MODELING METHODOLOGY FOR EPA GHG ANALYSIS

March 1, 2016

Daniel Barba, Director
National Center for Advanced Technology

Kevin Newman
National Center for Advanced Technology

Kevin Bolon
Assessment and Standards Division

Office of Transportation and Air Quality
Office of Air and Radiation
U.S. Environmental Protection Agency
1) **Modeling Overview and the Role of Technology Effectiveness**

2) **ALPHA Effectiveness Modeling** – Current and Future LD Vehicle and Powertrain Technologies

 a) **Background**

 b) **Engine/Vehicle Benchmarking & ALPHA Model Validation**
 - Component Data
 - Vehicle Operational Rules

 c) **Looking Forward**
 - Putting it all together into technology packages
 - Validation of a sample technology package

3) **OMEGA** – Use of effectiveness estimates in fleet compliance modeling
The 2017-2025 Light-Duty Greenhouse Gas rule requires EPA to conduct a Midterm Evaluation (MTE), in coordination with NHTSA and CARB, to assess the appropriateness of the MY 2022-2025 standards.

As part of this assessment, EPA will review the costs and effectiveness of technologies available to automobile manufacturers to meet the emission standards in MY 2022-2025.

NOTE: This presentation focuses on the scientific development behind EPA’s vehicle simulation and modeling, which is one tool we plan to use during the MTE.

Data presented in this briefing are NOT MTE RESULTS.
Technology Assessment Based on Multiple Sources of Information

Information Sources

- **Vehicle Testing** (benchmarking)
- **Engine Testing** (benchmarking, technology demonstrations)
- **Modeling** (effectiveness & cost)
- **Compliance and Regulatory Program Expertise**
- **Information/data from Stakeholders** (MFRs, suppliers, etc.)
- **Information/data from conferences, general research, & contracted studies**

Technology Assessment based on data from multiple sources
Overall Modeling of Potential Compliance Pathways

Effectiveness Estimates for Baseline and Future Vehicles
- used to validate ALPHA
- Lab & Other Data from MY2013-17 vehicles

ALPHA

Lumped Parameter Model (LPM)
- used to update select LPM technology efficiencies
- use ALPHA to confirm select vehicle CO₂ values from LPM

Vehicle Technology Packages

Other Information Sources for Effectiveness

Model a future fleet’s compliance with Light-Duty GHG standards

Advanced Light-duty Powertrain and Hybrid Analysis

Optimization Model for reducing Emissions of Greenhouse gases from Automobiles
Topics

1) Modeling Overview and the Role of Technology Effectiveness

2) **ALPHA Effectiveness Modeling** – Current and Future LD Vehicle and Powertrain Technologies
 a) Engine/Vehicle Benchmarking & ALPHA Model Validation
 • Component Data
 • Vehicle Operational Rules
 b) Looking Forward
 • Putting it all together into technology packages
 • Validation of a sample technology package

3) **OMEGA** – Use of effectiveness estimates in fleet compliance modeling
NVFEL is a state of the art test facility that provides a wide array of dynamometer and analytical testing and engineering services for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs which:

- Certify that vehicles and engines meet federal emissions and fuel economy standards
- Test in-use vehicles and engines to assure continued compliance and process enforcement
- Analyze fuels, fuel additives, and exhaust compounds
- Develop future emission and fuel economy regulations
- Develop laboratory test procedures
- Research future advanced engine and drivetrain technologies (involving 20+ engineers – modeling, advanced technology testing and demonstrations)
What is ALPHA?

- ALPHA is an Advanced Light-duty Powertrain and Hybrid Analysis tool created by EPA to estimate greenhouse gas (GHG) emissions from current and future light-duty vehicles.

- ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies.

- ALPHA is used to assess the synergistic effects of vehicle technologies.

- EPA has enhanced its ALPHA model with more detailed and recent vehicle and component level benchmarking data to better simulate operation of current and future vehicles.

- ALPHA is EPA’s tool for understanding vehicle behavior, effectiveness of various powertrain technologies and their greenhouse gas emissions.

- ALPHA is not a commercial product (e.g. there are no user manuals, tech support hotlines, graphical user interfaces, or full libraries of components)
Data is obtained from multiple sources, including benchmarking lab data

Data from **2013-2016 MY** vehicles has been used to calibrate and validate ALPHA

ALPHA can look at multiple packages and multiple case studies simultaneously

Combinations of the best available technologies can be used to make efficiency projections for future vehicles

Going forward, test data and modeling results will be used to update LPM
ALPHA is EPA’s engineering tool to explore the impacts of current & emerging low-GHG technologies.

EPA needed a model for HD Compliance anyway (GEM), so adding a LD model (ALPHA) could be done cost-effectively.

EPA’s objective in its rulemaking processes is to achieve the highest level of transparency and openness possible.

Peer review of GEM/ALPHA has already begun:

- GEM been peer reviewed by outside experts and by industry
- A formal peer review of ALPHA will be completed before the draft TAR is released
Currently, there are ~20 conventional vehicle and engine test projects at various stages of completion. The items on the list were chosen based on our need to evaluate key technologies like:

- Advanced naturally aspirated, down-sized boosted and diesel engines
- Advanced automatic, dual-clutch and continuously variable transmissions

The vehicle list shown is constantly evolving and subject to change. It is provided here to give a sense of the scope of technology currently being evaluated in our testing program. We reassess the vehicle list every 3-6 months.

NCAT has tested enough new engine and vehicle technologies to begin using ALPHA to generate effectiveness data for future vehicles to compare with other sources of effectiveness data for the June 2016 Draft Technical Assessment Report (TAR).

We are building an ALPHA vehicle simulation to combine the best-in-class technologies for conventional standard car and large truck classes – to estimate how far the industry has come so far, and to predict how far they should be able to go in the future.

We plan to continue testing even more 2016 and 2017 vehicles and engines after the draft TAR is released, in order to strengthen EPA’s analysis for the MTE.
Vehicle Component Benchmarking and Validations

<table>
<thead>
<tr>
<th>Turbo engine</th>
<th>Conventional Vehicle</th>
<th>Engine</th>
<th>Transmission</th>
<th>Primary Reasons for Benchmarking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>2013 Focus (Euro)</td>
<td>1.6L I4 EcoBoost (Euro)</td>
<td>6MT</td>
<td>large volume turbo, VVT, EURO-cal efficiency map</td>
</tr>
<tr>
<td>Car</td>
<td>2013 PSA</td>
<td>PSA 1.6L turbo</td>
<td>---</td>
<td>efficiency map</td>
</tr>
<tr>
<td>Car</td>
<td>2015 Volvo S60 T5</td>
<td>2.0L I4 turbo</td>
<td>8AT</td>
<td>I4 with 8AT, start-stop</td>
</tr>
<tr>
<td>Car</td>
<td>2016 Honda Civic</td>
<td>1.5L turbo</td>
<td>CVT</td>
<td>1.5L turbo, CVT</td>
</tr>
<tr>
<td>Car</td>
<td>2016 Acura ILX</td>
<td>2.4L I4 turbo</td>
<td>DCT8 w/TC</td>
<td>DCT8 with torque converter</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2013 Escape</td>
<td>1.6L I4 EcoBoost</td>
<td>6AT</td>
<td>large volume turbo, VVT, US-cal efficiency map</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2014 RAM 1500 EcoDiesel</td>
<td>3.0L V6 diesel (VM Matori)</td>
<td>8AT (845RE)</td>
<td>8AT</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2015 Ford F-150</td>
<td>2.7L EcoBoost V6</td>
<td>6AT (same as GM 6L80)</td>
<td>next generation EcoBoost with VVT, integrated exhause manifold, twin-scroll turbo, start-stop, US-cal efficiency map</td>
</tr>
<tr>
<td>Car</td>
<td>2013 Malibu Base</td>
<td>2.5L I4 GDI engine</td>
<td>6AT (6T40)</td>
<td>shift algorithm, transient fueling</td>
</tr>
<tr>
<td>Car</td>
<td>2013 Chevrolet Malibu Eco</td>
<td>2.4L I4</td>
<td>6AT (6T40)</td>
<td>BAS operation, start-stop</td>
</tr>
<tr>
<td>Car</td>
<td>2013 Jetta hybrid</td>
<td>1.4L I4</td>
<td>P2, DCT7</td>
<td>DCT operation, P2 hybrid operation</td>
</tr>
<tr>
<td>Car</td>
<td>2013 Mercedes E350</td>
<td>ETEC diesel</td>
<td>7AT</td>
<td>diesel operation, 7AT</td>
</tr>
<tr>
<td>Car</td>
<td>2013 Altima SV</td>
<td>2.5L I4</td>
<td>Jatco CVT8</td>
<td>CVT operation</td>
</tr>
<tr>
<td>Car</td>
<td>2014 US Mazda 6</td>
<td>SkyActiv 2.5L I4</td>
<td>6MT</td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>2014 US Mazda 3</td>
<td>SkyActiv 2.0L I4, 13:1CR</td>
<td>6AT</td>
<td>advanced NA engine operation</td>
</tr>
<tr>
<td>Car</td>
<td>2014 Dodge Charger 5-spdk</td>
<td>3.6L V6</td>
<td>5AT (NAG1)</td>
<td>5-speed operation</td>
</tr>
<tr>
<td>Car</td>
<td>2014 Dodge Charger 8-spdk</td>
<td>3.6L V6</td>
<td>8AT (8HP45)</td>
<td>8AT to compare with 5AT with same engine</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2014 RAM 1500 HFE</td>
<td>3.6L V6</td>
<td>8AT (845RE)</td>
<td>8-speed operation</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2014 Chevy Silverado 1500 2WD</td>
<td>4.3L EcoTec3 V6/V3</td>
<td>6AT (6L80 MYC)</td>
<td>cylinder deactivation, limited 6AT benchmarking</td>
</tr>
<tr>
<td>Truck/SUV</td>
<td>2015 BMW X5 xDrive 35d</td>
<td>3.0L I6 Diesel</td>
<td>8AT (845RE)</td>
<td></td>
</tr>
</tbody>
</table>
OTAQ Publications Supporting ALPHA

2013 / 2014

2015

2016

1) **Modeling Overview and the Role of Technology Effectiveness**

2) **ALPHA Effectiveness Modeling** – Current and Future LD Vehicle and Powertrain Technologies
 a) **Engine/Vehicle Benchmarking & ALPHA Model Validation**
 • Component Data
 • Vehicle Operational Rules
 b) **Looking Forward**
 • Putting it all together into technology packages
 • Validation of a sample technology package

3) **OMEGA** – Use of effectiveness estimates in fleet compliance modeling
ALPHA model inputs and data processing

ALPHA inputs fall into one of four categories:

1. **Test Cycle**
 - Drive cycle speed (e.g., FTP, HWFET, US06)

2. **Vehicle Parameters**
 - Weight / inertia, road load, driveline type or vehicle class

3. **Component Data**
 - Engine fuel consumption map, torque curves
 - Transmission gear ratios, spin losses, efficiencies, torque converter specs
 - Accessory loads

4. **Vehicle Behavior**
 - Shift strategy, torque converter strategy, driver behavior, idle speed management, pedal map, other dynamic effects
Sample Model Validation – 2013 Malibu

Vehicle Information

2013 Chevy Malibu 1LS
- 2.5L I4 GDI engine
- 6-speed automatic transmission
- Non-Hybrid
- 22 City / 34 Highway / 26 Comb

Chosen as representative of an average midsize car
Sample Model Validation
2.5L Engine BSFC Map

SAE Figure 10. Chevy Malibu 2.5L BSFC map (87 AKI E10 gasoline)
Sample Model Validation
Transmission Efficiency

Line pressure varies significantly during operation and exceeds the tested limits

SAE Figure 16. Transmission line pressure during vehicle operation

SAE Figure 6. Transmission efficiency data at 93 C and 10 bar line pressure

SAE 2015-01-1140
Automatic transmission technology has been advancing rapidly, both in terms of the number of gears available and the transmission’s overall efficiency.

Automatic transmission changes affect the greenhouse gas emissions of a vehicle as well as its drivability.

To support the midterm evaluation, EPA is modeling a wide variety of transmissions mated with a potentially wide variety of engines.

EPA has developed a transmission shift algorithm that dynamically calculates shift points during vehicle simulation based on user-defined parameters, driver demand and a cost map.
Since the ALPHAshift algorithm calculates shift points dynamically it’s possible to run different engines without being required to alter any shift parameters.

- Baseline engine operation
- An alternative engine with the same shift parameters
- An alternative engine with cost saving downshifts enabled

SAE 2015-01-1142
The concern is often raised that vehicle simulation models will under-predict fuel consumption (over-predict fuel economy) if they overlook the fuel used to manage a vehicle’s “overhead” functions, including extra fuel required for:

- heavy transient operation
- accessory loads (power steering, A/C, electronics, etc.)
- torque transitions related to performance and drivability
- special controls for emissions
- NVH considerations

One of the primary goals of EPA’s extensive engine and vehicle benchmarking program is to identify appropriate modeling “rules” that can account for these vehicle operating requirements.

We have imbedded these rules within ALPHA to account for some of the most significant extra use of fuel.
Determining Malibu’s Operational Rules

1. Dynamic Fuel Effects – acceleration
2. Dynamic Fuel Effects – tip-in
3. Decel-Fuel-Cutoff – transitions during deceleration
4. Idle Speed Control
5. Torque Converter Slip
6. Variable Accessory Loads

Note: EPA plans to describe ALPHA’s vehicle control rules further in upcoming SAE publications and the draft TAR
This figure shows the difference between the expected (green) and the measured (red) fuel rate.

The blue shows the model result including the acceleration-based fuel penalty.

This penalty is most obvious on the US06 or during transient torque converter slip.

Blue is ALPHA with Acceleration Penalty

Green is ALPHA without Acceleration Penalty

SAE 2015-01-1140
This figure shows the difference between the expected (green) and the measured (red) fuel rate.

The blue shows the model result including the tip-in based fuel penalty.

This penalty occurs after operating in decel-fuel-cutoff for a minimum time.

SAE 2015-01-1140
During deceleration events, the engine appears to transition in and out of decel-fuel-cutoff (DCFCO) even though the throttle position sensor (TPS) is at zero.
The idle speed control shows some interesting behaviors at low vehicle speed.

Engine idle flare at low vehicle speed, the vehicle decelerates through 3 MPH at about 551.4 seconds.
Our original model only implemented a very simple “lockup” strategy.

It was updated to allow for limited-slip operation.
Charts show variability of alternator voltage and power over 3 different “hot” UDDS tests.

Within ALPHA, accessory loads are modeled as a constant average load.
Sample Model Validation
Fuel Economy Results

Fuel Economy 3625 lbs ETW

Fuel Economy 4000 lbs ETW

<table>
<thead>
<tr>
<th>Test</th>
<th>Average Test MPG</th>
<th>Average Model MPG</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDDS Phase 1</td>
<td>30.40</td>
<td>30.69</td>
<td>0.95</td>
</tr>
<tr>
<td>UDDS Phase 2</td>
<td>26.66</td>
<td>26.39</td>
<td>-0.99</td>
</tr>
<tr>
<td>HWFET</td>
<td>45.96</td>
<td>45.92</td>
<td>-0.10</td>
</tr>
<tr>
<td>US06 Phase 1</td>
<td>17.88</td>
<td>17.84</td>
<td>-0.22</td>
</tr>
<tr>
<td>US06 Phase 2</td>
<td>33.70</td>
<td>33.86</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Test Average Test MPG
Average Model MPG
Error %

UDDS Phase 1 29.87 29.55 -1.10
UDDS Phase 2 26.01 25.55 -1.75
HWFET 42.03 41.91 -0.28
US06 Phase 1 16.84 16.54 -1.78
US06 Phase 2 29.96 30.60 2.15
LA92 Phase 1 18.40 17.92 -2.61
LA92 Phase 2 26.84 26.57 -1.02

SAE 2015-01-1140
A 2013 Chevy Malibu was benchmarked at a vehicle and component level and the test data was imported into the ALPHA model.

The results of the ALPHA model simulation compared well with the results of vehicle testing at two different test weights and road loads conducted at different laboratories with different drivers (within +/- 3%).

Many valuable lessons were learned and will be applied to current and future validation exercises.
EPA benchmarked a 2013 Nissan Altima with a continuously variable transmission (CVT) to help us build a new version of ALPHAshift called “ALPHAshift-CVT”.

Because EPA did not have data for the Altima’s Jatco CVT8 transmission, we used CBI data from another manufacturer’s CVT which allowed us to build the ALPHAshift-CVT module.

The validation work uses “comparable” powertrains as modeling inputs.
Since we did not have a fuel map for the Altima’s 2.5L engine, for this validation exercise it was necessary to use a BSFC map from a suitable “proxy engine”.

We generated target CVT ratios during model simulation, similar to ALPHAshift for step-gear transmissions but with fewer parameters.

We tried to stay on the optimal BSFC line with a minimum RPM constraint.
Comparison with Altima data

- Overall comparable on UDDS cycle

Vehicle Test Engine Operation on UDDS

Model Engine Operation on UDDS

Altima data

ALPHA data
Comparison with Altima data

- Overall comparable on US06 cycle

US06 Transmission
Input Speed v. Vehicle Speed

US06 CVT
Ratio v. Vehicle Speed

Altima Engine Operation on US06

ALPHA Engine Operation on US06

- Red are tests
- Blue is ALPHA
Fuel economy results were good across a wide range of drive cycles.

<table>
<thead>
<tr>
<th>Drive Cycle</th>
<th>Average Test MPG</th>
<th>Average Model MPG</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDDS Phase 1</td>
<td>33.0</td>
<td>33.0</td>
<td>0.1%</td>
</tr>
<tr>
<td>UDDS Phase 2</td>
<td>26.8</td>
<td>28.1</td>
<td>4.6%</td>
</tr>
<tr>
<td>HWFET</td>
<td>51.1</td>
<td>50.3</td>
<td>-1.6%</td>
</tr>
<tr>
<td>US06 Phase 1</td>
<td>18.1</td>
<td>18.8</td>
<td>3.8%</td>
</tr>
<tr>
<td>US06 Phase 2</td>
<td>36.1</td>
<td>35.5</td>
<td>-1.6%</td>
</tr>
<tr>
<td>LA92 Phase 1</td>
<td>20.1</td>
<td>20.4</td>
<td>1.6%</td>
</tr>
<tr>
<td>LA92 Phase 2</td>
<td>29.3</td>
<td>29.6</td>
<td>1.0%</td>
</tr>
<tr>
<td>WLTC_c3 Phase 1</td>
<td>21.7</td>
<td>23.0</td>
<td>6.3%</td>
</tr>
<tr>
<td>WLTC_c3 Phase 2</td>
<td>34.0</td>
<td>33.4</td>
<td>-1.9%</td>
</tr>
<tr>
<td>WLTC_c3 Phase 3</td>
<td>39.8</td>
<td>39.5</td>
<td>-0.9%</td>
</tr>
<tr>
<td>WLTC_c3 Phase 4</td>
<td>36.8</td>
<td>37.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>NEDC Phase 1</td>
<td>21.9</td>
<td>23.4</td>
<td>7.2%</td>
</tr>
<tr>
<td>NEDC Phase 2</td>
<td>42.1</td>
<td>42.5</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

ALPHA MPG modeling results using modified engine map and transmission with ALPHAshift-CVT and observed lockup strategy.

Red are Altima tests **Blue** is ALPHA modeling
Comparable “proxy” powertrain approach yielded reasonable results

ALPHAshift-CVT provides a reasonable strategy at least for this vehicle
 - More parameters may be required for future vehicles, depending on behavior (e.g. step-gear emulation)

As part of our normal quality control process, we met with the company who provided CVT data to discuss the results and confirm we correctly applied the data within ALPHA.

This will be the subject of a paper to be presented at the 2016 SAE World Congress (SAE 2016-01-1141).
1) **Modeling Overview and the Role of Technology Effectiveness**

2) **ALPHA Effectiveness Modeling** – Current and Future LD Vehicle and Powertrain Technologies

 a) **Engine/Vehicle Benchmarking & ALPHA Model Validation**

 Component Data
 Vehicle Operational Rules

 b) **Looking Forward**

 Putting it all together into technology packages
 Validation of a sample technology package

3) **OMEGA** – Use of effectiveness estimates in fleet compliance modeling
Technology Packaging Matrix
“Putting It All Together”

StdCAR Matrix ➔ 1080 Vehicle Packages

3 Engines:
- **Baseline** - Camry 2.4L I4 engine from the 2010 Ricardo analysis for LD GHG Federal Rulemaking (FRM)
- **2014 NA** - Mazda SkyActiv 2.0L I4 engine with 13:1 compression-ratio
- **Future TDS** – 24 bar down-sized turbo engine with cooled EGR from the 2010 Ricardo analysis for LD GHG Federal Rulemaking (FRM)

5 Transmissions:
- **2008 AT5** – parameters from vehicle testing
- **2013 AT6** – GM6T40, parameters from vehicle testing
- **2014 AT8** – FCA845RE, parameters from EPA trans stand testing
- **Future AT8 gen3** – constructed using data from paper published by ZF
- **Future damp DCT8** – constructed using DCT7 data provided by a supplier

4 reductions of Mass:
- Base (0% reduction)
- 5% reduction
- 10% reduction
- 15% reduction

3 reductions of Aerodynamic resistance (Cd):
- Base (0% reduction)
- 10% reduction
- 20% reduction

3 reductions of Rolling Resistance (Crr):
- Base (0% reduction)
- 10% reduction
- 20% reduction

2 reductions from 12-volt Start-Stop:
- Base (0% start-stop)
- 100% start-stop

This matrix run is for illustrative purposes only to explain the matrix methodology, and does NOT feed directly into future MTE analyses.
Benchmarking and modeling results are only one source of data measuring technology effectiveness, and should be compared to data from other sources.

When comparing our data to a quoted outside reference like, “Our new engine provides a 10% improvement in fuel efficiency”...

1. **Units Matter** – the percentage increase in fuel economy is not the same as percentage decrease in fuel consumption (25% increase in FE is a 20% reduction in fuel used)
2. **Vehicle Performance Matters** – do the vehicles being compared have equivalent performance (acceleration, towing, etc.), or not?
3. **Application Sequence Matters** – the order of applying technologies matters because different technologies may target the same losses (due to negative component synergy effects)
4. **Baseline Matters** – the percentage decrease in fuel consumption from a aerodynamic drag reduction of 2% will be different when applied to a 300 g/mi baseline vehicle than to a 200g/mi vehicle.
5. **Maturity Level Matters** – do components (e.g., engines/transmissions) being compared have the same generational or maturity level?
6. **Drive Cycles Matter** – technology has varying effects when measured on warm UDDS cycle vs. cold FTP vs. NEDC vs. US combined cycle
Problem Statement:

- Many fuel consumption reduction technologies decrease required wheel power, increase available engine power, or deliver power to wheels more efficiently.
- If applied blindly, these technologies will reduce fuel consumption while also improving acceleration performance.
- How do we “fairly compare” technologies that affect both fuel consumption and acceleration performance?

NAS 2011: “Objective comparisons of the cost-effectiveness of different technologies for reducing FC can be made only when vehicle performance remains equivalent.”

ALPHA’s Current Approach:

- Reduce engine size to attain equivalent acceleration performance.
This matrix run is for illustrative purposes only to explain the matrix methodology and does NOT feed directly into future MTE analyses.

StdCAR Matrix: 1080 Vehicle Packages

Case study on next slide
Validation of a Sample Technology Package
Replicate a modeling run in the test cell

Simulate a **hypothetical** mid-size vehicle with 2.0L Skyactiv-G in the test cell

- Simulated chassis drive cycles using an engine dyno w/ Hardware-in-Loop (HIL) version of ALPHA
- Validated baseline test results with certification results and chassis test data from a 2014 Mazda3
- HIL w/ALPHA allows evaluation with different powertrains and/or road load conditions
- Applied advanced ZF 8HP50 8-sp AT and 12V start/stop
- Applied 2 levels of road load reduction
 - **L1**: 10% mass↓, 20% RR↓, 20% aero drag↓ (~2025 FRM analysis)
 - **L2**: 15% mass↓, 30% RR↓, 25% aero drag↓ (sensitivity analysis)

The HIL test results suggest that this **hypothetical** vehicle has potential to reach these levels with the existing 2.0L Skyactiv engine.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Total Fuel (g)</th>
<th>Idle Fuel (g)</th>
<th>Adjusted Fuel (g)</th>
<th>FE (mpg)</th>
<th>g/mi CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIL L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP (total)</td>
<td>257.9</td>
<td>12.8</td>
<td>245.1</td>
<td>43.0</td>
<td>206.7</td>
</tr>
<tr>
<td>HWFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td>50.6</td>
<td>175.6</td>
</tr>
<tr>
<td>HIL L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP (total)</td>
<td>247.6</td>
<td>12.2</td>
<td>235.4</td>
<td>44.3</td>
<td>200.8</td>
</tr>
<tr>
<td>HWFE</td>
<td></td>
<td></td>
<td></td>
<td>67.1</td>
<td>132.4</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td>52.3</td>
<td>170.0</td>
</tr>
</tbody>
</table>
Data is obtained from multiple sources, including benchmarking lab data.

Data is used to calibrate and validate ALPHA modeling.

ALPHA can look at multiple packages and multiple case studies simultaneously.

Combinations of the best available technologies can be used to make efficiency projections for future vehicles.

Going forward, test data and modeling results will be used to update LPM.
1) **Modeling Overview and the Role of Technology Effectiveness**

2) **ALPHA Effectiveness Modeling** – Current and Future LD Vehicle and Powertrain Technologies
 a) **Engine/Vehicle Benchmarking & ALPHA Model Validation**
 - Component Data
 - Vehicle Operational Rules
 b) **Looking Forward**
 - Putting it all together into technology packages
 - Validation of a sample technology package

3) **OMEGA** – Use of effectiveness estimates in fleet compliance modeling
OMEGA’s Role in the Overall Modeling of Potential Compliance Pathways

Purpose

- Determine the cost-minimizing pathway of adding technology to vehicles in order to achieve regulatory compliance with Greenhouse Gas standards.
- Technology costs and achieved emissions levels for the car and truck fleets of each manufacturer
OMEGA Process: Design and History

History
- OMEGA process was used in both the 2012-2016 and 2017-2025 rulemakings
- OMEGA core model is unchanged from the 2017-2025 GHG FRM
- Every input to the model is being re-examined for the MTE TAR

Design
- OMEGA is specifically designed for mid to long term regulatory analysis.
- OMEGA is based upon “redesign cycles,”
 - Allows sufficient time (approximately 5 years) to complete a vehicle redesign.
 - Incorporates manufacturers’ multiyear planning.
 - Interpolation used for intermediate years.
- OMEGA is with grouped vehicles and grouped technologies
 - Vehicle Types
 - Packages
 - Upgrade several components simultaneously during a redesign cycle.
 - Includes consideration of (dis)synergies.
OMEGA Process Flow

Preparation of OMEGA core inputs
1. Generate technology packages
2. Determine each package cost and effectiveness relative to NULL technology package
3. Rank technology packages
4. Create baseline
5. Determine each package cost and effectiveness relative to each vehicle in the BASELINE fleet

Outputs
- Achieved compliance level (g/mile) and cost of compliance ($)
- Fuel consumption and GHG emission impacts
- Other Benefit-Cost Analysis impacts
1. Generate Technology Packages

- OMEGA adds new technologies in packages
- OMEGA does not add new technologies one-by-one
- OMEGA maps the fleet into one of 19 vehicle types driven by:
 - # of cylinders
 - Valvetrain configuration (DOHC, SOHC, OHV)
 - Pass car, MPV, Pickup
 - Towing/non-towing

- The packages built for each vehicle type depend on the vehicle type
 - E.g., Some techs are not applied to SOHC engines, or are not applied to towing vehicles (e.g., full EV)

- Roughly 10,000 technology packages are assembled for each of the 19 vehicle types
2. Determine Cost and Effectiveness for Each Package Relative to the **NULL** Technology Package (LPM 2nd Pass)

- **Assign effectiveness values by applying the Lumped Parameter (LP) model**
 - Effectiveness defined as percent CO2 reduction relative to the “NULL” technology package defined for each vehicle type
 - The NULL package is the “zero effectiveness technology floor”
 - The NULL package IS NOT the technology package on the baseline vehicle
 - Based on technology effectiveness estimates from ALPHA modeling and other sources
 - Accounts for synergies and dis-synergies among the technologies

- **LP model has been updated since the 2017-2025 FRM**
 - Improves fidelity of baseline attributes and technologies
 - Added flexibility in building technology packages
3. Rank Technology Packages

- For the OMEGA core model to determine the cost-minimizing pathway packages are ordered from most to least cost effective
 - (i.e., from the first package that “should” be applied to the last package that “should” be applied)

- Cost effectiveness is determined by the “Technology Application Ranking Factor” or TARF
 - There are multiple possible TARF definitions
 - The equation we use represents the relative cost effectiveness of each package to move the manufacturer closer to compliance

\[
TARF = \frac{\text{(Technology cost)} - \text{(Discounted fuel savings)}}{\text{Lifetime CO}_2 \text{ reduction}}
\]
3. Rank Technology Packages - Example

- Packages ranked based on TARF for each of the 19 vehicle types.
- Approximately 50 packages are selected (★) to represent the cost-effective ‘frontier’.
- Some selected packages may lie above the absolute frontier due to phase-in caps.

![Diagram showing technology packages ranked based on effectiveness and cost.](image-url)
4. Determine Cost and Effectiveness for Each Package Relative to Each BASELINE Vehicle (LPM 2nd pass)

- **Create Baseline Fleet**
 - EPA will use the most recent certification data for which final sales data are available (for draft TAR this is MY 2014)
 - Adjustments for future fleets based on a purchased forecast
 - Includes scenarios for AEO high, low and reference fuel price
 - Market segment sales splits by manufacturer
 - Car and truck splits from AEO

- **Generate technology package effectiveness values by applying the Lumped Parameter (LP) model**
 - Each vehicle in the baseline has a current certified CO2 level
 - Each vehicle in the baseline fleet has a unique technology set
 - Addition of technology considers the current CO2 performance and the existing technology
5. Determine Cost Minimizing Tech Applications for Fleet Compliance

General OMEGA core model algorithm

1. Determine the GHG target for each manufacturer.
2. Determine the current GHG level for each manufacturer.
3. For each manufacturer that hasn’t met its CO2 target (loop):
 - Find the technology package/vehicle type combination with the best TARF
 - Add the technology to that vehicle type up to its cap (user-defined)
 - Calculate the manufacturer’s GHG improvement and technology costs
 - Determine whether the manufacturer has reached compliance.
 - If the manufacturer has over-complied and the technology cost is greater than the “threshold cost”, back-calculate the cost at which the manufacturer exactly meets the standard

4. Generate Outputs
 - Technology penetrations
 - Technology costs and achieved emissions levels

[Diagram showing decision tree for determining cost minimizing tech applications]
Questions?