br/>watershed data</li> <li>State environmental<br/>protection agency</li> <li>Spill reporting hotline</li> <li>Visual inspection of the<br/>waterbody</li> </ul> |
| 6  | <ul> <li>Is source water contamination possible?</li> <li>No – Go to Step 7.</li> <li>Yes – Go to Steps 8 and 9.</li> </ul>                                                                                                                                                                                                                                                            | Water quality<br>specialist | • Findings from Step 5 of the investigation                                                                                                                                                                                                                                                       |
| 7  | Evaluate the need to modify treatment process<br>settings to maintain optimal performance.<br>Follow separate procedure to decide if and how to<br>adjust treatment process settings in response to the<br>change in source water quality.                                                                                                                                             | On-duty plant<br>operator   | <ul><li>Treatment Process<br/>Optimization Procedure</li><li>Treatment Roadmap</li></ul>                                                                                                                                                                                                          |
| 8  | <b>Collect samples for field or laboratory analysis.</b><br>Follow separate procedure for collecting samples<br>and deciding the analyses to conduct.                                                                                                                                                                                                                                  | Water quality<br>technician | Sampling and analysis     procedures                                                                                                                                                                                                                                                              |
| 9  | Evaluate response actions to mitigate<br>consequences of possible contamination.<br>Follow separate procedure to decide how to respond<br>to the possible contamination incident.                                                                                                                                                                                                      | Water quality<br>supervisor | Source Water<br>Contamination Incident<br>Response Procedure                                                                                                                                                                                                                                      |

| Resource                                        | Description                                                                                                                                                                                                                                                               |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring Station Maintenance<br>Records       | Information about recent maintenance activities, ongoing sensor issues, and previous sensor problems                                                                                                                                                                      |  |
| Sensor Diagnostic Tools                         | Some sensors include diagnostic tools that evaluate sensor performance in real time                                                                                                                                                                                       |  |
| USGS Monitoring Stations                        | Results from USGS water quality and stream gauge monitoring stations in the watershed                                                                                                                                                                                     |  |
| Watershed Monitoring Programs                   | Results of watershed monitoring or surveillance programs (e.g., formal source water monitoring collaborative) as well as informal monitoring networks (e.g., citizen science initiatives, field observations)                                                             |  |
| National Weather Service                        | Current and recent weather conditions in the watershed and upstream areas that impact water quality in the watershed                                                                                                                                                      |  |
| Local Weather Monitoring Station                | Data from weather monitoring stations located in the watershed can provide greater resolution than that from the National Weather Service                                                                                                                                 |  |
| State Environmental Protection<br>Agencies      | Reports of ongoing environmental monitoring programs (e.g., for nutrient pollution, algal blooms), environmental emergencies (e.g., flooding, fires), and regulated discharges                                                                                            |  |
| Spill Reporting Hotlines                        | Reports of recent spills into the source water                                                                                                                                                                                                                            |  |
| Owner/Operator of an SW Threat                  | Alerts from spill detection systems, reports of recent incidents at an SW threat, and observations of current facility operations                                                                                                                                         |  |
| Other Utility Information<br>Management Systems | Information from operational control systems and work management systems<br>that may provide information about utility activities that could have contributed<br>to the source water quality change (e.g., a change in the source water<br>supplying the treatment plant) |  |

Table 7-2. Typical Information Resources Useful during the Investigation of an OWQM-SW Alert

At the conclusion of the alert investigation process, the cause of the alert should be documented. **Table 7-3** lists and describes common causes of alerts. The causes are grouped into invalid alerts (triggered by something other than a true change in source water quality) and *valid alerts* (triggered by a true change in source water quality). Invalid alerts typically occur more frequently than valid alerts, especially during the initial phases of system startup.

| Alert Cause    |                                  | Description                                                                                                                                               |
|----------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Equipment Issue                  | Inaccurate data values caused by a sensor maintenance activity, sensor malfunction, loss of power, or a data transmission error                           |
| Invalid Alerts |                                  | Flow-cells may produce inaccurate data if there is an interruption in the supply of water to the flow-cell                                                |
|                |                                  | Immersed sensors may produce inaccurate data if they are not submerged or are buried in sediment                                                          |
|                | Data Analysis Issue              | An artifact of the data analysis system in which an alert is generated even though data is accurate and within the normal range of values and variability |
| Alerts         | Change in Source Water<br>Supply | For treatment plants that use multiple source waters, a water quality change caused by a change in the source supplying the plant                         |
|                | Weather                          | A water quality change caused by a weather event (e.g., rainfall, snowpack melt)                                                                          |
|                | Natural Disaster                 | A water quality change, and possibly a contamination incident, caused by a natural disaster (e.g., flood, fire, landslide)                                |
| Valid Alerts   | Environmental Condition          | A water quality change, and possibly a contamination incident, caused by an environmental condition (e.g., lake turnover, an algal bloom)                 |
|                | Discharge                        | A contamination incident caused by a discharge from a storm water outfall, wastewater outfall, or other NPDES permit holder                               |
|                | Spill                            | A contamination incident caused by a spill or unauthorized discharge from an SW threat (e.g., chemical storage facility, watercraft)                      |

Table 7-3. Common Causes of Invalid and Valid OWQM-SW Alerts

If an alert is determined to be valid but unrelated to contamination, the water quality change is evaluated to determine whether it could impact the ability of the utility's treatment plant to meet treatment targets.

If all reasonable causes of the water quality change that triggered the alert have been considered and ruled out, contamination is deemed possible. At this point, samples should be collected and analyzed in an attempt to confirm and identify the contaminant, and contamination incident response procedures should be activated.

### Response Actions to Optimize Treatment Processes

If the investigation of a valid alert concludes that a source water quality change is not due to contamination, the change may still warrant a response for the purpose of treatment optimization (Step 7 in Figure 7-1). This response will typically be guided by a treatment roadmap or treatment process model.

A *treatment roadmap* is a set of instructions for adjusting treatment processes to achieve treatment targets based on information generated by OWQM-SW. These instructions are typically developed using historical data from full-scale operations to establish relationships between optimal treatment process settings and a specific source water quality type. Typically, multiple water quality parameters (e.g., turbidity, TOC, alkalinity, pH) are used to define a source water quality type. The roadmap specifies the range of source water quality parameter values under which a set of treatment process settings would achieve defined treatment targets. A treatment process optimization procedure, such as that shown in **Figure 7-2**, guides the application of a treatment roadmap based on OWQM-SW data.

#### Online Water Quality Monitoring in Source Water

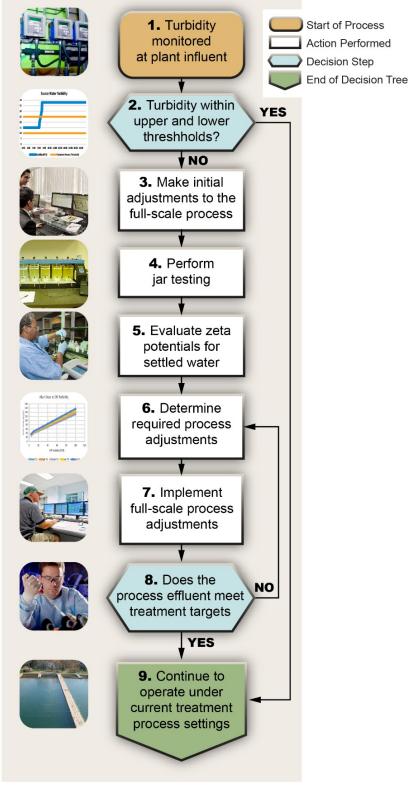



Figure 7-2. Example Treatment Optimization Procedure Flow Diagram

**Table 7-4** describes the steps of the treatment process optimization procedure depicted in Figure 7-2 and lists responsibilities and information resources used during each step.

| Table 7-4. Example Treatment Process | Optimization Procedure Description |
|--------------------------------------|------------------------------------|
|--------------------------------------|------------------------------------|

| ID | Name                                                                                                                                                                                                                                                     | Assigned To                 | Information Resources                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1  | Real change in turbidity detected and verified.                                                                                                                                                                                                          | On-duty plant<br>operator   | OWQM-SW user interface     Smartphone                                                                             |
| 2  | Is the turbidity data within the thresholds for the<br>current treatment process settings?<br>• Yes – Go to Step 9.<br>• No – Go to Step 3.                                                                                                              | On-duty plant<br>operator   | <ul> <li>OWQM-SW user interface</li> <li>Treatment roadmap or<br/>standard operating<br/>procedure</li> </ul>     |
| 3  | Make initial adjustments to the full-scale treatment<br>process.Using a treatment roadmap, standard operating<br>procedure, or operator judgement, adjust treatment<br>process settings to treat the new source water quality.                           | On-duty plant<br>operator   | <ul> <li>Treatment roadmap or<br/>standard operating<br/>procedure</li> </ul>                                     |
| 4  | Perform jar testing.<br>Conduct jar tests with the source water using a range of<br>doses likely to encompass the dose required to treat the<br>new source water quality.                                                                                | Water quality<br>technician | <ul> <li>Jar testing standard<br/>operating procedure</li> </ul>                                                  |
| 5  | <b>Evaluate zeta potentials for settled water.</b><br>Measure the zeta potential of the settled water from the jar tests and compare with the zeta potential of the settled water from the full-scale plant.                                             | Water quality<br>technician | Zeta potential     measurement procedure                                                                          |
| 6  | <b>Determine required process adjustments.</b><br>Use the results from the jar tests and zeta potential measurements, along with the treatment roadmap, to refine the treatment process settings for the full-scale plant.                               | On-duty plant<br>operator   | <ul> <li>Results from Steps 4 and 5</li> <li>Treatment roadmap or<br/>standard operating<br/>procedure</li> </ul> |
| 7  | Implement full-scale process adjustments.<br>Implement the process adjustments determined in Step<br>6 and monitor the process to determine whether the<br>process adjustments have brought the process back into<br>the range of optimized performance. | On-duty plant<br>operator   | Treatment roadmap or<br>standard operating<br>procedure                                                           |
| 8  | <ul> <li>Does the process effluent meet treatment targets?</li> <li>Yes – Go to Step 9.</li> <li>No – Go to Step 6.</li> </ul>                                                                                                                           | On-duty plant<br>operator   | Results from treatment     process monitoring                                                                     |
| 9  | Continue to operate under the current treatment process settings.                                                                                                                                                                                        | On-duty plant<br>operator   | N/A                                                                                                               |

An alternative to a treatment process optimization procedure is use of a treatment process model, which can be used to predict optimal treatment process settings. If the treatment process model is connected to the SCADA system, it can be configured to automatically adjust treatment process settings to maintain optimal treatment.

Treatment process monitoring can be used to confirm that the treatment process adjustments have had the desired effect. Confirmation can be accomplished through measurement of water quality in the process effluent using online instrumentation or grab sampling. Additionally, visual inspection of flocculation (floc size) and sedimentation (floc carry over) can provide an operator with a sense of whether the process is operating properly. If treatment process monitoring indicates that treatment targets are not being met, processes can be further adjusted.

### Response Actions for Contamination Incident Detection

If the investigation of a valid alert concludes that source water contamination is possible, S&A activities should be implemented in an attempt to confirm that contamination has taken place, identify the contaminant, and determine its concentration as noted in Step 8 of Figure 7-1. *Guidance for Building Laboratory Capabilities to Respond to Drinking Water Contamination* provides guidance on identifying analytical methods and laboratories to test for contaminants of concern during a possible contamination incident.

As described in Figure 7-1, Step 9, response actions should be evaluated with respect to their ability to mitigate the consequences of a contamination incident to a utility and its customers. Decisions regarding an appropriate response to a source water contamination incident depend on a number of factors, such as:

- Confidence in the information indicating that the source water has been contaminated
- Whether the identity of the contaminant is known, and if known, the characteristics of the contaminant
- The risk that contaminated water presents to the utility and its customers
- Response options available to the utility
- Consequences of implementing response actions (e.g., impact on sanitation, firefighting, businesses, the local economy)

The logic for making these response decisions can be codified in a decision tree, as shown in the example in **Figure 7-3**.

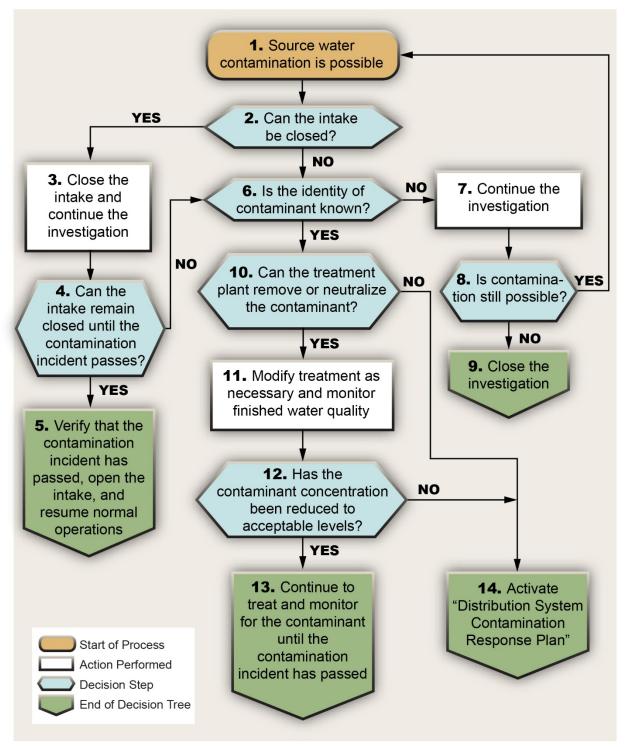



Figure 7-3. Example Source Water Contamination Incident Response Decision Tree

**Table 7-5** describes the steps of the contamination incident response decision tree depicted in Figure 7-3 and lists responsibilities and information resources used during each step.

| ID | Name                                                                                                                                                                                                                                                                               | Assigned To                                                  | Information Resources                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Source water contamination is possible.<br>And potentially contaminated water could enter the<br>intake currently in use.                                                                                                                                                          | Water quality<br>supervisor                                  | <ul><li>OWQM-SW user<br/>interface</li><li>Smartphone</li></ul>                                                                                                      |
| 2  | <ul> <li>Can the intake be closed?</li> <li>Yes – Go to Step 3.</li> <li>No – Go to Step 6.</li> </ul>                                                                                                                                                                             | Treatment plant supervisor                                   | <ul> <li>Current raw water<br/>storage</li> <li>Availability of an<br/>alternate source or intake</li> </ul>                                                         |
| 3  | Close the intake and continue the investigation.<br>Determine how long the intake can remain closed.<br>Determine how long the potentially contaminated<br>water will pose a risk to the treatment plant.                                                                          | Treatment plant<br>supervisor<br>Water quality<br>supervisor | <ul> <li>Current system storage<br/>and demand</li> <li>Information about the<br/>contamination incident</li> </ul>                                                  |
| 4  | <ul> <li>Can the intake remain closed until the contamination incident passes?</li> <li>Yes – Go to Step 5.</li> <li>No – Go to Step 6.</li> </ul>                                                                                                                                 | Treatment plant<br>supervisor                                | <ul> <li>Estimate of the time<br/>when storage will be<br/>exhausted</li> <li>Estimate of the time until<br/>contamination incident<br/>passes the intake</li> </ul> |
| 5  | Verify that the contamination incident has<br>passed, open the intake, and resume normal<br>operations.<br>Collect samples at the intake and analyze them for<br>suspected contaminants or indicators.                                                                             | Water quality<br>supervisor                                  | <ul> <li>Results from sampling<br/>and analysis</li> <li>Information about the<br/>contamination incident</li> </ul>                                                 |
| 6  | <ul> <li>Is the identity of the contaminant known?</li> <li>No – Go to Step 7.</li> <li>Yes – Go to Step 10.</li> </ul>                                                                                                                                                            | Water quality<br>supervisor                                  | Information about the<br>contamination incident                                                                                                                      |
| 7  | <b>Continue the investigation.</b><br>Gather information and collect samples for analysis<br>in an attempt to identify the contaminant (or rule out<br>potential contaminants).                                                                                                    | Water quality<br>supervisor                                  | <ul> <li>Information about the contamination incident</li> <li>Investigation procedures and resources</li> </ul>                                                     |
| 8  | <ul> <li>Is contamination still possible?</li> <li>No – Go to Step 9.</li> <li>Yes – Go to Step 1.</li> </ul>                                                                                                                                                                      | Water quality<br>supervisor                                  | <ul> <li>Information about the contamination incident</li> <li>Results from sampling and analysis</li> </ul>                                                         |
| 9  | <b>Close the investigation.</b><br>Contamination has been ruled out. Close the investigation and return to normal operations.                                                                                                                                                      | Water quality supervisor                                     | Findings documented in<br>alert investigation record                                                                                                                 |
| 10 | <ul> <li>Can the treatment plant remove or neutralize the contaminant?</li> <li>Yes – Go to Step 11.</li> <li>No – Go to Step 14.</li> </ul>                                                                                                                                       | Treatment plant<br>supervisor                                | <ul> <li>Water Contamination<br/>Information Tool</li> <li>Treatability Database</li> </ul>                                                                          |
| 11 | Modify treatment as necessary and monitor<br>finished water quality.<br>Confer with stakeholders to determine an acceptable<br>contaminant concentration in finished water. Collect<br>samples from the finished water for analysis, and<br>arrange for rapid laboratory analysis. | On-duty plant<br>operator<br>Water quality<br>technician     | <ul> <li>Health advisories</li> <li>Treatment process<br/>standard operating<br/>procedures</li> <li>Sampling and analysis<br/>procedures</li> </ul>                 |

 Table 7-5. Example Source Water Contamination Incident Response Decision Tree Description

| ID | Name                                                                                                                                                                                                                                                                                                             | Assigned To                 | Information Resources                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Has the contaminant concentration been reduced to acceptable levels?                                                                                                                                                                                                                                             | Water quality<br>supervisor | <ul> <li>Results from sampling<br/>and analysis</li> </ul>                                                                                                                            |
|    | <ul> <li>Yes – Go to Step 13.</li> <li>No – Go to Step 14.</li> </ul>                                                                                                                                                                                                                                            |                             | <ul> <li>Input from the drinking<br/>water primacy agency<br/>and other stakeholders</li> </ul>                                                                                       |
| 13 | Continue to treat and monitor the contaminant until the contamination incident has passed.                                                                                                                                                                                                                       | On-duty plant<br>operator   | <ul> <li>Information about the<br/>contamination incident</li> </ul>                                                                                                                  |
|    | Collect samples in the plant influent and finished water and analyze for the target contaminant(s).                                                                                                                                                                                                              | Water quality<br>technician | <ul> <li>Results from sampling<br/>and analysis</li> </ul>                                                                                                                            |
| 14 | Activate the "Distribution System Contamination<br>Response Plan"<br>If contaminated water has entered the distribution<br>system, or is likely to, take actions to mitigate<br>consequences and protect public health. These<br>actions are documented in a Distribution System<br>Contamination Response Plan. | Water quality<br>supervisor | <ul> <li>Distribution System<br/>Contamination Response<br/>Plan</li> <li>Information about the<br/>contamination incident</li> <li>Results from sampling<br/>and analysis</li> </ul> |

The example incident response decision tree shown in Figure 7-3 considers three possible responses to source water contamination:

- Closing the intake can be the most effective response strategy by preventing contaminated water from coming into contact with utility infrastructure and customers. The ability to close an intake will depend on the availability of alternate raw water sources, availability of distribution system interconnections with neighboring utilities, distribution system storage, anticipated customer demand, and the expected duration of the contamination incident. Even if the intake can remain closed for only a short period, this action provides additional time to collect and analyze samples in order to identify the contaminant and determine its concentration. Ideally, the intake could remain closed until contaminated water no longer presents a risk to the utility or its customers.
- **Modifying treatment** to remove or neutralize the contaminant may be effective depending on the specific contaminant that is present and the treatment processes that are utilized. However, this response option should only be considered if the identity and approximate concentration of the contaminant are known. Resources such as the *Water Contaminant Information Tool* and

#### HARMFUL ALGAL BLOOMS

EPA's website for <u>Cyanobacterial</u> <u>Harmful Algal Blooms</u> provides information and resources useful for treating HABs.

the <u>*Treatability Database*</u> can be used to evaluate the potential of various treatment processes to remove or neutralize specific contaminants. If this response strategy is used, samples of finished water should be collected and analyzed to ensure that the contaminant has been removed.

• Activating a Distribution System Contamination Response Plan if there is a risk that contaminated water has or will pass into the distribution system at concentrations above acceptable levels. A Distribution System Contamination Response Plan is an annex or appendix to a utility's *Emergency Response Plan* (ERP), which guides utility decisions for responding to distribution system contamination. Potential response actions considered at this stage include isolation of portions of the distribution system to minimize the spread of contaminated water, diversion and flushing to remove contaminated water from the distribution system, and public notification and use restrictions to prevent customers from coming into contact with contaminated water. A template and guide for developing a Distribution System Contamination Response Plan can be found in *Guidance for Responding to a Drinking Water Contamination Incidents*.

• Activating a *Risk Communication Plan* in anticipation of the public becoming aware of the incident, regardless of whether there is a potential risk to the public. Planning for risk communication should begin as soon as source water contamination is considered to be possible. Guidance for issuing public notification and communicating with customers during a drinking water contamination incident is provided in *Developing Risk Communication Plans for Drinking Water Contamination Incidents*.

### Roles and Responsibilities

Roles and responsibilities will need to be assigned for implementation of each activity during the investigation of and response to OWQM-SW alerts.

Alert investigation and response for treatment optimization will likely occur with some regularity, especially in surface water sources with frequent changes in water quality. As such, these procedures should be incorporated into routine operations, and roles and responsibilities for implementing these procedures should align with existing job functions to the extent possible. Leveraging existing expertise in this manner will reduce the amount of new training required and can result in increased acceptance of new responsibilities. **Table 7-6** provides an example of roles and responsibilities for investigating alerts and adjusting treatment processes for optimal performance.

| Table 7-6. Example Roles and Responsibilities during OWQM-SW Alert Invest | stigations and |
|---------------------------------------------------------------------------|----------------|
| Treatment Optimization                                                    |                |

| Role                     | Description of Responsibilities                                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| On-duty Plant Operator   | Receives notification of alerts                                                                                                                         |
|                          | <ul> <li>Assesses the validity of the alert and determines if it may be indicative of a real-<br/>water quality change</li> </ul>                       |
|                          | <ul> <li>Notifies other utility personnel with a role in the investigation</li> </ul>                                                                   |
|                          | <ul> <li>Adjusts treatment processes to maintain optimal performance</li> </ul>                                                                         |
|                          | <ul> <li>Monitors treatment process to verify performance</li> </ul>                                                                                    |
| Water Quality Technician | Performs jar testing                                                                                                                                    |
|                          | <ul> <li>Collects samples for field or laboratory analysis</li> </ul>                                                                                   |
| Water Quality Specialist | <ul> <li>Reviews the source water quality data that generated the alert</li> </ul>                                                                      |
|                          | <ul> <li>Reviews the results of investigations for previous alerts with similar water quality<br/>patterns</li> </ul>                                   |
|                          | <ul> <li>Investigates potential causes of the alert</li> </ul>                                                                                          |
| Instrument Technician    | Provides information about recent sensor issues or equipment maintenance                                                                                |
|                          | <ul> <li>Conducts an on-site inspection of the monitoring station that generated the alert to<br/>determine whether it is operating properly</li> </ul> |

Response actions implemented following a determination that source water contamination is possible may include significant deviations from normal operations (e.g., closing an intake) and thus will often require a higher level of authorization than is typical for normal operations. As such, members of a utility's senior management team will likely play a role in making decisions. **Table 7-7** provides an example of roles and responsibilities during response to source water contamination. Some of these roles and responsibilities may be covered, at least in a general manner, in a utility's ERP.

| Role                                     | Description of Responsibilities                                                                                                                                                                                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Utility Director<br>(Incident Commander) | <ul> <li>Decides if and when to implement the Incident Command System</li> <li>Reviews and approves significant response decisions</li> <li>Directs and oversees implementation of the response</li> </ul>                                                                                                          |
| Public Information Officer               | <ul> <li>Implements the Risk Communication Plan</li> <li>Coordinates communications among partners and stakeholders</li> <li>Prepares for and implements public notification plans</li> </ul>                                                                                                                       |
| Water Quality Supervisor                 | <ul> <li>Coordinates sampling and analysis efforts</li> <li>Investigates the characteristics of confirmed or probable contaminants</li> <li>Verifies proper QA/QC on field and laboratory results</li> <li>Decides if and when to implement the Distribution System Contamination Incident Response Plan</li> </ul> |
| Treatment Plant<br>Supervisor            | <ul> <li>Evaluates the ability of treatment processes to remove or neutralize a contaminant</li> <li>Directs and oversees implementation of operational response actions such as closing the intake or modifying treatment</li> </ul>                                                                               |
| Water Quality Technician                 | <ul><li>Collects samples for field or laboratory analysis</li><li>Supports monitoring of treatment process performance</li></ul>                                                                                                                                                                                    |
| Laboratory Personnel                     | Conducts laboratory analyses on water samples                                                                                                                                                                                                                                                                       |

Table 7-7. Example Roles and Responsibilities during Response to Source Water Contamination

Because possible source water contamination incidents rarely occur, these procedures will be implemented infrequently. To maintain familiarity with these procedures, they should be exercised at least once per year. Resources to plan and implement exercises are described in Section 7.3.

### 7.2 Procedures for Investigation of and Response to Long-Term Source Water Quality Changes

For the OWQM-SW design goal of monitoring threats to long-term water quality, the OWQM-SW information management system should include a means of identifying statistically significant changes in the source water quality baseline. This section provides guidance for investigating and responding to a long-term change in source water quality. The elements of this procedure include:

- Investigation Framework. A process that guides the investigation into the cause of a sustained change in source water quality.
- **Response Framework.** A process used to identify, evaluate, and select strategies to manage a sustained degradation in source water quality.
- **Roles and Responsibilities.** A list of all personnel who have a role in the investigation of or response to a sustained change in source water quality.

### Investigation Framework

Monitoring threats to long-term water quality involves the analysis of source water quality trends over the course of multiple years to identify sustained, and potentially irreversible, changes in the source water quality baseline. This is accomplished through the routine analysis of OWQM-SW data using the techniques described in Section 6.1. The purpose of the investigation framework is to attribute water quality changes to a cause, which will inform the development of mitigation strategies.

The investigation considers the locations where a long-term change in source water quality has occurred to determine the geographic extent of the change. Furthermore, both the locations and the parameters that have changed can be useful in identifying SW threats responsible for a degradation in water quality. Identification of the cause(s) of a sustained change in source water quality is necessary for evaluating the impact of the change on utility operations and developing effective mitigation strategies. This process will require consideration of a variety of information resources, such as those listed in **Table 7-8**.

| Table 7-8. Typical Information Resources Useful to the Investigation of Sustained Change in |
|---------------------------------------------------------------------------------------------|
| Source Water Quality                                                                        |

| Resource                                                    | Description                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National Weather Service                                    | Trends in key weather variables (e.g., temperature, precipitation, cloudy/sunny days) over the past several years.                                                                                                                                                               |
| Local Weather<br>Monitoring Station                         | If the data available from the National Weather Service or other weather services is insufficient, data from weather monitoring stations located in the watershed may provide the necessary level of detail.                                                                     |
| Climate Resilience Evaluation<br>and Awareness Tool (CREAT) | <u>CREAT</u> uses climate models to predict changes in key weather variables under various climate change scenarios. The information generated by CREAT can be used as inputs to hydrology models, which in turn may be used to estimate future changes in source water quality. |
| Facility Owner/Operators                                    | Discharge data over the past several years, including flow and quality.                                                                                                                                                                                                          |
| Watershed Surveys                                           | Watershed surveys (conducted by foot, vehicle, or drone), informed by data generated through OWQM-SW, to identify potential sources of pollution.                                                                                                                                |
| Focused Sampling<br>and Analysis                            | Sampling programs designed to provide a full characterization of water quality in a specific area over a limited period of time, informed by data generated through OWQM-SW.                                                                                                     |
| USGS Watershed<br>Monitoring Data                           | Basic water quality parameters (e.g., pH, temperature, specific conductance) along with flow and depth data over the past several years.                                                                                                                                         |
| Watershed Monitoring<br>Programs                            | Results of watershed monitoring or surveillance programs (e.g., formal source water monitoring collaborative) as well as informal monitoring networks (e.g., citizen science initiatives, field observations).                                                                   |
| Watershed Stakeholders                                      | Information from watershed stakeholders and partners about the health, uses, and features of the watershed.                                                                                                                                                                      |
| Land-use Maps<br>and Satellite Imagery                      | Graphical representations of land use in the watershed, viewed over the past several years.                                                                                                                                                                                      |
| Land-use Projections                                        | Documentation of planned uses of land areas in the watershed over the next several years.                                                                                                                                                                                        |
| Physical Changes<br>to the Source Waterbody                 | Man-made or natural activities that change the physical condition of the waterbody, such as dredging operations and rechanneling.                                                                                                                                                |

### Response Framework

Identification of the probable cause(s) of a long-term degradation in source water quality can provide the basis for developing a mitigation or restoration strategy. These strategies may include efforts to slow the deterioration of the source water, reverse the deterioration, or adapt to the new source water quality baseline. While the most effective strategy will depend on the specifics of the SW threats, the watershed, and utility resources, a few potential strategies include:

- Reducing contaminant loadings from specific point sources of pollution, either by reducing flow or reducing contaminant concentrations prior to discharge
- Reducing contaminant loadings from non-point sources of pollution through strategies such as runoff control programs
- Convincing local authorities and land owners to alter their land-use policies to reduce contamination in the watershed
- Implementing additional drinking water treatment capable of handling the projected source water quality
- Developing a new drinking water source

Approaches to mitigate a deterioration in source water quality will be strategic and may be implemented over the course of several years. These strategies should be incorporated into existing source water protection planning activities. A number of resources are available to support local source water protection initiatives including the <u>Source Water Protection</u> program and <u>Source Water Collaborative</u> group.

After a mitigation strategy has been implemented, data from OWQM-SW can be used to assess the efficacy of the strategy. If the desired change is not realized within a reasonable amount of time, the strategy may need to be altered or discontinued.

### Roles and Responsibilities

Roles and responsibilities will need to be assigned for implementation of each activity necessary to monitor long-term water quality. Implementation of these activities will require front-line personnel to implement investigation activities, planners to consider potential mitigation strategies, senior management to decide which mitigation strategies to implement, and stakeholders to commit to strategies that are outside of the utility's control. **Table 7-9** provides an example of roles and responsibilities for monitoring of threats to long-term water quality. While many of these roles are assumed by utility personnel, other stakeholders may be engaged, such as managers of recreational uses of the waterbody, land use managers, local regulatory authorities, and government agencies (e.g., U.S. Army Corps of Engineers).

| Role Description of Responsibilities |                                                                                                                                                                                          |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Utility Director                     | <ul> <li>Selects strategies to implement to mitigate the effects of a degradation in source<br/>water quality</li> </ul>                                                                 |
|                                      | Ensures the availability of sufficient resources to implement the selected strategies                                                                                                    |
| Water Quality Manager                | <ul> <li>Manages the analysis of long-term trends in source water quality</li> </ul>                                                                                                     |
|                                      | <ul> <li>Oversees the investigation into the cause of a sustained change in source water<br/>quality</li> </ul>                                                                          |
|                                      | <ul> <li>Evaluates strategies for mitigating the effects of a degradation in source water<br/>quality</li> </ul>                                                                         |
| Water Quality Specialist             | <ul> <li>Performs detailed review of long-term trends in source water quality</li> </ul>                                                                                                 |
|                                      | <ul> <li>Oversees water quality or watershed surveys to investigate the cause of a<br/>sustained degradation in source water quality</li> </ul>                                          |
|                                      | <ul> <li>Considers the results of climate, weather, and water quality modeling and<br/>forecasting when assessing the cause of a sustained change in source water<br/>quality</li> </ul> |
| Plant Supervisor                     | • Evaluates the ability of existing or modified treatment processes to adequately treat the projected source water quality baseline                                                      |
| Engineers and Planners               | <ul> <li>Evaluates the ability of new, or significantly retrofitted, treatment processes to<br/>adequately treat the projected source water quality baseline</li> </ul>                  |
|                                      | <ul> <li>Provides information on long-term programs and develops requirements for<br/>protecting the source water</li> </ul>                                                             |
| Community and<br>Stakeholders        | <ul> <li>Provides input to, and collaborate on, long-term programs to protect source water<br/>quality</li> </ul>                                                                        |

Table 7-9. Example Roles and Responsibilities for Monitoring Threats to Long-Term Water Quality

Due to the long-term, strategic nature of these activities, implementation of this procedure will likely be intermittent and sequential. For example, an investigation into the potential causes of a sustained change in source water quality will occur only after analysts have confirmed the trend. Furthermore, consideration of possible mitigation strategies will occur only after the cause of the change in source water quality has been identified and is determined to have significant implications for utility operations.

## 7.3 Implementation of OWQM-SW Procedures

This section describes a suggested process for putting OWQM-SW procedures into practice. Recommended activities include:

- Training and Exercises
- Preliminary Operation
- Real-time Operation

### Training and Exercises

Training and exercises are necessary to ensure that all utility personnel with a role in OWQM-SW investigation and response procedures are aware of their responsibilities. It is suggested that training on these procedures include the following:

- An overview of the purpose and design of OWQM-SW
- A detailed description of the investigation and response procedures
- A review of checklists, quick reference guides, user interfaces, and other tools available to support alert investigation and response activities
- Instructions for documenting the results of alert investigations

Section 6 of <u>SRS Integration Guidance</u> provides general guidance on implementing a training and exercise program. In general, classroom training is used first to orient personnel to their responsibilities during implementation of new procedures. Once they are comfortable with the procedures, drills and exercises provide the opportunity to practice implementing their responsibilities in a controlled environment. The <u>SRS Exercise Development Toolbox</u> is an interactive software program developed to assist utilities in the design and execution of exercises.

### Preliminary Operation

Following initial training, a period of preliminary operation allows personnel to practice their responsibilities before transitioning to real-time operation. For example, personnel can be asked to investigate alerts in batches as they have time, not necessarily as alerts are generated. The duration of preliminary operation will depend on how quickly personnel become proficient with operating the system and implementing their responsibilities under the procedures, but a minimum duration of six months is recommended.

One useful way to provide practice and support during this period is to hold regular meetings with all investigators to discuss recent data and alerts. It is generally most effective if participants are asked to perform specific analyses or alert investigations before each meeting and then discuss conclusions, observations, insights, and challenges as a group. The frequency of these meetings would likely decrease as the group gains more experience in conducting investigations.

Preliminary operation provides an opportunity for investigators to clarify responsibilities, streamline the procedures, refine alert investigation tools, and better integrate OWQM-SW responsibilities into existing job functions. Also, the rate of invalid alerts may be higher than desired during preliminary operations, but this experience can be used to fine-tune the ADS to achieve the desired balance between detection capabilities and occurrence of invalid alerts.

### Real-Time Operation

During real-time operation, personnel are expected to fully execute their responsibilities and investigate all alerts as they are generated. Also, OWQM-SW response procedures are implemented if an alert is determined to be valid. The transition from preliminary to real-time operation, including timing and expectations for how investigations are performed and documented, should be clearly communicated to all personnel with a role in OWQM-SW. Furthermore, sufficient time in the workday must be allocated for personnel to investigate alerts as they are generated. If the ADS is properly configured to minimize the occurrence of invalid alerts, this time commitment will be minimal.

As part of real-time operation, investigation and response procedures may need to be updated to maintain their usefulness. Recommendations for updating procedures include:

- Designate one or more individuals with responsibility for maintaining alert investigation materials
- Establish a review schedule (an annual review should suffice in most cases)
- Review the record of alert investigations, conduct tabletop exercises, and solicit feedback from investigators to identify necessary updates
- Track and review the time required to complete investigations and implement response actions, and update the procedures if times are not acceptable
- Establish a protocol for submitting and tracking change requests

# Section 8: Example of Monitoring Design

This section presents a hypothetical example of a comprehensive OWQM-SW design process using the principles presented in the previous sections of this document. Section 8.1 presents the overall design approach, while Sections 8.2 to 8.6 describe each design element.

# 8.1 Design Approach

A hypothetical drinking water utility, Anytown Water, uses river water and a storage reservoir as its sources. The utility uses conventional treatment processes that include pretreatment (PAC and permanganate), coagulation/sedimentation (ferric chloride), filtration (dual media), and disinfection (free chlorine).

As part of its commitment to producing high-quality drinking water for its customers, Anytown Water wants to use OWQM-SW data to optimize its treatment processes. To do so, the following treatment targets were established:

- **Turbidity Target.** Achieve turbidity levels in the filter effluent of 0.10 Nephelometric Turbidity Units (NTU) 95 percent of the time. This treatment target exceeds regulatory requirements and is intended to improve barriers to *Cryptosporidium* and *Giardia*, as well as remove particles that could shield other pathogenic organisms from free chlorine during the disinfection process.
- **TOC Removal Target.** Achieve 50 percent TOC reduction through enhanced coagulation, which helps the utility to meet its goal to keep total trihalomethane at or below 75 percent of the maximum contaminant level.

Anytown Water also recognizes the potential for spills and other contamination threats in the source water due to several industries located near the river banks upstream of the drinking water intake. Thus, the utility is interested in using OWQM-SW data to provide timely detection of contamination incidents. Additionally, the utility wants to monitor long-term trends in source water quality to inform the selection of source water protection strategies and evaluate the efficacy of those strategies that are implemented.

Based on these considerations, the utility is designing OWQM-SW to support optimization of treatment processes, detection of contamination incidents, and monitoring threats to long-term water quality. Performance objectives were established for operational reliability, information reliability, and sustainability, which serve as metrics for evaluating the effectiveness of OWQM-SW implementation.

To inform the design of OWQM-SW for the purposes of detecting contamination incidents and monitoring threats to long-term water quality, the project team used DWMAPS to identify stationary threats and consulted with the United States Coast Guard to identify potential mobile threats on the river source. Through these resources, more than two dozen potential SW threats were identified, and the characteristics described in Section 2.3 were gathered and documented for each threat. The project team conducted a risk assessment that considered short-term risks due to contamination incidents and threats to long-term water quality. The results of the risk assessment produced a list of prioritized SW threats that could cause (1) a short-term contamination incident and (2) a long-term degradation in source water quality. The assessment identified a total of five high-priority SW threats, three near the river and two near the reservoir, as shown in **Figure 8-1**. Summaries of the risk assessment results for high-priority SW threats of source water contamination and long-term source water quality are presented in **Tables 8-1** and **8-2**, respectively.



Figure 8-1. Location of High-Priority SW Threats for Anytown Water

| ID | SW Threat                                          | Potential<br>Contaminants                                                                      | Rationale for Risk Assessment Scoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Risk<br>Score |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| A  | Commercial<br>Barges<br>(Mobile Threat<br>- River) | <ul> <li>Hydrocarbons</li> <li>Unknown<br/>Organics</li> <li>Unknown<br/>Inorganics</li> </ul> | <ul> <li>Large volumes of fuel and unknown cargo are stored on commercial barges and transported along the river.</li> <li>Likelihood. High: While a limited number of accidental spills have been reported along the river upstream of the utility intake over the past decade, commercial barge traffic has doubled over the past two years, increasing the probability of accidents and spills.</li> <li>Vulnerability. High: The treatment plant can remove hydrocarbons at concentrations in the sub mg/L range, however, higher concentrations would likely overwhelm and pass through treatment. Furthermore, the ability of the treatment plant to remove unknown contaminants that could be in the cargo is unknown.</li> <li>Consequence. High: A high probability exists that at least some of these contaminants could damage utility infrastructure or pass through to the customer and create a potential public health issue. Furthermore, hydrocarbons would be very difficult to clean from the distribution system and premise plumbing systems, and remediation would likely be difficult, expensive, and lengthy.</li> </ul> | 35            |

| Table 8-1. High-Priority SW Threats of Source Water Contamination for Anytown Wa | ater |
|----------------------------------------------------------------------------------|------|
|----------------------------------------------------------------------------------|------|

| ID | SW Threat                                                          | Potential<br>Contaminants                                                                   | Rationale for Risk Assessment Scoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Risk<br>Score |
|----|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| В  | Petrochemical<br>Facility<br>(Stationary<br>Threat - River)        | <ul> <li>Hydrocarbons</li> <li>Unknown<br/>Organics</li> </ul>                              | Large volumes of fuel oil, diesel fuel, and smaller<br>quantities of unknown organic compounds are stored in<br>tanks at the facility.<br>Likelihood. Low: Effective secondary containment<br>surrounding the tanks should contain a spill from a leaking<br>tank. However, there is still a slight chance that spilled<br>chemicals could make their way into the river, just one<br>mile upstream of the intake.<br>Vulnerability. Moderate: The treatment plant could<br>remove the hydrocarbons at concentrations in the sub<br>mg/L range; higher concentrations would likely overwhelm<br>and pass through treatment.<br>Consequence. High: A high probability exists that at least<br>some of these contaminants could damage utility<br>infrastructure or pass through to the customer and create<br>a potential aesthetic problem. Furthermore, hydrocarbons<br>would be very difficult to clean from the distribution<br>system and premise plumbing systems, and remediation<br>would likely be difficult, expensive, and lengthy. | 25            |
| C  | Wastewater<br>Outfall<br>(Stationary<br>Threat - River)            | <ul> <li>Pathogens</li> <li>Unknown<br/>Organics</li> <li>Unknown<br/>Inorganics</li> </ul> | A failure at the wastewater treatment plant could result in<br>large volumes of untreated wastewater entering the river.<br><b>Likelihood.</b> Low: Wastewater treatment failures are<br>infrequent and safeguards that prevent discharge of<br>untreated wastewater are in place.<br><b>Vulnerability.</b> Moderate: The existing treatment<br>processes are not equipped to handle the high<br>contaminant loads that would result from a large<br>discharge of untreated wastewater.<br><b>Consequence.</b> Moderate: While contaminant<br>concentrations would be reduced through treatment, it is<br>likely that some potentially harmful contaminants would<br>pass through the drinking water treatment plant and<br>create a potential public health issue.                                                                                                                                                                                                                                                                           | 20            |
| D  | Pesticide<br>Storage Tank<br>(Stationary<br>Threat -<br>Reservoir) | • Pesticides                                                                                | A significant volume (100-1,000 gallons) of pesticide is<br>stored onsite at an agricultural facility near the reservoir.<br><b>Likelihood.</b> Low: The agricultural facility has secondary<br>containment around the storage tanks, and the tanks are<br>rarely full.<br><b>Vulnerability.</b> Low: The treatment plant may have the<br>capacity to handle the increased contaminant load,<br>depending on the concentration of pesticide in the source<br>water at the intake.<br><b>Consequence.</b> Moderate: Pesticides passing through the<br>drinking water treatment plant could create a potential<br>public health issue.                                                                                                                                                                                                                                                                                                                                                                                                          | 15            |

| ID | SW Threat                                                       | Potential<br>Contaminants                                                                               | Rationale for Risk Assessment Scoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Risk<br>Score |
|----|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| С  | Wastewater<br>Outfall<br>(Stationary<br>Threat - River)         | <ul> <li>Pathogens</li> <li>Unknown<br/>Organics</li> <li>Unknown<br/>Inorganics</li> </ul>             | Increasing volumes of treated wastewater effluent are<br>projected due to increased residential and industrial<br>growth over the next five years.<br>Likelihood. High: Models project that these increased<br>discharge volumes will degrade water quality in the river,<br>leading to increased loading of pathogens, unknown<br>organics, and unknown inorganics.<br>Vulnerability. Low: The treatment plant may have the<br>capacity to treat the degraded source water, although<br>some contaminants may present a challenge. Also, the<br>flow in the river, and thus the potential for dilution of the<br>treated wastewater effluent, may change due to the<br>effects of climate change.<br>Consequence. Moderate: Failure to effectively respond to<br>the degraded water quality could result in Safe Drinking<br>Water Act (SDWA) violations and water that is<br>unacceptable to customers. | 30            |
| E  | Agricultural<br>Runoff<br>(Stationary<br>Threat -<br>Reservoir) | <ul> <li>Ammonia</li> <li>Nitrates and<br/>Nitrites</li> <li>Phosphorous</li> <li>Pesticides</li> </ul> | The cumulative effects of agricultural runoff could<br>irreversibly degrade water quality in the reservoir.<br>Likelihood. Low: The reservoir has been engineered to<br>minimize runoff into the reservoir.<br>Vulnerability. Moderate: It would be difficult to restore the<br>reservoir to acceptable quality if accumulated<br>contaminants from runoff started eutrophication.<br>Consequence. Moderate: Impaired source water would<br>likely increase the occurrence of harmful algal blooms and<br>other serious water quality problems. Modifications to the<br>treatment plan may be necessary to maintain acceptable<br>finished water quality.                                                                                                                                                                                                                                                 | 20            |

| Table 8-2, High-Priority SW Thr | eats to Long-Term Source | e Water Quality for Anytown Water |
|---------------------------------|--------------------------|-----------------------------------|
| Table 0-2. There home out the   | cats to cong-renn course |                                   |

Due to constraints on available resources, both financial and personnel, Anytown Water recognized that its OWQM-SW program would need to be implemented in phases over several years. However, the utility wanted to realize benefits as soon as possible while building toward a long-term vision for OWQM-SW, so it ensured that the system would be capable of supporting all three design goals, to some degree, in the first phase. Monitoring stations installed in latter phases would expand the ability of OWQM-SW to support contamination incident detection and monitoring of threats to long-term water quality.

# 8.2 Monitoring Location Selection

The monitoring locations selected to meet the design goals are shown in Figure 8-2.



### Figure 8-2. Monitoring Locations for Anytown Water

The utility's blending facility, shown in Figure 8-2, was evaluated as a potential monitoring location to support treatment process optimization. To ensure that this location would provide OWQM-SW data in sufficient time to make treatment process adjustments, the project team compared the hydraulic travel time between the blending facility and the pretreatment contact basin with the time required to change pretreatment operations. Under typical production, the hydraulic travel time between the blending facility and the pretreatment contact basin with the time required to change pretreatment process basin was calculated to be 13 minutes. It was also determined that operators can investigate and validate an OWQM-SW alert and adjust pretreatment in 10 minutes or less. Thus, monitoring at the blending facility provides sufficient time to make a process change and was selected as OWQM-SW Location 1 to support treatment process optimization.

The project team evaluated additional monitoring locations to support detection of contamination incidents. The critical detection point on the river was determined to be 0.25 miles upstream of the river intake structure, which would provide sufficient time to close the intake should a contamination incident be detected upstream of this point. To provide additional response time, the utility placed OWQM-SW Location 2 approximately 0.75 miles upstream of the river intake, which is both upstream of the critical detection point and downstream of SW Threats B and C (petrochemical facility and wastewater outfall). OWQM-SW Location 3 was located inside the river intake structure to provide monitoring for SW Threat

A, which represents mobile threats that could cause a contamination incident between OWQM-SW Location 2 and the river intake. While a detection at Location 3 does not provide sufficient time for an optimal response, consequences could still be mitigated if a response is implemented following a detection at this location.

The project team placed OWQM-SW Location 4 at the reservoir intake structure, as shown in Figure 8-2, to monitor SW Threat D (pesticide storage tank). The flow from the reservoir to the intake structure is low enough such that monitoring at OWQM-SW Location 4 provides adequate time to close the reservoir intake if a contamination incident was detected at that location.

OWQM-SW Locations 2, 3, and 4 can also be used to monitor threats to long-term water quality. Locations 2 and 3 monitor SW Threat C (wastewater outfall), while Location 4 monitors SW Threat D (agricultural runoff).

### 8.3 Monitoring Parameter Selection

Monitoring parameters were selected based on the design goals established by Anytown Water. For the treatment optimization design goal, the project team determined it would be necessary to monitor the parameters shown in **Table 8-3** to meet the treatment targets.

| Table 8-3. Parameters Selected to Support Treatment Process Optimization for Anytown Water |
|--------------------------------------------------------------------------------------------|
| OWQM-SW Location 1 (Blending Facility)                                                     |

| Monitoring<br>Parameter | Rationale for Parameter Selection                                                                                                                                                  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DOC/TOC                 | Source water DOC/TOC concentration data is needed to determine the coagulant dose necessary to achieve the turbidity and TOC removal targets.                                      |  |  |
| Turbidity               | Source water turbidity concentration data is needed to determine the coagulant dose necessary to achieve the turbidity and TOC removal targets.                                    |  |  |
| рН                      | Source water pH data is needed to determine the acid dose required to reach the pH necessary to achieve the turbidity and TOC removal targets.                                     |  |  |
| Temperature             | Temperature impacts the equilibrium and kinetics of the chemical processes that drive coagulation, with higher temperatures generally increasing the effectiveness of coagulation. |  |  |

To detect contamination incidents and monitor threats to long-term water quality, parameter selection was driven by the high-priority SW threats identified during the risk assessment. Parameters were selected based on the contaminants associated with each SW threat and are listed in **Table 8-4**.

| OWQM-SW Location 2 (River) |           |                                                                                                                                                                                                                                    |
|----------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring<br>Parameter    | Threat ID | Rationale for Parameter Selection                                                                                                                                                                                                  |
| Hydrocarbons               | A, B      | Hydrocarbon monitoring can provide a direct measure of hydrocarbon concentrations in the source water.                                                                                                                             |
| Spectral<br>Absorbance     | A, B, C   | Many chemicals absorb in the spectral range of 250-450 nm. A change in spectral absorbance can indicate an increase in the concentration of chemical contaminants in the source water.                                             |
| DOC/TOC                    | A, B, C   | An increase in DOC/TOC can indicate contamination with an organic chemical.                                                                                                                                                        |
| Specific<br>Conductance    | A, C      | Some chemicals have charged functional groups that can dissociate and form ionic species when dissolved in water. A change in specific conductance could be an indicator of the presence of unknown chemicals in the source water. |
| Turbidity                  | С         | An increase in turbidity results from an increase in the concentration of suspended solids, which can be an indicator of potential microbiological contamination.                                                                  |
| Ammonia                    | С         | Ammonia can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                                  |
| Nitrates and<br>Nitrites   | С         | Nitrates and nitrites can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                    |
| Ortho-<br>phosphates       | С         | Orthophosphates can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                          |
| Photosynthetic<br>Pigments | С         | Photosynthetic pigments can provide a direct indication of algal activity in the source water.                                                                                                                                     |
|                            |           | OWQM-SW Location 3 (River Intake)                                                                                                                                                                                                  |
| Monitoring<br>Parameter    | Threat ID | Rationale for Parameter Selection                                                                                                                                                                                                  |
| Hydrocarbons               | A, B      | Hydrocarbon monitoring can provide a direct measure of hydrocarbon concentrations in the source water.                                                                                                                             |
| Spectral<br>Absorbance     | A, B, C   | Many chemicals absorb in the spectral range of 250-450 nm. A change in spectral absorbance can indicate an increase in the concentration of chemical contaminants in the source water.                                             |
| DOC/TOC                    | A, B, C   | An increase in DOC/TOC can indicate contamination with an organic chemical.                                                                                                                                                        |
| Specific<br>Conductance    | A, C      | Some chemicals have charged functional groups that can dissociate and form ionic species when dissolved in water. A change in specific conductance could be an indicator of the presence of unknown chemicals in the source water. |
| Turbidity                  | С         | An increase in turbidity results from an increase in the concentration of suspended solids, which can be an indicator of potential microbiological contamination.                                                                  |
| Ammonia                    | С         | Ammonia can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                                  |
| Nitrates and<br>Nitrites   | С         | Nitrates and nitrites can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                    |
| Ortho-<br>phosphates       | С         | Orthophosphates can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                          |
| Photosynthetic<br>Pigments | С         | Photosynthetic pigments can provide a direct indication of algal activity in the source water.                                                                                                                                     |

 Table 8-4. Parameter Selected to Detect Contamination Incidents and Monitor Threats to

 Long-Term Water Quality for Anytown Water

| OWQM-SW Location 4 (Reservoir) |           |                                                                                                                                                                                                                                                                  |  |  |
|--------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring<br>Parameter        | Threat ID | Rationale for Parameter Selection                                                                                                                                                                                                                                |  |  |
| Spectral<br>Absorbance         | D         | Many organic chemicals, including pesticides, absorb in the spectral range of 250-450 nm. A change in spectral absorbance can indicate an increase in the concentration of organic contaminants that could result from fuel or cargo spills in the source water. |  |  |
| DOC/TOC                        | D         | An increase in DOC/TOC can indicate contamination with an organic chemical, including pesticides.                                                                                                                                                                |  |  |
| Ammonia                        | E         | Ammonia can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                                                                |  |  |
| Nitrates and<br>Nitrites       | E         | Nitrates and nitrites can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                                                  |  |  |
| Ortho-<br>phosphates           | E         | Orthophosphates can provide a direct measure of nutrients that can trigger an algal bloom if in sufficient concentration.                                                                                                                                        |  |  |
| Photosynthetic<br>Pigments     | E         | Photosynthetic pigments can provide a direct indication of algal activity in the source water.                                                                                                                                                                   |  |  |

# 8.4 Monitoring Station Design

Monitoring station design involved the selection of sensor technologies, a sampling approach, power distribution, a communications solution, and packaging for the monitoring locations. Station design was informed by the locations and parameters selected in previous steps, as well as the performance objectives established for OWQM-SW.

A key aspect of monitoring station design is the selection of sensor technologies to measure the selected parameters. The comparison methodology presented in *Framework for Comparing Alternative Water Quality Surveillance and Response Systems* was used to evaluate candidate sensor technology options for the selected parameters at each location. This comparison considered both lifecycle costs and the capability of each alternative. The lifecycle costs included capital, maintenance, and replacement costs over an established period of time to enable technology comparison on an equal basis. To objectively assess the capability of each alternative, the following evaluation criteria were developed:

- Ability to measure a parameter and provide reliable data. This criterion included a review of existing information and an evaluation of sensor performance in the installed environment. It also considered the ability of sensors to reliably measure the expected range of parameter values. Other performance indicators that were considered include accuracy, precision, resolution, measurement frequency, fouling potential, and interference.
- **Integration within current systems.** The degree to which a particular technology fits with existing systems and within current training, quality assurance, maintenance, and procurement programs.
- **Potential for future applications.** This criterion includes a technology's ability to monitor parameters that can be leveraged for future phases of OWQM-SW implementation or other water quality monitoring applications.

The project team compared sampling, power distribution, communication, and packaging options for each station design. The station designs for OWQM-SW Locations 2, 3, and 4 were more complex compared to OWQM-SW Location 1 due to the number of parameters selected to support the design goals and the lack of existing infrastructure at the installation sites (e.g., OWQM-SW Location 2 is positioned on the bank of the river where grid power and wired communications are unavailable).

A summary of the station designs for each monitoring location is provided in **Table 8-5**. The summary includes the selected parameters, instrumentation, sampling, power distribution, communication, and packaging for each station. To facilitate procurement, fabrication, and maintenance, a common suite of instruments was used across the four monitoring stations. A local computer was also installed within each station to manage operation of sensors and station equipment and allow operators to perform remote diagnostics on the spectral absorbance instruments.

| OWQM-SW<br>Station Element       | OWQM-SW<br>Location 1<br>(Blending facility)                                                                                                                                | OWQM-SW<br>Location 2<br>(Bank of river)                                                                                                                                                     | OWQM-SW<br>Location 3<br>(River intake)                                                                                                                                                                                                            | OWQM-SW<br>Location 4<br>(Reservoir intake)                                                                                                                                                                                                        |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrumentation<br>• Parameters  | Absorption<br>Spectrometry<br>• DOC/TOC<br>• Turbidity                                                                                                                      | Absorption<br>Spectrometry<br>• DOC/TOC<br>• Turbidity<br>• Nitrogen species<br>• Spectral<br>absorbance<br>• Hydrocarbons                                                                   | Absorption<br>Spectrometry<br>DOC/TOC<br>Turbidity<br>Nitrogen species<br>Spectral<br>absorbance<br>Hydrocarbons                                                                                                                                   | Absorption<br>Spectrometry<br>• DOC/TOC<br>• Nitrogen species<br>• Spectral<br>absorbance                                                                                                                                                          |
|                                  | ISE<br>• pH<br>• Temperature                                                                                                                                                | ISE<br>• pH<br>• Temperature<br>• Ammonia<br>Colorimetry<br>• Orthophosphates<br><u>Fluorometry</u><br>• Photosynthetic<br>pigments<br><u>Conductivity Cell</u><br>• Specific<br>conductance | ISE<br>• pH<br>• Temperature<br>• Ammonia<br><u>Colorimetry</u><br>• Orthophosphates<br><u>Fluorometry</u><br>• Photosynthetic<br>pigments<br><u>Conductivity Cell</u><br>• Specific<br>conductance                                                | ISE<br>• pH<br>• Temperature<br>• Ammonia<br><u>Colorimetry</u><br>• Orthophosphates<br><u>Fluorometry</u><br>• Photosynthetic<br>pigments                                                                                                         |
| Sampling                         | Sample line fitted<br>with a pressure<br>regulator to carry<br>water from the<br>effluent pipe from<br>the blending facility<br>to a flow-cell at the<br>monitoring station | Pump used to<br>transfer water from<br>the river to a flow-<br>cell, and a drain line<br>to collect the waste<br>stream (which<br>contained reagents<br>from the<br>colorimeter)             | Sample line fitted<br>with a pressure<br>regulator to carry<br>water from effluent<br>pipe from the intake<br>facility to a flow-cell,<br>and a drain line to<br>collect the waste<br>stream (which<br>contained reagents<br>from the colorimeter) | Sample line fitted<br>with a pressure<br>regulator to carry<br>water from effluent<br>pipe from the intake<br>facility to a flow-cell,<br>and a drain line to<br>collect the waste<br>stream (which<br>contained reagents<br>from the colorimeter) |
| Power Supply<br>and Distribution | Existing grid power                                                                                                                                                         | Solar power                                                                                                                                                                                  | Existing grid power                                                                                                                                                                                                                                | Existing grid power                                                                                                                                                                                                                                |
| Communications                   | Fiber optics                                                                                                                                                                | Wireless                                                                                                                                                                                     | Fiber optics                                                                                                                                                                                                                                       | Fiber optics                                                                                                                                                                                                                                       |
| Packaging                        | Wall-mounted rack                                                                                                                                                           | Enclosed station                                                                                                                                                                             | Enclosed station                                                                                                                                                                                                                                   | Enclosed station                                                                                                                                                                                                                                   |

| Table 8-5. Final OWQM-SW Station | <b>Designs for Anytown Water</b> |
|----------------------------------|----------------------------------|
|----------------------------------|----------------------------------|

### 8.5 Information Management and Analysis

Anytown Water decided to use a dedicated OWQM-SW information management system rather than leverage its existing SCADA system. A key driver behind this decision was that the SCADA historian could not provide appropriate storage for spectral array data, which will be collected by three of the four monitoring stations, as shown in Table 8-5. This dedicated system provides storage using a PostgreSQL database and three displays: one dedicated to treatment plant optimization, one dedicated to detection of contamination incidents, and the third for monitoring threats to long-term water quality.

For the treatment process optimization design goal, the display shows time-series plots of TOC, turbidity, pH, and temperature data, as well as their associated treatment optimization thresholds. Threshold values for DOC/TOC, turbidity, pH, and temperature were determined by analyzing one year of historic data to characterize normal variability in these parameters, the results of jar tests, and full-scale experience to determine treatment process settings necessary to achieve optimal performance for different source water quality types. Once a threshold is exceeded, the OWQM-SW information management system generates an alert to notify the operator that treatment process settings may need to be adjusted to maintain optimal treatment process performance.

For detection of contamination incidents, an ADS operates on the local computer at each monitoring station to analyze the station water quality data in real time and generate alerts if an anomaly is detected. These alerts, along with the sensor data, are transmitted to the OWQM-SW information management system for presentation on the display and storage in the PostgreSQL database. The alerts are also transmitted to mobile communication devices assigned to key personnel.

For monitoring of threats to long-term water quality, OWQM-SW data is pulled quarterly from the PostgreSQL database and analyzed using statistical analysis tools available through the OWQM-SW information management system. Each quarter, a dedicated group of utility personnel with expertise in water quality, source water management, and statistics meet to review the data. A variety of analysis techniques, such as those listed in Table 6-1, are used to investigate trends and correlations in the data. The analysis is cumulative, building an understanding of long-term changes and trends over multiple years.

## 8.6 Investigation and Response Procedures

To support OWQM-SW operations, Anytown Water developed two procedures: (1) OWQM-SW Alert Investigation and Response Procedure and (2) Investigation and Response Procedure for Long-Term Water Quality Changes.

The OWQM-SW Investigation and Response Procedure supports treatment process optimization and detection of contamination incidents, and includes the following elements: • An alert investigation process flow diagram, which presents the steps to identify the most likely

- An alert investigation process flow diagram, which presents the steps to identify the most likely cause of an alert and decide whether response actions are necessary
- An alert investigation checklist, which documents the information resources that should be checked and actions that should be taken over the course of an alert investigation
- A treatment roadmap, which prescribes adjustments to chemical dosing and loading rates to maintain optimal performance from pretreatment through disinfection
- A source water contamination incident response decision tree, that summarizes the decision logic and criteria for implementing various response actions if source water contamination is possible
- A list of key personnel and their contact information along with a description of their responsibilities under this procedure

The Investigation and Response Procedure for Long-Term Water Quality Changes supports monitoring of threats to long-term water quality and development of mitigation strategies, and includes the following elements:

- A framework for investigating the cause of a long-term change in source water quality, including the statistical methods, visualization techniques, analysis methods, and information resources used to understand trends in source water quality by location and by parameter
- A framework for making decisions and strategic plans to respond to a significant change in source water quality, including resources to help establish the cost, feasibility, and efficacy of various mitigation strategies
- A list of key personnel and their contact information along with a description of their responsibilities under this procedure

### **Section 9: Case Studies**

Various organizations across the world have implemented OWQM-SW systems in response to threats to source water quality such as shale oil and gas drilling in watersheds, harmful algal blooms, spills, or other forms of source water contamination. This section provides case studies of existing OWQM-SW systems that have been implemented to address the three design goals described in Section 2. These case studies include OWQM-SW systems designed by both individual and watershed-scale drinking water utilities.

### 9.1 Greenville Water

The Greenville Water Source Water Monitoring system is an OWQM-SW program. Greenville Water supplies drinking water to almost 500,000 customers in the Upstate region of South Carolina, drawing water from Table Rock Reservoir, North Saluda Reservoir, and Lake Keowee. The design goal for Greenville's OWQM-SW system is to detect contamination incidents.

AT A GLANCE

Design goals: To detect contamination incidents Monitoring locations: 3 Parameters: pH, specific conductance, and turbidity

The water quality in each of Greenville's sources is relatively

constant, which simplifies the process of identifying a potential contamination incident. To achieve realtime monitoring of the sources, a monitoring station was installed at the treatment plant intake located on each source water. **Figure 9-1** provides an overview of Greenville's monitoring locations. Each station monitors pH, specific conductance, and turbidity.

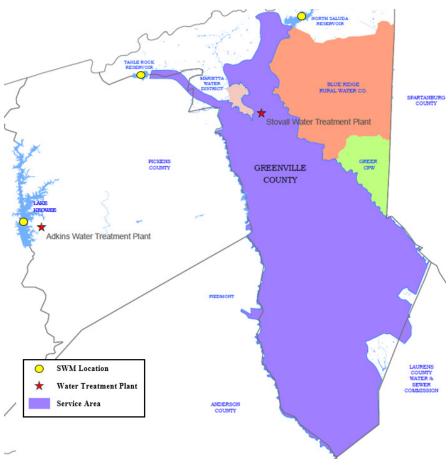



Figure 9-1. Greenville Water OWQM-SW Locations

OWQM-SW data is sent via radio to Greenville's control room where it is stored and can be accessed by utility personnel. The data is reviewed daily on SCADA system screens. **Figure 9-2** is an example of a SCADA screen that displays data from one of the monitoring stations. The SCADA system can generate an alert if one or more of the parameter values crosses established thresholds. However, no significant water quality incidents have been detected in any of Greenville's source waters as of the date of publication.

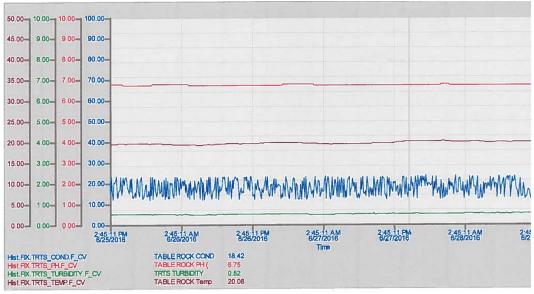



Figure 9-2. Example of Greenville Water SCADA System Screen for OWQM-SW Data

# 9.2 City of Fort Collins Utilities

The City of Fort Collins Utilities in Colorado supplies water to a population of 161,000, treating water from the Cache la Poudre River (Poudre River) and Horsetooth Reservoir. The design goals for the Fort Collins' OWQM-SW system are to optimize treatment processes and detect contamination incidents.

The Poudre River water quality is subject to large fluctuations due to a number of different influences (e.g., spring runoff, floods, fires), which may impact the ability to use the source. Fort Collins' OWQM-SW system includes five stations to monitor the two sources, as shown in **Table 9-1**. Emphasis is placed on monitoring the Poudre River due to recent issues with turbidity caused by wildfires in 2012.

### AT A GLANCE

**Design goals:** To optimize treatment processes and detect contamination incidents

Monitoring locations: 3 remote, 2 in plant

**Parameters:** alkalinity, hydrocarbons, pH, specific conductance, temperature, TOC, turbidity, and UV-254

| Location                                                                  | Parameters                                                                                                                                             | Role                                                                          | Utilization                                                                                          |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| In Poudre River, four miles upstream of intake                            | <ul><li>Specific conductance</li><li>Turbidity</li></ul>                                                                                               | Detection of<br>contamination incidents                                       | Only March/April through<br>November, as the river is<br>otherwise too low or<br>frozen              |
| In Poudre River, just<br>upstream of the intake                           | • Turbidity                                                                                                                                            | Detection of<br>contamination incidents                                       | Monitors the river turbidity<br>continuously, even when<br>the flow to the plant is<br>shut off      |
| In pipeline between the<br>Poudre River intake and<br>the treatment plant | <ul> <li>Alkalinity</li> <li>Hydrocarbons</li> <li>pH</li> <li>Specific conductance</li> <li>Temperature</li> <li>Turbidity</li> <li>UV-254</li> </ul> | Treatment process<br>optimization and detection<br>of contamination incidents | Only online when the<br>Poudre River intake is in<br>use                                             |
| Poudre River raw water at the treatment plant                             | <ul> <li>Alkalinity</li> <li>pH</li> <li>Specific conductance</li> <li>Temperature</li> <li>TOC</li> <li>Turbidity</li> </ul>                          | Treatment process<br>optimization and detection<br>of contamination incidents | Only online when the<br>Poudre River intake is in<br>use. TOC is only online<br>during spring runoff |
| Horsetooth Reservoir raw<br>water at the treatment<br>plant               | <ul> <li>Alkalinity</li> <li>Hydrocarbons</li> <li>pH</li> <li>Specific conductance</li> <li>Temperature</li> <li>Turbidity</li> </ul>                 | Treatment process<br>optimization and detection<br>of contamination incidents | Only online when the<br>Horsetooth Reservoir<br>intake is in use                                     |

Table 9-1. Fort Collins Utilities Monitoring Stations

All monitoring stations transmit data to a SCADA system where it is stored and can be accessed. Alerts are based on thresholds for specific parameters. Operators respond to alerts by reviewing the OWQM-SW data, which informs decisions for treatment process operations. Operators have the ability to isolate or blend the two sources, as necessary, in response to source water quality changes.

### EXAMPLE INCIDENT

In 2012, wildfires created ash in the watershed, which caused significant turbidity in the Poudre River. Turbidity measurement in the river just upstream of the intake provides warning of high turbidity. The Poudre River is not used as a source when the turbidity reaches a pre-defined threshold.

### Case Study References

- http://www.fcgov.com/utilities/what-we-do/water/water-quality/source-water-monitoring
- <u>http://www.fcgov.com/utilities/what-we-do/water/water-quality/source-water-monitoring/upper-poudre-quality-monitoring</u>
- <u>http://www.fcgov.com/utilities/img/site\_specific/uploads/December\_2015\_Watershed\_Newslette</u> r\_Template.pdf
- <u>http://www.fcgov.com/utilities/img/site\_specific/uploads/2013HT\_report\_final.pdf</u>

### 9.3 Clermont County Water Resources Division

The Clermont County Water Resources Department supplies water to over 43,000 customers in southwest Ohio, drawing water from Harsha Lake, the Little Miami River Valley Aquifer, and the Ohio River Valley Aquifer. The design goals for this OWQM-SW system are to detect contamination incidents and monitor threats to long-term water quality.

Harsha Lake has a history of cyanotoxin producing HAB events, which have typically occurred in early summer. The high risk of cyanotoxin formation in the lake and the difficulty in removing it

#### AT A GLANCE

**Design goals:** To detect contamination incidents and monitor threats to long-term water quality

Monitoring locations: 3

**Parameters:** DO, ORP, pH, photosynthetic pigments, specific conductance, spectral absorbance, temperature, toxicity, and turbidity

through existing drinking water treatment processes forced Clermont County to add advanced, expensive treatment techniques. To control the formation of DBPs, granular activated carbon (GAC) contactors were installed, which provide the added benefit of removing several cyanotoxins. Managing loading rates of multiple GAC contactors has become an important tool in cyanotoxin treatment. As a result, the utility wanted to develop empirical relationships between algal community composition, toxicity, and cyanotoxin concentrations to better detect and respond to cyanobacterial blooms and their toxins. To accomplish this objective, the utility established a partnership with EPA's Office of Research and Development to convert three historical water quality sampling sites to monitoring stations, as described in **Table 9-2**. Grab sampling for a range of water quality parameters occurs at various frequencies to supplement data produced by monitoring stations.

| Location                                                                             | Parameters                                                                                                                                                                                                         | Role                                                                                             |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Surface of Harsha Lake near the<br>intake of the Bob McEwen Water<br>Treatment Plant | <ul> <li>DO</li> <li>ORP</li> <li>pH</li> <li>Photosynthetic pigments</li> <li>Specific conductance</li> <li>Spectral absorbance</li> <li>Temperature</li> <li>Toxicity</li> <li>Turbidity</li> </ul>              | Detection of contamination incidents<br>and monitoring of threats to long-<br>term water quality |
| Harsha Lake intake to the Bob<br>McEwen Water Treatment Plant                        | <ul> <li>DO</li> <li>ORP</li> <li>pH</li> <li>Photosynthetic pigments</li> <li>Specific conductance</li> <li>Spectral absorbance</li> <li>Temperature</li> <li>TOC</li> <li>Toxicity</li> <li>Turbidity</li> </ul> | Detection of contamination incidents<br>and monitoring threats to long-term<br>water quality     |
| Floating Platform on Harsha Lake                                                     | <ul> <li>DO</li> <li>ORP</li> <li>pH</li> <li>Photosynthetic pigments</li> <li>Specific conductance</li> <li>Temperature</li> <li>TOC</li> <li>Turbidity</li> </ul>                                                | Detection of contamination incidents<br>and monitoring of threats to long-<br>term water quality |

Table 9-2. Clermont County Water Resources Division Monitoring Stations

Data produced by monitoring stations is sent via a cellular internet connection to a central workstation. All data is analyzed visually, using time-series plots to determine parameter relationships and identify data outliers and instances of instrument failure. Spectral absorbance and toxicity data is also analyzed by an ADS that is integrated with instrument software. Utility personnel can access OWQM-SW data through a central workstation and externally, in "read-only mode," through other secured methods. The system creates weekly reports that include QA metrics, for personnel to review on a weekly basis.

### 9.4 West Virginia American Water

West Virginia American Water (WVAW) serves approximately 550,000 customers in around 300 communities across West Virginia, drawing water from various surface water sources across the state. The primary design goals of WVAW's OWQM-SW system are to optimize treatment processes and detect contamination incidents.

WVAW has implemented an OWQM-SW system that goes above and beyond state regulatory requirements established in 2014 to proactively monitor their source waters. A monitoring station was

#### AT A GLANCE

**Design goals:** To optimize treatment processes and detect contamination incidents

Monitoring locations: 8

**Parameters:** DO, DOC (via UV-254), ORP, pH, specific conductance, temperature, and turbidity

installed at each of WVAW's eight water treatment plants to monitor water from the associated intakes. These stations continuously monitor the following parameters: DO, DOC (via UV-254), ORP, pH, specific conductance, temperature, and turbidity. A photograph of one of the monitoring stations is shown in **Figure 9-3**.



Figure 9-3. West Virginia American Water Monitoring Station

OWQM-SW data is recorded every two minutes and sent, via fiber optic cable, to a server that securely transmits data to a cloud-based web platform. Personnel with their own login credentials can view current parameter values as well as time-series plots of historical data using a secure Internet connection. A screenshot of a time-series plot showing a data subset generated at a monitoring location is shown in **Figure 9-4**. OWQM-SW data is currently analyzed using visual and statistical techniques to establish baseline water quality at each of the monitoring locations. WVAW is in the process of implementing an ADS to analyze data from multiple sensors in real-time and provide alerting based on a "rare combination" comparison to baseline data.

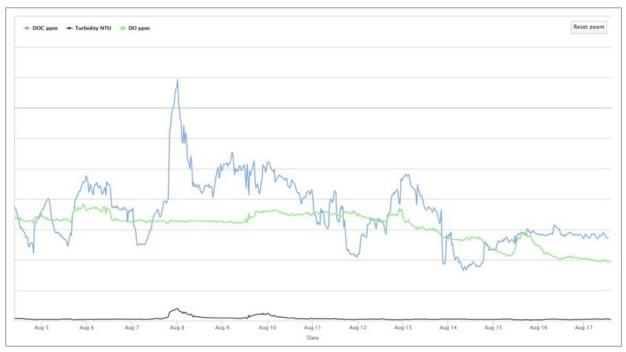



Figure 9-4. Screenshot of West Virginia American Water OWQM-SW Data

### Case Study References

- <u>http://www.amwater.com/wvaw/water-quality-and-stewardship/source-water-protection/index.html</u>
- Data Quality Management for Continuous Source Water Monitoring, Presented at NEMC, August 2016 <a href="http://www.nemc.us/meeting/2016/load\_abstract.php?id=91">http://www.nemc.us/meeting/2016/load\_abstract.php?id=91</a>

### 9.5 Bratislava Water Company

The Bratislava Water Company in Slovakia uses groundwater from a deep aquifer as its main source to supply a population of greater than 600,000. Over 144 MGD of drinking water is produced in seven central water treatment facilities that extract water from 176 wells. The only treatment performed is chlorination to prevent microbiological regrowth during distribution. The design goal for Bratislava's OWQM-SW system is to detect contamination incidents.

### AT A GLANCE

**Design goals:** To detect contamination incidents

Monitoring locations: 176 Parameters: NO<sub>3</sub>, specific conductance, spectral absorbance, temperature, and TOC

Water quality is consistently high in most of Bratislava's 176 groundwater wells. However, the utility is concerned about the possibility of contamination with pesticides, water soluble components of oil, and chemical warfare agents. As a result, monitoring stations were installed at each of the sources to monitor  $NO_3$ , TOC, specific conductance, temperature, and spectral absorbance. A photograph of a monitoring station is shown in **Figure 9-5**.



Figure 9-5. Bratislava Water Company Monitoring Station

Each of the monitoring stations is equipped with an ADS that sends an alert to plant operators when a potential water quality anomaly is detected, as illustrated in **Figure 9-6**. When an alert is received, operators shut down the well in which the anomaly was detected. Water samples are then collected and analyzed to determine whether contamination has occurred before bringing the well back online.

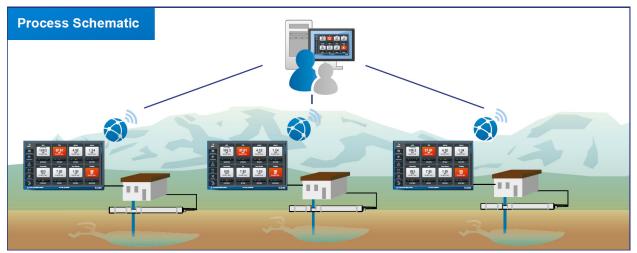



Figure 9-6. Bratislava Water Company OWQM-SW Alert Notification

### Case Study References

- http://www.s-can.at/medialibrary/references/Reference Bratislava web.pdf
- http://www.s-can.at/medialibrary/pdf/bratislava\_publication.pdf
- http://www.s-can.at/medialibrary/pdf/bratislava\_poster.pdf

### 9.6 Susquehanna River Basin Commission Early Warning System

The Susquehanna River Basin Commission (SRBC) Early Warning System is an OWQM-SW program for the lower Susquehanna River region which provides water to parts of Pennsylvania, New York, and Maryland. The system provides information to help protect public drinking water supplies serving about 850,000 people. A stakeholder group guides implementation of the OWQM-SW program and includes participating public water suppliers and representatives from various environmental protection and emergency response agencies. The design goals of SRBC's system are to optimize treatment processes and detect contamination incidents.

### AT A GLANCE

**Design goals:** To optimize treatment processes and detect contamination incidents

Monitoring locations: 55

**Parameters:** pH, temperature, and turbidity

SRBC operates 55 monitoring stations that monitor a minimum of pH, temperature, and turbidity at critical locations along the major rivers of the Susquehanna Basin. The monitored area is shown in **Figure 9-7**. The system was set up as an early warning system for contamination incidents and includes monitoring stations that monitor water quality downstream of oil and gas industry facilities. A photo of a monitoring station is shown in **Figure 9-8**.

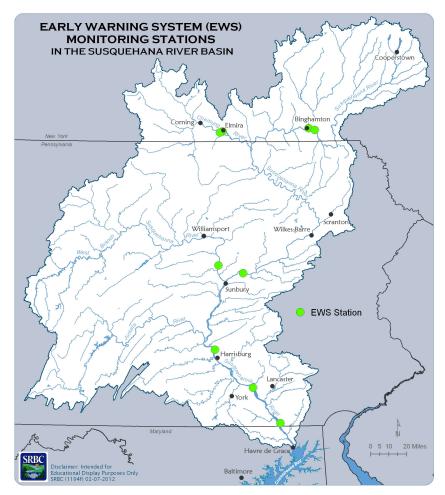



Figure 9-7. Susquehanna River Basin Region



Figure 9-8. Susquehanna River Basin Commission Monitoring Station

OWQM-SW data is transmitted in real-time to water treatment plants and the SRBC. A secure database and website interface provide access to the data and tools for investigating, or responding to, contamination incidents. The website interface provides user-friendly access to information and tools, including a time-of-travel tool to help estimate contaminant dispersal times that enable downstream users to respond to adverse changes in water quality. Data associated with the stations specifically monitoring the oil and gas industry are published to a public website every five minutes.

### Case Study References

- <u>http://www.sourcewaterpa.org/?page\_id=1806</u>
- <u>http://www.srbc.net/drinkingwater/</u>
- http://www.srbc.net/pubinfo/docs/infosheets/SRB%20 Early Warning System 136411 1.pdf
- http://www.srbc.net/programs/docs/09SRBCEWS.pdf

# 9.7 River Alert Information Network

The River Alert Information Network (RAIN) is a regional OWQM-SW system dedicated to protecting shared drinking water resources in western Pennsylvania and northern West Virginia. RAIN is a collaboration of 51 water utilities, the Pennsylvania Department of Environment Protection, the West Virginia Department of Health and Human Resources, the California University of Pennsylvania, Carnegie Mellon University, and the University of Pittsburgh. The design goal for RAIN's OWQM-SW system is to detect contamination incidents.

### AT A GLANCE

**Design goals:** To detect contamination incidents **Monitoring locations:** 29

**Parameters:** DO, NH<sub>3</sub>, pH, specific conductance, temperature, and turbidity

RAIN currently monitors water quality in the Monongahela, Allegheny, and Ohio rivers. A total of 29 monitoring stations are installed along these rivers to monitor DO, NH<sub>3</sub>, pH, specific conductance, temperature, and turbidity. A photo of a RAIN monitoring station is shown in **Figure 9-9**. An overview of monitoring locations is shown in **Figure 9-10**.



Figure 9-9. RAIN Monitoring Station

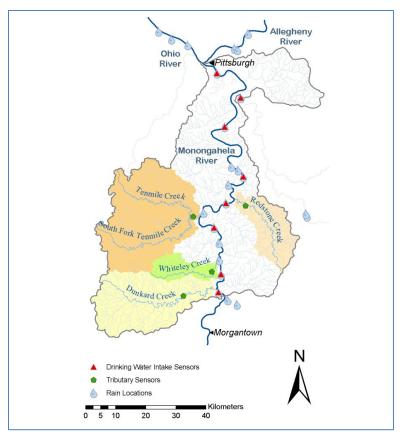



Figure 9-10. Overview of RAIN Monitoring Locations

OWQM-SW data is transmitted from monitoring stations in the field to a data center at the California University of Pennsylvania for analysis. Electronic updates are periodically forwarded to RAIN headquarters in Pittsburgh. If one or more parameters fall outside of established threshold values, automated notifications are sent to impacted drinking water treatment plants. OWQM-SW data is also made available to the public via the USGS RAIN website. A screenshot of the website, which displays an interactive map and data from one of the RAIN monitoring stations, is shown in **Figure 9-11**.

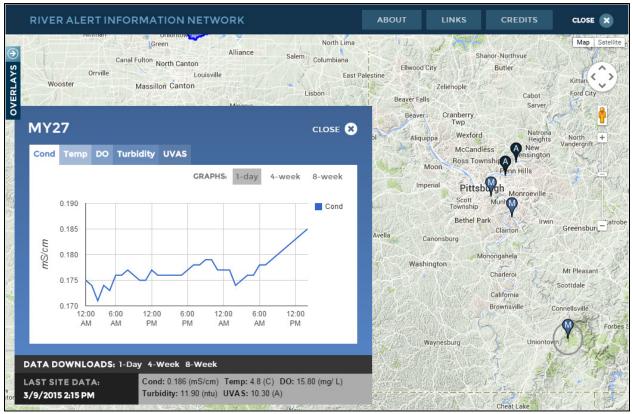



Figure 9-11. RAIN Interactive Display

#### **EXAMPLE INCIDENT**

In 2010, monitoring stations detected an increase of bromide levels in the Monongahela River. While a single source for the increased levels was never identified, it was suspected that the increase was caused by wastewater discharges from Marcellus Shale drilling or electric power plants. The combined effect of controls that were placed on some discharges along the river as well as significantly more rainfall resulted in lower bromide concentrations and more stable water quality in the river in 2011.

Case Study References

- <u>http://www.rainmatters.org/</u>
- <u>http://www.sourcewaterpa.org/wp-content/uploads/2013/04/Part-2-SWP-Coalitions-vs-DIY-Gina-Cyprych-RAIN-3-9-13-Schuylkill-Watershed-Congress.pdf</u>
- <u>http://usgs.dailyinvention.com/rain.php</u>

## 9.8 Philadelphia Water Department

Philadelphia Water Department (PWD) is a combined urban utility located in Philadelphia, Pennsylvania, that delivers approximately 250 MGD of high-quality drinking water to 1.6 million residents in Philadelphia and its surrounding suburbs. PWD operates three conventional drinking water treatment plants located on two densely populated and industrialized rivers with distinct water quality characteristics. The Schuylkill River hosts two treatment plants that supply a total of roughly 40 percent of the city's demand. The balance of the demand is met by the utility's largest plant located on the tidal Delaware River. Philadelphia is located at the confluence of these two rivers in a vast watershed of more than 10,000 square miles. **Figure 9-12** provides an overview of the utility's source watersheds and

drinking water intakes. Less than 1 percent of the total source watershed area is within city boundaries, necessitating a partnership-based approach to meet source water protection objectives.

PWD has taken proactive steps towards being an industry and regional leader in source water protection by creating mechanisms for regional coordination to implement source water protection measures. Recognizing the many benefits of online water quality monitoring, the utility has incorporated OWQM-SW components into regional, local, and utility-specific systems. Two OWQM-SW systems are described in this case study: the Delaware Valley Early Warning System and the Philadelphia Water Resources Monitoring Program.

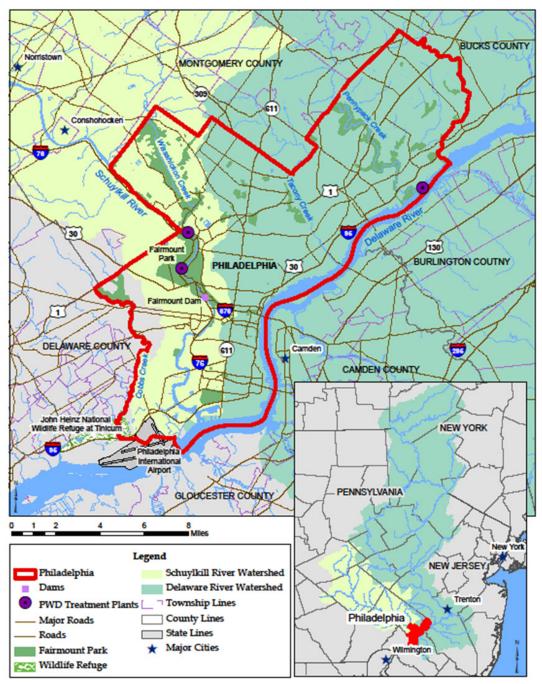



Figure 9-12. Overview of PWD's Source Watersheds and Drinking Water Intakes

### **Delaware Valley Early Warning System**

The Delaware Valley Early Warning System (EWS) is a private, web-based water quality event communication system. The EWS is designed to monitor the safety of the drinking water supply by providing data and analysis tools to aid planning and response for potential source water contamination incidents. Technological components of the EWS, such as a sophisticated notification system, secure database portal, user-friendly website, and comprehensive water quality and flow monitoring network, create the advanced functionality and unique capabilities that make the

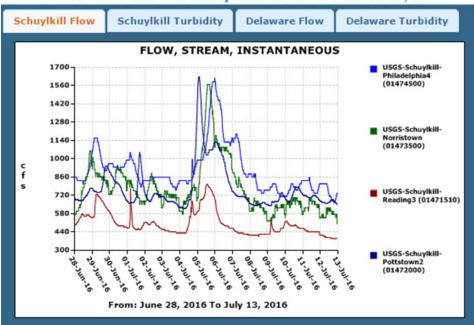
#### AT A GLANCE

Design goals: To detect contamination incidents and monitor threats to long-term water quality

Monitoring locations: 88 Parameters: DO, pH, specific conductance, temperature, and turbidity

EWS an industry model for surface water notification and monitoring systems.

The system is owned and managed by PWD, although the system covers an area well outside of the city's boundaries. The system's user base consists of more than 300 individual users from 50 different organizations that include water utilities, industries, and representatives from government agencies in Pennsylvania, New Jersey, and Delaware. EWS technical and analytical capabilities cover both the Schuylkill and Delaware Watersheds with the exception of tributaries downstream of Philadelphia and the New York City water supply.


Water quality incidents are reported through a telephone hotline or the EWS website, and email and telephone notifications to the entire user base are processed within minutes. Users can log in to the secure website to see additional event details and supplemental information, including an interactive ArcGIS map of the projected spill trajectory and time of travel estimations for tidal and non-tidal intakes. In addition to providing a user interface, the website supports OWOM-SW system users by providing:

- Secure means of accessing and analyzing information
- Tools for determining appropriate incident response
- Interface for updating incident reports •
- List of contacts for incident follow-up
- Animation of modeled spill trajectory for events on tidal waters

The monitoring stations are fully integrated with the EWS website and database portal. The monitoring network consists of four monitoring stations at drinking water intakes and 84 supplemental USGS water monitoring stations on the lower Delaware River and its tributaries. These stations monitor parameters such as DO, flow, pH, specific conductance, temperature, and turbidity. The system is designed to allow EWS users to easily track water quality changes and potential impacts from contamination incidents through automatically generated graphical displays and user-friendly data query tools available on the system's secure website. An example of real-time flow and turbidity data visualization from the EWS homepage is shown in Figure 9-13. The graph displays readings from the last 15 days from multiple monitoring stations on the main stem of the Schuvlkill and Delaware Rivers.

Another objective of the system is to provide users with access to historic water quality data through query functions. Both real-time and historic data can be queried and viewed in charts online or downloaded to a file that can be further analyzed by the EWS subscriber using data analysis software. Additionally, both real-time and historic flow data can be used to produce conservative time of travel estimations for each reported event.

PWD supports ongoing system upgrades and enhancements to ensure that the EWS remains the most advanced and robust system possible, helping to protect the drinking water supply for over 3 million people in the watershed.



### Real-Time Flow and Turbidity Charts for the last 15 days

Figure 9-13. Example of OWQM-SW Data Visualization on EWS Homepage

#### **EXAMPLE INCIDENTS**

Past significant contamination incidents reported to the Delaware Valley EWS include a spill of 275,000 gallons of crude oil in the tidal Delaware River in 2004, a spill of 100 million gallons of fly ash into the Delaware River from an industrial lagoon in 2005, a cyanide release through a wastewater treatment plant into a tributary to the Schuylkill River in 2006, and a train derailment release of 25,000 gallons of vinyl chloride into a tributary to the Delaware River in 2012.

### Philadelphia Water Resources Monitoring Program

As a combined utility, PWD uses online water quality monitoring data to support both Safe Drinking Water Act and Clean Water Act objectives. PWD works cooperatively with USGS to maintain an extensive monitoring network within the City of Philadelphia. The objective of the system is to characterize the quality of the City's waterways and detect water quality changes that may warrant further investigation. Ten strategically positioned stream flow monitoring stations augmented with OWQM-SW instruments characterize water quality entering and exiting Philadelphia's sub-watersheds.

#### AT A GLANCE

Design goals: To detect contamination incidents and monitor threats to long-term water quality Monitoring locations: 10 Parameters: DO, pH, specific conductance, temperature, and turbidity

Monitored water quality parameters include DO, pH, specific conductance, temperature, and, at select locations, turbidity. Hydrological parameters such as flow and gauge height are also measured.

OWQM-SW data is automatically uploaded to databases in the USGS computer network, and a web server transfers the data to the USGS National Water Information System (NWIS) website. A separate utility website automatically retrieves data from the USGS NWIS at regular intervals and geospatially displays the results on a publicly accessible website shown in **Figure 9-14**. A traffic light color scheme is applied to each parameter at each station to denote good water quality (green), undesirable changes in water quality (yellow), and poor water quality (red). Rating thresholds are based on stream use designations and established water quality criteria. Users can select a station on the map to see the most recent instantaneous readings.

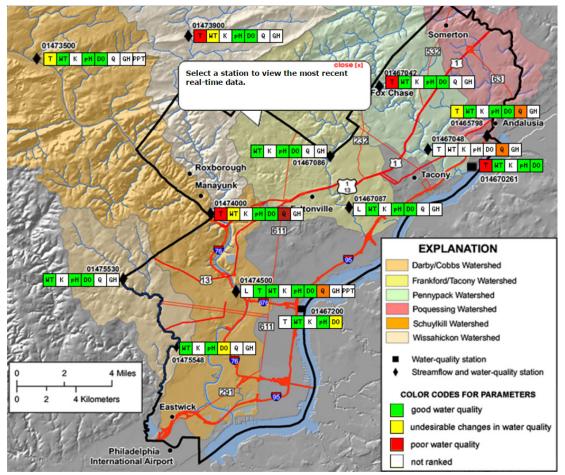



Figure 9-14. Philadelphia Water Resources Monitoring Program Website User Interface

The user interface and data visualization allows PWD personnel to simultaneously monitor spatial and temporal quality and quantity trends. This information is used to assess aquatic ecosystem health, evaluate source water quality, and inform decision-making surrounding watershed restoration initiatives. Additionally, these stations serve as Philadelphia's long-term, wet-weather monitoring stations. Additional quality assurance and data analysis is performed on data from each monitoring station.

### Case Study Reference

• http://www.phila.gov/water/wu/Water%20Quality%20Reports/2015WaterQuality.pdf

### Resources

### Introduction

### Water Quality Surveillance and Response System Primer

This document provides an overview of Water Quality Surveillance and Response Systems, and serves as a foundation for the application of technical guidance and products used to implement an SRS. EPA 817-B-15-002, May 2015.

https://www.epa.gov/sites/production/files/2015-

06/documents/water\_quality\_sureveillance\_and\_response\_system\_primer.pdf

### Framework for Designing Online Monitoring Systems

### Guidance for Developing Integrated Water Quality Surveillance and Response Systems

This document provides guidance for applying system engineering principles to the design and implementation of an SRS to ensure that the SRS functions as an integrated whole and is designed to effectively perform its intended function. Section 2 provides guidance on project management and coordination. Section 3 provides guidance on master planning for a multi-component SRS. EPA 817-B-15-006, October 2015. https://www.epa.gov/sites/production/files/2015-

12/documents/guidance\_for\_developing\_integrated\_wq\_srss\_110415.pdf

### **Quality Assurance (ACRR) Matrix**

A series of tables that provide guidance on quality control and record-keeping practices for common water quality parameters monitored online. http://www.watersensors.org/pdfs/ASW\_OA\_Matrix\_web.pdf

#### **J100 Standard**

The J100 Standard was developed collaboratively by the American National Standards Institute (ANSI), American Society of Mechanical Engineers Innovative Technologies Institute (ASME-ITI), and American Water Works Association (AWWA). J100 sets the requirements for all-hazards risk and resilience analysis for the water sector, ensuring a consistent framework for conducting risk assessments. The J100 documents a seven-step process for evaluating risks presented by man-made threats, natural hazards, dependencies, and proximity to hazardous sites. http://www.awwa.org/store/productdetail.aspx?productid=21625

#### **Vulnerability Self-Assessment Tool**

The Vulnerability Self-Assessment Tool (VSAT) is an electronic resource designed to help water and wastewater utilities of all sizes to identify vulnerabilities to both man-made and natural hazards, and evaluate potential improvements to enhance their security and resiliency. Version VSAT 6.0, released in 2015, is consistent with the J100 Standard. https://vsat.epa.gov/vsat/

### **State Primacy Agency Source Water Assessments**

State drinking water primacy agencies are required to conduct source water assessments that include an inventory of known and potential sources of contamination. Source water assessments provide information about sources of drinking water used by public water systems. They are developed by state primacy agencies to help local governments, water utilities, and others protect drinking water sources. While the assessment programs are tailored to each state's specific issues, they all generally follow these three steps: (1) delineate the source water protection area, (2) conduct an inventory of potential sources of contamination, and (3) determine the vulnerability of the water supply to contamination. Contact your state drinking water primacy agency for more information.

https://www.epa.gov/sourcewaterprotection/conducting-source-water-assessments

### **DWMAPS**

This GIS-based tool was developed by EPA to help states and utilities update their source water assessments. It provides layers of spatially referenced data using information from databases such as National Pollutant Discharge Elimination System (NPDES); Toxic Release Inventory (TRI); Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS); Resource Conservation and Recovery Act Information (RCRAInfo); and Toxic Substances Control Act (TSCA). DWMAPS also provides meta-data that can be useful for characterizing potential SW threats. A secure version of DWMAPS, which shows the location of drinking water intakes relative to the location of source water threats, is available to drinking water utilities and state primacy agencies.

https://www.epa.gov/sourcewaterprotection/dwmaps

#### Template for Conducting a Risk Assessment for Source Water Threats (Word File)

This Word template can be used to document a risk assessment for SW threats. It provides tables for summarizing the attributes of SW threats and associated contaminants, example definitions of the risk assessment parameters, and tables for documenting the results of the risk assessment. September 2016.

Click this link to open the template

#### Framework for Comparing Alternatives for Water Quality Surveillance and Response Systems

This document provides guidance for selecting the most appropriate SRS design for a utility from a set of viable alternatives. It guides the user through an objective, stepwise analysis for ranking multiple alternatives and describes, in general terms, the types of information necessary to compare the alternatives. EPA 817-B-15-003, June 2015.

https://www.epa.gov/sites/production/files/2015-

 $\underline{07/documents/framework\_for\_comparing\_alternatives\_for\_water\_quality\_surveillance\_and\_resp_onse\_systems.pdf$ 

#### Template for Developing an OWQM-SW Preliminary Design Document (Word File)

This Word template can be used to document the preliminary design of an OWQM-SW system, including: OWQM-SW implementation team, design goals, performance objectives, SW threats, OWQM-SW locations, OWQM-SW parameters, preliminary information management requirements, initial training plan, budget, and schedule. September 2016. Click this link to open the template

### **Monitoring Locations**

# Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting

Provides guidelines for equipment and monitor selection, placement of online water quality monitoring equipment in an aquatic environment, sensor inspection and calibration methods, data evaluation, record review, and data reporting.

http://pubs.usgs.gov/tm/2006/tm1D3/pdf/TM1D3.pdf

### **Monitoring Parameters**

### List of Available OWQM Instruments

This spreadsheet provides an overview of available online water quality monitoring instruments that have been used for source water and distribution system monitoring. The instrument list can be filtered and sorted according to the criteria specified in the column headings. https://www.epa.gov/waterqualitysurveillance/online-water-quality-monitoring-resources

# Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results A Guide for Sensor Manufacturers and Water Utilities

This document presents the methodology and findings from several studies evaluating the ability of common water quality parameters to detect a variety of contaminants in finished drinking water. EPA 600/R-09/076, October 2009.

http://www.epa.gov/sites/production/files/2015-

06/documents/distribution\_system\_water\_quality\_monitoring\_sensor\_technology\_evaluation\_me\_thodology\_results.pdf

### **Monitoring Stations**

### **Guidance for Building Online Water Quality Monitoring Stations**

This document provides guidance for designing water quality monitoring stations for both source water and distribution system applications. It describes different station designs and provides detailed design schematics, describes basic station equipment and station accessories, and provides considerations for fabricating and installing online water quality monitoring stations. EPA 817-B-18-002, May 2018

https://www.epa.gov/sites/production/files/2018-05/documents/guidance for building owqm stations 05092018 0.pdf

# Guidance for Designing Communications Systems for Water Quality Surveillance and Response Systems

This document provides guidance and information to help utilities select an appropriate communications system to support operation of a Water Quality Surveillance and Response System. It provides rigorous criteria for evaluation communications system options, evaluates common technologies with respect to these criteria, describes the process for establishing requirements for a communications system, and provides guidance on selecting and implementing a system. EPA 817-B-16-002, September 2016.

https://www.epa.gov/sites/production/files/2017-

04/documents/srs communications guidance 081016.pdf

### **Information Management and Analysis**

### Guidance for Developing Integrated Water Quality Surveillance and Response Systems

This document provides guidance for applying system engineering principles to the design and implementation of an SRS to ensure that the SRS functions as an integrated whole and is designed to effectively perform its intended function. Section 4 provides guidance on developing information management system requirements, selecting an information management system, and IT master planning. Appendix B provides an example outline for an IT operations and maintenance plan. EPA 817-B-15-006, October 2015.

https://www.epa.gov/sites/production/files/2015-12/documents/guidance for developing integrated wq srss 110415.pdf

# Exploratory Analysis of Time-series Data to Prepare for Real-time Online Water Quality Monitoring

This document describes methods for analyzing time-series water quality data to establish normal variability for water quality at unique monitoring locations. It also describes how the results of this exploratory analysis can be used to develop tools and training to prepare utility personnel for real-time analysis of online water quality data. EPA 817-B-16-004, November 2016. https://www.epa.gov/waterqualitysurveillance/online-water-quality-monitoring-resources

### Water Quality Event Detection System Challenge: Methodology and Findings

This report describes the methodology and results from a study designed to evaluate five anomaly detection systems used for the analysis of online water quality data for finished water. EPA 817-R-13-002, April 2013.

https://www.epa.gov/sites/production/files/2015-07/documents/water\_quality\_event\_detection\_system\_challenge\_methodology\_and\_findings.pdf

### Dashboard Design Guidance for Water Quality Surveillance and Response Systems

This document provides information about useful features and functions that can be incorporated into an SRS dashboard. It also provides guidance on a systematic approach that can be used by utility managers and IT personnel to define requirements for a dashboard. EPA 817-B-15-007, November 2015.

https://www.epa.gov/sites/production/files/2015-12/documents/srs\_dashboard\_guidance\_112015.pdf

### **Statistical Methods in Water Resources**

This document provides a comprehensive and detailed description of statistical techniques that can be used to analyze water quality data. It is particularly useful for evaluating correlations and long-term trends in source water quality. Helsel, D. R. and Hirsch, R. M. In Techniques of waterresources investigation of the United States Geological Survey, Book 4, Hydrologic analysis and interpretation.

http://water.usgs.gov/pubs/twri/twri4a3/

### **Information Management Requirements Development Tool**

This tool is intended to help users develop requirements for an SRS information management system, thereby preparing them to select and implement an information management solution. Specifically, this tool (1) assists SRS component teams with development of component functional requirements, (2) assists IT personnel with development of technical requirements, and (3) allows the IT design team to efficiently consolidate and review all requirements. EPA 817-B-15-004, October 2015.

http://www.epa.gov/waterqualitysurveillance/surveillance-and-response-system-resources

### **Investigation and Response Procedures**

### Template for Developing OWQM-SW Investigation and Response Procedures (Word File)

This Word template can be used to develop investigation and response procedures, including: an OWQM-SW alert investigation procedure, a treatment process optimization procedure, and a source water contamination incident response procedure. The template includes editable procedure flowcharts with supporting tables and an editable investigation checklist. September 2016.

Click this link to open the template

### Guidance for Developing Integrated Water Quality Surveillance and Response Systems

This document provides guidance for applying system engineering principles to the design and implementation of an SRS to ensure that the SRS functions as an integrated whole and is designed to effectively perform its intended function. Section 5 provides guidance on developing alert investigation procedures, and includes examples of alert investigation tools such as an alert investigation record and quick reference guides. Section 6 provides guidance on developing a training and exercise program to support SRS operations. EPA 817-B-15-006, October 2015. https://www.epa.gov/sites/production/files/2015-

12/documents/guidance for developing integrated wq srss\_110415.pdf

### Guidance for Building Laboratory Capabilities to Respond to Drinking Water Contamination

This document provides guidance to assist drinking water utilities with building laboratory capabilities for responding to water contamination incidents, including those occurring in source waters. It presents contaminant classes of concern, lists analytical methods for those classes, and provides information on the role of national laboratory networks in responding to drinking water contamination incidents. EPA 817-R-13-001, March 2013.

https://www.epa.gov/sites/production/files/2015-

<u>06/documents/guidance\_for\_building\_laboratory\_capabilities\_to\_respond\_to\_drinking\_water\_co</u> <u>ntamination.pdf</u>

### **Cyanobacterial Harmful Algal Blooms**

This website provides information and numerous resources for understanding, preventing, and managing harmful algal blooms in surface water. Topics covered include: causes and prevention, detection, health and ecological effects, control and treatment, guidance and recommendations, and a listing of state resources.

https://www.epa.gov/nutrient-policy-data/cyanobacterial-harmful-algal-blooms-water

### Water Contaminant Information Tool

This database provides information on over 800 drinking water and wastewater contaminants, including pathogens, pesticides, and toxic industrial chemicals. It can serve as a useful resource for investigating the properties of contaminants associated with SW threats during a risk assessment. It can also be a valuable resource during response to a source water contamination incident once the identity of the contaminant is known or suspected. Note that users must register with EPA to obtain access to this database. EPA 817-F-15-026, November 2015. https://www.epa.gov/waterlabnetwork/access-water-contaminant-information-tool

### **Treatability Database**

This database provides referenced information on the control of contaminants in drinking water. It allows users to access information gathered from thousands of literature sources from a single database. It can serve as a useful resource for investigating the treatability of contaminants when planning a response to a source water contamination incident. https://iaspub.epa.gov/tdb/pages/general/home.do

### Guidance for Responding to Drinking Water Contamination Incidents

This resource provides an editable template for developing a utility-specific Distribution System Contamination Response Procedure. Elements of this plan include investigation of a possible distribution system contamination incident, planning for site characterization, implementing operational response actions, issuing public notification, and planning for remediation and recovery. An accompanying guide helps the user populate the template to customize the plan to a specific utility. EPA 817-B-18-005, October 2018.

https://www.epa.gov/sites/production/files/2018-

12/documents/responding to dw contamination incidents.pdf

#### **Developing Risk Communication Plans for Drinking Water Contamination Incidents**

This resource provides guidance on developing an effective risk communication plan to guide communications with response partners and the public during a drinking water contamination incident. EPA 817-F-13-003, April 2013.

https://www.epa.gov/sites/production/files/2015-

07/documents/developing\_risk\_communication\_plans\_for\_drinking\_water\_contamination\_incide nts.pdf

### **Climate Ready Water Utilities**

This EPA program provides the water sector with practical tools, training, and technical assistance needed to adapt to climate change by promoting a clear understanding of climate science and adaptation strategies. One tool provided through this program is the Climate Resilience Evaluation and Awareness Tool (CREAT), which is a risk assessment tool that allows a water utility to evaluate potential impacts of climate change under different time periods and scenarios. CREAT complements other tools and resources, including hydrology and water quality models.

https://www.epa.gov/crwu

#### **Source Water Protection**

This EPA program provides guidance and links to a variety of tools and resources to support source water protection activities.

https://www.epa.gov/sourcewaterprotection

#### **Source Water Collaborative**

The Source Water Collaborative (SWC) is a group consisting of 26 national organization and state and local partners with a mission to foster protection of drinking water resources. The SWC hosts a website with links to a number of tools and resources to support source water protection. http://sourcewatercollaborative.org/

### Water Quality SRS Exercise Development Toolbox

The Exercise Development Toolbox helps utilities and response partner agencies to design, conduct, and evaluate exercises around contamination scenarios. These exercises can be used to develop and refine investigation and response procedures, and train personnel in the proper implementation of those procedures. The toolbox guides users through the process of developing realistic scenarios, designing discussion-based and operations-based exercises, and creating exercise documents. March 2016.

https://www.epa.gov/waterqualitysurveillance/water-quality-surveillance-and-response-systemexercise-development-toolbox

## References

- McEwen, 1998. Treatment process selection for particle removal. Denver, CO: AWWA/International Water Supply Association.
- Umberg, K., and Allgeier, S., 2016. Parameter set points: an effective solution for real-time data analysis. *JAWWA*, 108, E60-E66.

### Glossary

Advanced Metering Infrastructure (AMI). Systems that measure, collect, and analyze water usage, and communicate with water meters, either on request or on a schedule. These systems include hardware, software, and communications for data access, visualization, and analysis. An AMI system may include consumer use displays, customer associated systems, meter data management software, and supplier business systems. The meters may be coupled with pressure monitors, temperature sensors, other devices, outside data streams (weather), and alert for tampering and backflow incidents.

**accuracy**. The degree to which a measured value represents the true value.

**alert**. An indication from an SRS surveillance component that an anomaly has been detected in a datastream monitored by that component. Alerts may be visual or audible, and may initiate automatic notifications such as pager, text, or email messages.

**alert investigation process**. A documented process that guides the investigation of an SRS alert. A typical procedure defines roles and responsibilities for alert investigations, includes an investigation process diagram, and provides one or more checklists to guide investigators through their role in the process.

**anomaly**. A deviation from an established baseline in a monitored datastream. Detection of an anomaly by an SRS surveillance component generates an alert.

**anomaly detection system (ADS)**. A data analysis tool designed to detect deviations from an established baseline. An ADS may take a variety of forms, ranging from thresholds to complex computer algorithms.

**architecture**. The fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principles guiding its design and evolution. The architecture of an information management system is conceptualized as three tiers: source data systems, analytical infrastructure, and presentation.

baseline. Values for a datastream that include the variability observed during typical system conditions.

completeness. The percentage of data that is of sufficient quality to support its intended use.

**component**. One of the primary functional areas of an SRS. There are five surveillance components: Online Water Quality Monitoring, Physical Security Monitoring, Advanced Metering Infrastructure, Customer Complaint Surveillance, and Public Health Surveillance. There are two response components: Water Contamination Response and Sampling and Analysis.

**consequence**. The adverse effects of an incident experienced by a utility (e.g., damaged infrastructure) or its customers (e.g., illness). In the context of a source water risk assessment, consequences result when a threat contaminates or degrades the quality of a source water. The value for consequence in the risk assessment equation can be based on quantitative factors such as economic damage, duration of lost services, number of illnesses, or number of fatalities. The consequence value can also be based on semi-quantitative measures and normalized such that the SW threat that would result in the greatest consequence value of 100, and the values for all other SW threats being less than 100.

**contamination incident**. The presence of a contaminant (microorganism, chemical, waste, or sewage) in a drinking water distribution system that has the potential to cause harm to a utility or the community served by the utility. Contamination incidents may have natural (e.g., toxins produced by a source water algal bloom), accidental (e.g., chemicals introduced through an accidental cross-connection), or intentional (e.g., purposeful injection of a contaminant at a fire hydrant) causes.

**control center**. A utility facility that houses operators who monitor and control treatment plant and system operations, as well as other personnel with monitoring or control responsibilities. Control centers often receive system alerts related to operations, water quality, security, and some of the SRS surveillance components.

**control point**. A location where a treatment process can be modified (e.g., addition of pretreatment chemicals) or a response action can be implemented (e.g., closing an intake).

**critical detection point**. The location upstream of a drinking water intake from which the hydraulic travel time to the intake equals the time required to implement a response action, such as closing an intake structure. The location of the critical detection point is a function of the flow rate used to calculate the hydraulic travel time.

**Customer Complaint Surveillance (CCS)**. One of the surveillance components of an SRS. CCS monitors water quality complaint data in call or work management systems and identifies abnormally high volumes or spatial clustering of complaints that may be indicative of a contamination incident.

**dashboard**. A visually-oriented user interface that integrates data from multiple SRS components to provide a holistic view of distribution system water quality. The integrated display of information in a dashboard allows for more efficient and effective management of water quality and the timely investigation of water quality anomalies.

**data analysis**. The process of analyzing data to support routine system operation, rapid identification of water quality anomalies, and generation of alert notifications.

**data quality objectives**. Qualitative and quantitative statements that clarify study objectives, define the appropriate types of data, and specify the tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions.

**design goal**. The specific benefits to be realized through deployment of an SRS and each of its components. For source water monitoring, the following three design goals are applicable: to optimize treatment processes, detect contamination incidents, and monitor threats to long-term water quality.

**Distribution System Contamination Response Procedure**. A planned decision-making framework that establishes roles and responsibilities and guides the investigative and response actions following a determination that distribution system contamination is possible.

**emergency response plan (ERP)**. A documented plan that describes the actions a drinking water utility would take in response to a variety of emergencies such as contamination incidents, natural disasters, or acts of terrorism.

**functional requirement**. A type of information management requirement that defines key features and attributes of an information management system that are visible to the end user. Examples of functional requirements include the manner in which data is accessed, types of tables and plots that can be produced through the user interface, the manner in which component alerts are transmitted to investigators, and the ability to generate custom reports.

**geographic information system (GIS)**. Hardware and software used to store, manage, and display geographically referenced information. Typical information layers used by water utilities include utility infrastructure, hydrants, service lines, streets, and hydraulic zones. GIS can also be used to display information generated by an SRS.

**information management system**. The processes involved in the collection, storage, access, and visualization of information. In the context of an SRS, information includes the raw data generated by SRS surveillance components, alerts generated by the components, ancillary information used to support data analysis or alert investigations, details entered during alert investigations, and documentation of Water Contamination Response activities.

invalid alert. An alert from an SRS surveillance component that is not due to a water quality incident or public health incident.

**lifecycle cost**. The total cost of a system, component, or asset over its useful life. Lifecycle cost includes the cost of implementation, operation and maintenance, and renewal.

**likelihood**. In the context of a source water risk assessment, the probability that an SW threat will contaminate the source water. The value for likelihood in the risk assessment equation can range from 0 (contamination won't occur) to 1 (contamination is certain to occur).

**monitoring location**. The specific location in a source water or watershed where water is sampled for measurement by an OWQM-SW station. Note that an OWQM-SW station may be installed away from the OWQM-SW location (i.e., if the water sample is transported from the waterbody to the OWQM-SW station through piping).

**monitoring station**. A configuration of one or more water quality instruments and associated support systems, such as plumbing, electric, and communications that is installed to monitor water quality in real time at an OWQM-SW location.

**Online Water Quality Monitoring (OWQM)**. One of the surveillance components of an SRS. OWQM utilizes data collected from monitoring stations that are installed at strategic locations in a utility's source water and/or a distribution system. Data from the monitoring stations is transferred to a central location and analyzed for water quality anomalies.

**percentile**. In statistics, a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it.

**performance objectives**. Measurable indicators of how well an SRS or its components meet established design goals.

**Physical Security Monitoring (PSM)**. One of the surveillance components of an SRS. PSM includes the equipment and procedures used to detect and respond to security breaches at distribution system facilities that are vulnerable to contamination.

**possible**. Contamination is considered possible if an indicator of contamination is investigated and contamination cannot be ruled out. Possible contamination is the lowest/first confidence level presented in the Response Protocol Toolbox.

**preliminary operation**. A period of SRS component operation during which all equipment and IT systems are operational, but data analysis and investigations are not performed in real time. The purpose of preliminary operations is to evaluate the performance of the SRS component, address problems, and allow personnel to become familiar with SRS component procedures.

**real-time**. A mode of operation in which data describing the current state of a system is available in sufficient time for analysis and subsequent use to support assessment, control, and decision functions related to the monitored system.

**risk assessment**. A method of assigning risk values to a threat based on likelihood, vulnerability, and consequence. The current standard risk methodology for the water sector is the J100 standard.

**Risk Communication Plan**. A plan developed by a utility to guide communications with the public and coordination with response partners and the media during an emergency.

**Sampling and Analysis (S&A)**. One of the response components of an SRS. S&A is activated during Water Contamination Response to help confirm or rule out possible water contamination through field and laboratory analyses of water samples. In addition to laboratory analyses, S&A includes all the activities associated with site characterization. S&A continues to be active throughout remediation and recovery if contamination is confirmed.

**source water**. Water from natural resources that is generally treated in order to produce drinking water for a community. Source water is usually classified as either groundwater (drawn from aquifers) or surface water (drawn from rivers, streams, lakes, ponds, etc.). Prior to being removed for the purpose of drinking water production, surface water may have other uses such as recreation (e.g., boating, swimming, fishing), aquaculture, and transportation route.

**source water threat (SW threat)**. A facility, land use, weather event, or environmental condition with the potential to degrade source water quality.

**spectral fingerprint**. The spectral absorbance of a sample over a range of wavelengths (typically in the visible and ultraviolet spectrum). Spectral fingerprints can be measured for specific compounds or complex mixtures, and can be a means of identifying the presence of a specific compound or a change in the characteristics of a complex mixture.

**technical requirement**. A type of information management requirement that defines system attributes and design features that are often not readily apparent to the end user, but are essential to meeting functional requirements or other design constraints. Examples include attributes such as system availability, information security and privacy, backup and recovery, data storage needs, and inter-system integration requirements.

**threshold**. Minimum and/or maximum acceptable values for individual datastreams that are compared against current or recent data to determine whether conditions are anomalous or atypical of normal operations.

**treatment process model**. A conceptual representation of the operation and performance of a drinking water treatment unit process. The model typically captures the relationship among influent water quality, treatment process settings, and effluent water quality. Treatment process models can be categorized as mechanistic, statistical, or knowledge-based.

**treatment roadmap**. A set of instructions for adjusting treatment processes to achieve treatment targets based on information from influent water quality data, process monitoring feedback, or process effluent water quality data.

valid alert. Alerts due to water contamination, verified water quality incidents, intrusions at utility facilities, or public health incidents.

**vulnerability**. In the context of a source water risk assessment, the probability that a utility or its customers would be impacted by an SW threat. The value for vulnerability in the risk assessment equation can range from 0 (no adverse impact will occur) to 1 (adverse impact is certain to occur). The vulnerability value is generally based on the ability of the utility to effectively respond to an SW threat, preventing or mitigating consequences to utility infrastructure, operations, and customers.

**water quality instrument**. A unit that includes one or more sensors, electronics, internal plumbing, displays, and software that is necessary to take a water quality measurement and generate data in a format that can be communicated, stored, and displayed. Some instruments also includes diagnostic tools.

water quality sensor. The part of a water quality instrument that performs the physical measurement of a water quality parameter in a sample.

Water Contamination Response (WCR): One of the response components of an SRS. This component encompasses actions taken to plan for and respond to possible drinking water contamination incidents to minimize the response and recovery timeframe, and ultimately minimize consequences to a utility and the public.

Water Quality Surveillance and Response System (SRS). A system that employs one or more surveillance components to monitor and manage source water and distribution system water quality in real time. An SRS utilizes a variety of data analysis techniques to detect water quality anomalies and generate alerts. Procedures guide the investigation of alerts and the response to validated water quality incidents that might impact operations, public health, or utility infrastructure.