EPA'S LIGHT-DUTY VEHICLE EMISSIONS CONTROL PROGRAMS

Bill Charmley, U.S. Environmental Protection Agency

Topics

Tier 3 Vehicle and Fuels Program

Light-duty Greenhouse Gas National Program

 Midterm Evaluation of 2022-2025 Light-duty GHG Standards

TIER 3 VEHICLE AND FUELS PROGRAM

Tier 3 Vehicle and Fuel Program - Overview

- Systems approach to reducing motor vehicle pollution: more stringent vehicle standards enabled by gasoline sulfur control
- Creates a harmonized vehicle program
 - Coordinated with California Low Emission Vehicle (LEV) III standards
 - Enables auto industry to produce and sell one vehicle nationwide
- Part of comprehensive approach to create cleaner, more efficient vehicles
 - Phase in begins model year (MY) 2017
 - Coordinated compliance with both LEV III and light-duty GHG/fuel economy standards for MY 2017-2025

Tier 3 - Air Quality and Health

- Tier 3 standards will have immediate health and air quality benefits when they take effect in 2017
 - Reduce ozone, particulate matter (PM), and toxics
- Help States and Local areas attain and maintain ozone and PM NAAQS
 - Tier 3 provides cost-effective national reductions that avoid more expensive local controls
- Reduce pollution near roads
 - More than 50 million people live, work, or go to school near major roads

"There is not another air pollution control strategy that we know of that will produce as substantial, cost-effective and expeditious emissions reductions."

--Bill Becker, Executive Director of National Association of Clean Air Agencies

Tier 3 – Vehicle and Fuel Standards

Vehicles

- Phase in 2017 2025
- Tighter VOC and NOx tailpipe standards
 - 80% reduction from today's fleet average
- Tighter PM tailpipe standard
 - 70% reduction in per-vehicle standard
- Evaporative emissions standards
 - Reduced fuel vapor emissions and improved system durability
- Revised certification test fuel from E0 to E10 to better reflect in-use gasoline

Fuels

- Lower annual average sulfur standard from 30 to 10 ppm, starting January 1, 2017
- Maintain the current per-gallon sulfur caps (80 ppm at refinery gate, 95 ppm at retail)

EPA's Tier 3 Cleaner Car and Gasoline Standards

REDUCING AIR POLLUTIONFROM PASSENGER CARS & TRUCKS

TIER 3 VEHICLE & FUEL STANDARDS WILL PROVIDE SUBSTANTIAL

POLLUTION REDUCTION AT LOW COST

Tier 3 - Benefits

Tier 3 - Air Quality Impacts in 2030

- Large decreases in ozone design values across the country
 - Many counties with decreases over 1 ppb
- Also meaningful reductions in ambient PM and air toxics

LIGHT-DUTY VEHICLE GREENHOUSE GAS NATIONAL PROGRAM

In 2014 the climate science has become even more certain – and the U.S. prepares for domestic mitigation and global challenges

Why GHG Emissions Matter

Global Temperature and CO₂ Emissions

Global Temperature by Decade

Figure source: NOAA NCDC

Why GHG Emissions Matter

Where does the carbon come from?

Carbon Emissions and Sources

Major North American CO₂ Sources & Sinks

Data from Boden et al. 2012

Figure source: King et al. 2012

National Program has huge GHG, oil, and consumer benefits

WHITEHOUSE.GOV

GHG/FE Standards Lay Out a 14-Year Transformation for the Auto Industry - 2012-2025

(2 cycle compliance: CAFE 1978-2011, GHG 2012-2025)

CO₂ standards based on sales-weighted size (footprint) of each manufacturer's fleet

Cars - CO₂ Target Curves (with sample vehicle footprints)

Separate standard curves for Cars and Trucks

Trucks - CO2 Target Curves (with sample vehicle footprints)

18

18

2025 CO₂/Fuel Economy Targets and Labels – example vehicles

Vehicle Type	Example Model	Footprint (sq. ft.)	2025 CO ₂ Target (g/mi)	2025 CAFE Target (mpg)	2025 Projected Label (mpg)
Cars					
Compact car	Honda Fit	40	131	61	49
Midsize car	Ford Fusion	46	147	55	44
Fullsize car	Chrysler 300	53	170	48	38
Trucks					
Small SUV	Ford Escape 4WD	43	170	48	38
Midsize crossover	Nissan Murano	49	188	43	34
Minivan	Toyota Sienna	56	209	39	31
Large pickup	Chevy Silverado	67	252	33	26

2025 Fleet-wide projection of 54.5 mpg translates to ~ 40 mpg avg. label value

Technology improvements needed for every aspect of vehicle that contributes energy losses...

- Engine, transmission, drive line
- Aerodynamics, tires, brakes
- Accessories (e.g., A/C, EPS, alternators)
- Mass reduction
- Electrification (start/stop, mild HEV, strong HEV, PHEV, EV)

EPA's Technology Penetrations Project Increasing Use of Advanced Technologies

The Economist ranks U.S. GHG/FE Standards as 6th most important action worldwide to cut climate emissions

The Economist

Curbing climate change: The deepest cuts
Our guide to the actions that have done the most to
slow global warming

Sep 20th 2014

	Cumulative emissions	Period	Annual emissions*	
Montreal protocol ¹	135.0bn	1989-2013	5.6bn	
Hydropower worldwide ²	2.8bn	2010	2.8bn	
Nuclear power worldwide ²	2.2bn	2010	2.2bn	
China one-child policy ³	1.3bn	2005	1.3bn	
Other renewables worldwide ²	600m	2010	600m	
US vehicle emissions & fuel economy standards ^{†4}	6.0bn	2012-25	460m	
Brazil forest preservation ⁵	3.2bn	2005-13	400m	
India land-use change ⁶	177m	2007	177m	
Clean Development Mechanism	⁷ 1.5bn	2004-14	150m	
US building & appliances codes	4 3.0bn	2008-30	136m	
China SOE efficiency targets ⁸	1.9bn	2005-20	126m	
Collapse of USSR ⁹	709m	1992-98	118m	
Global Environment Facility ¹⁰	2.3bn	1991-2014	100m	
EU energy efficiency ¹¹	230m	2008-12	58m	
US vehicle emissions & fuel economy standards ^{‡4}	270m	2014-18	54m	CATEGORIES:
EU renewables ¹¹	117m	2008-12	29m	Energy production
US building codes (2013) ¹²	230m	2014-30	10m	Transport Other regulations
US appliances (2013) ¹²	158m	2014-30	10m	Global treaties
Clean technology fund 13	1.7bn	oroject lifetime	na	Land & forests
EU vehicle emission standards	4 140m	2020	na	Other

See following panel for sources and explanations

*Annual emissions are cumulative emissions divided by the relevant period. The estimate for the current emissions avoided under the Montreal protocol is eight billion tonnes of Co₂e. The annual figure for the collapse of the USSR refers to the years 1992-98. "Cars and light trucks" Heavy trucks

The first few years – good news so far

Manufacturers are ahead of the game

- Fleet-wide industry beat standards by about 10 g/mi (1mpg) for MY 2012, first year of program
- Huge bank of credits
- Credit trading between firms for first time in the 40-year history of EPA's LD vehicle program

Consumers appear to love their choices

- Sales are booming, even as price tags rise slightly
- Fuel economy clearly a key marketing tool
 - NADA's 2014 New Car Shopper Preference Survey ranks fuel economy the #1 most important factor considered in purchasing for both cars and trucks

Fleet-wide progress is steady

Reduced-emissions vehicles are being produced in significant volumes

GHG high performers: It's not just hybrids

A number of non-hybrid gasoline and diesel vehicles in 2015MY already meet their footprint-based GHG targets for future years

> 2015MY Vehicles meeting and surpassing GHG targets for ... 2017 2019 2021

SAE INTERNATIONAL

Mazda MAZDA6 GMC Sierra - 2WD Mercedes-Benz GLA 250 Subaru Outback BMW X3 xDrive28d

Cars SUVs/Pickups/ Crossovers

Minivans

Diesels

25

Many new technologies are rapidly gaining market share

Consumers have an increasing number of high FE/low CO₂ vehicle choices

Vehicle Models Meeting Fuel Economy Thresholds in MY 2009 and MY 2014

MIDTERM EVALUATION OF THE 2022-2025 LIGHT-DUTY GHG STANDARDS

Midterm Evaluation - Overview

- Technical review of longer-term standards (2022-2025)
- In coordination with NHTSA and California Air Resources Board
- EPA's decision on the 2022-2025 standards could go one of 3 ways:
 - standards remain appropriate; more stringent; less stringent
- Data driven, transparent
- Extensive stakeholder dialogue to gather data/information

What factors will we consider for the Midterm Evaluation?

- ✓ Powertrain improvements
- ✓ Light-weighting and impacts on vehicle safety
- ✓ Market penetration of fuel efficient technologies
- ✓ Consumer acceptance
- ✓ Payback periods for consumers
- ✓ Fuel prices
- ✓ Fleet mix
- ✓ Infrastructure
- ✓ Employment impacts
- ✓ Many others ...

Midterm Evaluation Major Milestones

- Joint Draft Technical Support Document published in June 2016
 - Agencies will request public comment on the Draft report

- ➤ EPA Proposed Determination (on whether 2022-2025 standards are appropriate)
 - > EPA will request public comment on the Proposed Determination
- ➤ EPA Final Determination (on whether 2022-2025 standards are appropriate) no later than April 2018

EPA's National Vehicle and Fuel Emissions Laboratory has many technical projects underway to support the Midterm Evaluation

- Through our National Center for Advanced Technology (NCAT) group, researching future advanced engine and transmission technologies to support modeling, advanced technology testing, and demonstrations
- Continued development of modeling tools:
 - Vehicle simulation modeling (ALPHA Advanced Light-Duty Powertrain and Hybrid Analysis)
 - Technology feasibility and cost model (OMEGA Optimization Model for reducing Emissions of Greenhouse gases from Automobiles)
 - Technology packages efficiencies (Lumped Parameter Model)
 - Exploring potential use of consumer choice modeling
- Mass reduction study with FEV for a full-size pickup
- Continued cost teardown work with FEV on mild hybrid, diesel, others
- Research on consumer issues content analysis of auto reviews, consumer satisfaction surveys, affordability
- Continued work on economic issues (VMT rebound, energy security)
- In addition to working with CARB and NHTSA, EPA is collaborating with Environment Canada and Transport Canada on aerodynamics, lightweighting, vehicle modeling, and other areas

Wrap-up

- EPA's standards for criteria emissions and GHGs provide important air quality, public health, and climate benefits
- Already seeing exciting auto industry innovations as year-overyear improvements needed to meet the 2025 targets
- So far auto industry is off to a good start, even beating the standards
- We look forward to dialog with all stakeholders to inform the Midterm Evaluation of 2022-2025 standards

Non-hybrids are closing the gap

- Today, non-hybrids have many technologies emphasized in early hybrids
 - Improved aerodynamics
 - Low rolling resistance tires
 - Increased use of lightweight materials
- Since 2004, the difference between average hybrid and non-hybrid midsize cars has narrowed from 24 to 15mpg.

