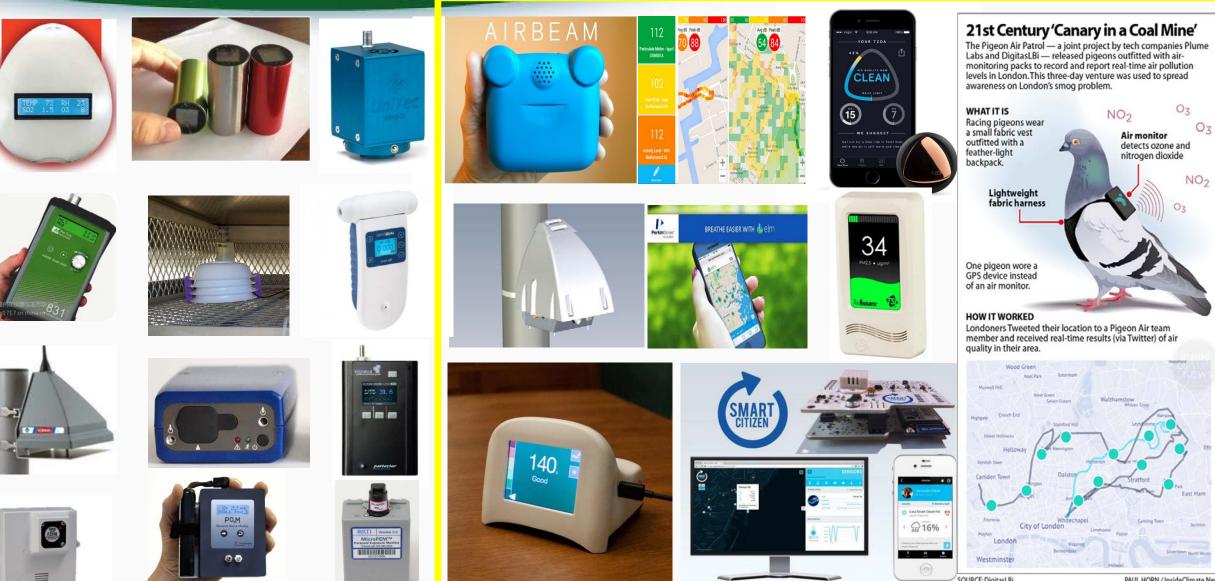
### Piloting Short-Term Messaging and Results of a PM<sub>2.5</sub> Sensor Study

National Ambient Air Monitoring Conference

August 10, 2016

Kristen Benedict <u>benedict.kristen@epa.gov</u> Office of Air Quality Planning & Standards U.S Environmental Protection Agency




- Introduction
  - E-Enterprise Advanced Monitoring Recommendations
- Sensor Data Messaging
- PM<sub>2.5</sub> Sensor Field Study
- Questions

### **Introduction - Proliferation of Sensors**

00





SOURCE: DigitasLBi

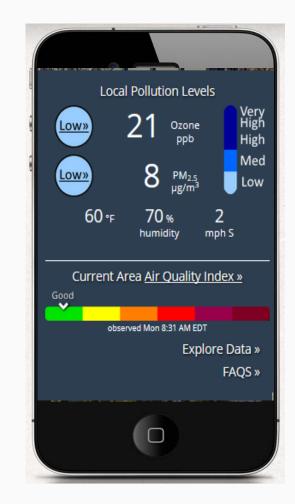


### E-Enterprise Advanced Monitoring Team (EEAMT) Recommendations

- E-Enterprise Leadership endorsed five recommendations in April 2016
- Members: States (organized by ECOS), OAR, ORD, OECA, OW, OEI, and EPA Regions 1 & 2

### **Recommendations:**

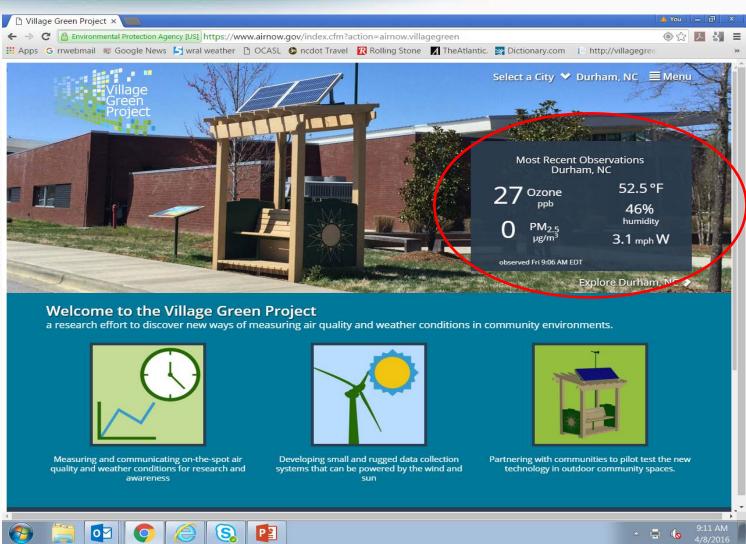
- #1: Feasibility study for a voluntary 3<sup>rd</sup> party certification program
- #2: Technology screening and support network
  - Recommendations 1 & 2 will build on lessons learned from sensor evaluations and pilot projects <u>https://www.epa.gov/air-research/air-sensor-toolbox-citizen-scientists</u>
- #3: Interpretation of data from advanced monitoring approaches
  - Finalize & expand pollutant list for prototype website that messages short term, real-time measurements <u>http://bit.ly/VillageGreenPilot</u>
- #4: Data standards & data quality tiers
- #5: Lean technology evaluation parameters




- There is a great deal of growth in the availability, use, and quality of air quality sensors
- Sensor technology has great potential to empower people to understand local air quality but communicating real-time data is complicated
- Health studies <u>do not support</u> linking short term (e.g. 1-minute O<sub>3</sub> or PM<sub>2.5</sub>) exposures to adverse health effects
- Many developers are incorrectly using whatever information is currently available, e.g., AQI

#### 6

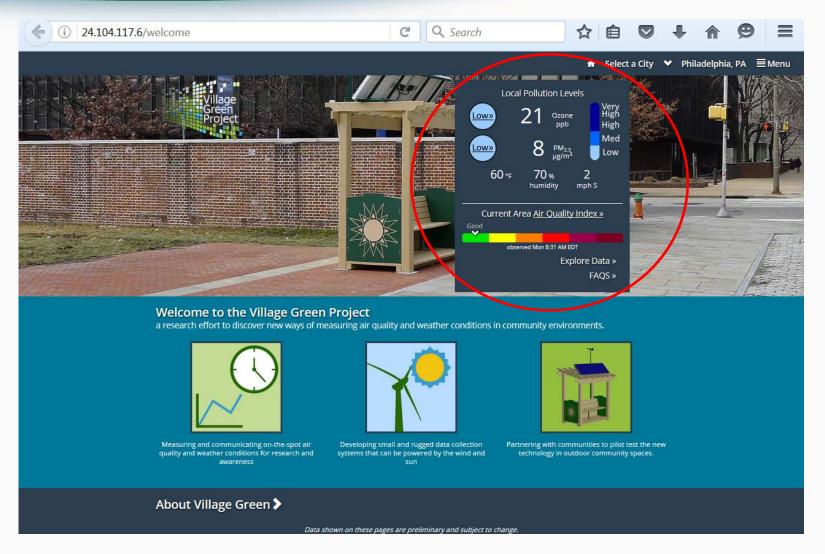
## **Sensor Scale Pilot Project**


- On May 6<sup>th</sup>, EPA launched a new "sensor scale"
  - EPA developed the scale to help the public understand 1minute data from Village Green stations
- Pilot appears on existing Village Green data webpage
  - <u>http://bit.ly/VillageGreenPilot</u>
- A fact sheet, FAQs, and other information available on the Air Sensors Toolbox
  - <u>https://www.epa.gov/air-research/air-sensor-toolbox-citizen-scientists</u>
- EPA is testing the effectiveness of the scale and messages during a spring-summer 2016 pilot project





## **Previous Village Green Website**






7

### **Enhanced Village Green Website**





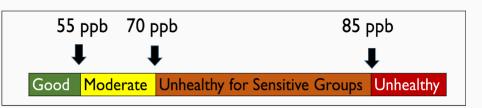
## **Ozone Breakpoints and Messages**



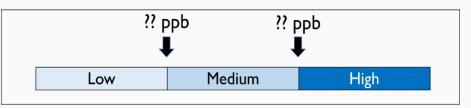
| Pilot version                                          |                                                                                                                                                                            |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1-Minute Ozone Readings<br>Not for regulatory purposes |                                                                                                                                                                            |  |
| Low<br>0-59 ppb                                        | Enjoy your outdoor activities.                                                                                                                                             |  |
| Medium<br>60-89 ppb                                    | If medium readings continue, use the Air Quality Index to plan outdoor activities.                                                                                         |  |
| High<br>90-149 ppb                                     | If high readings continue, consider adjusting outdoor activities, especially if you are sensitive to ozone. Check the Air Quality Index to find out.                       |  |
| Very High<br>≥150 ppb                                  | If high readings continue, consider adjusting outdoor activities. Check the Air Quality Index to find out. Very high readings may mean the sensor is not working properly. |  |
| للمر                                                   | Sensor may be offline. Check the Air Quality Index.                                                                                                                        |  |

## PM<sub>2.5</sub> Breakpoints and Messages




| Pilot version<br><b>1-minute particle pollution (PM<sub>2.5</sub>) readings</b><br><i>Not for regulatory purposes</i> |                                                                                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Low<br>0-29 ug/m3                                                                                                     | Enjoy your outdoor activities.                                                                                                                                                                                                     |  |
| Medium<br>30-69 ug/m3                                                                                                 | If medium readings continue (for an hour or more), use the Air Quality Index to plan outdoor activities.                                                                                                                           |  |
| High<br>70 - 499 ug/m3                                                                                                | You may be near a source of particle pollution like dust, smoke or exhaust.<br>Check the Air Quality Index to plan outdoor activities.                                                                                             |  |
| Very High<br>≥500 ug/m3                                                                                               | You may be near a source of particle pollution like dust, smoke or exhaust.<br>Check the Air Quality Index to find out if you should adjust outdoor<br>activities. Very high readings may mean the sensor is not working properly. |  |
| ×                                                                                                                     | Sensor may be offline. Check the Air Quality Index.                                                                                                                                                                                |  |

#### 11


### **Ozone Sensor Breakpoints**

- Used available air quality data, together with judgments about the objectives for each sensor category
- Air quality analyses link 1-minute to 8-hour O<sub>3</sub> concentrations to inform sensor breakpoints without reinterpreting the health evidence
- ~7.6 million one minute ozone values from 18 sites (4 Village Green locations and 14 FRM)

#### AQI Categories (8-hr)



#### Potential Sensor Categories (1-min)



## PM<sub>2.5</sub> Sensor Breakpoints



- For PM<sub>2.5</sub>, the available 1-minute data is more limited than for O<sub>3</sub>
  - 5 monitors provide 1-minute PM<sub>2.5</sub> data (DC, PA, KS, NC, NY)
- PM<sub>2.5</sub> concentrations can exhibit sharp spatial and temporal gradients, with the potential for extremely high concentrations near sources
- PM<sub>2.5</sub> AQI categories are based on 24-hour concentrations; 24-hour PM<sub>2.5</sub> NAAQS is 35 µg/m<sup>3</sup>

#### Near-Source Concentrations

- 1. Designated smoking areas:
  - ~ 70 to > 500  $\mu$ g/m<sup>3</sup>
- 2. Near/on diesel buses:
  - ~ 75 to > 1,000  $\mu$ g/m<sup>3</sup>
- 3. Near street paving operation:
  - ~ 80 µg/m³
- 4. Near candles/cooking
  - ~ 100 to > 1,000  $\mu$ g/m<sup>3</sup>

## Analytical Approach for PM<sub>2.5</sub>



### Low breakpoint (30 µg/m<sup>3</sup>):

- Considered relationship between 1-hour and 24-hour
   PM<sub>2.5</sub> concentrations
- Much more data available to identify relationships with 1-hour concentrations – almost 400 monitors covering most states
- One-hour PM<sub>2.5</sub> concentrations are better predictors of 24-hour concentrations

### <u>Upper breakpoint (70 µg/m<sup>3</sup>):</u>

- Identification of PM<sub>2.5</sub> concentration ranges that have been measured near sources like bus terminals, smokers, cooking – high sensor readings should warn people that they may be near a PM source
- In response to high readings, people may be able to move away from sources and reduce their exposures





- EPA is piloting "sensor scale" messaging
- Village Green website has a "contact us" link
- Based on feedback, EPA will update the scale and messages as appropriate. Our goal is make them available to sensor developers later this year.
  - <u>Note:</u> Earlier versions of the information shown in the tables and the mobile website have been focus tested, and we have solicited previously from other stakeholders – EPA plans to continue soliciting feedback



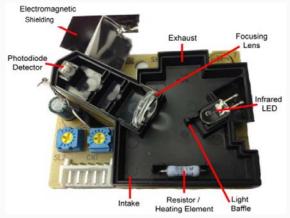
### **PM<sub>2.5</sub> Sensor Field Study - Overview**



Main Objective: Examine the use of low-cost particulate matter (PM) sensors for answering questions about Tribal air quality

Monitoring is being conducted in two phases: Phase 1:: Collocation of the sensors with existing PM<sub>2.5</sub> Federal Reference Method (FRM) monitor Phase 2: Monitoring near a local source to examine impacts on local air quality and nearby PM concentration gradients




### **Study Design**

- One MicroPEM and two AirBeam sensors were evaluated
- Sensor selection was based on past performance during EPA testing, cost, durability, mobility, and ease of use



AirBeam





Internal components of the AirBeam sensor

### **Project Status**

- Phase 1 Collocation monitoring
  - Data were collected October 22, 2015
    June 13, 2016
  - Data analysis performed on data collected October 22, 2015 – February 28, 2016
- Phase 2 Near-source monitoring
  - Data were collected June 13, 2016 present\*

\*As of August 2016, sensor data are still being collected at a near-source site.

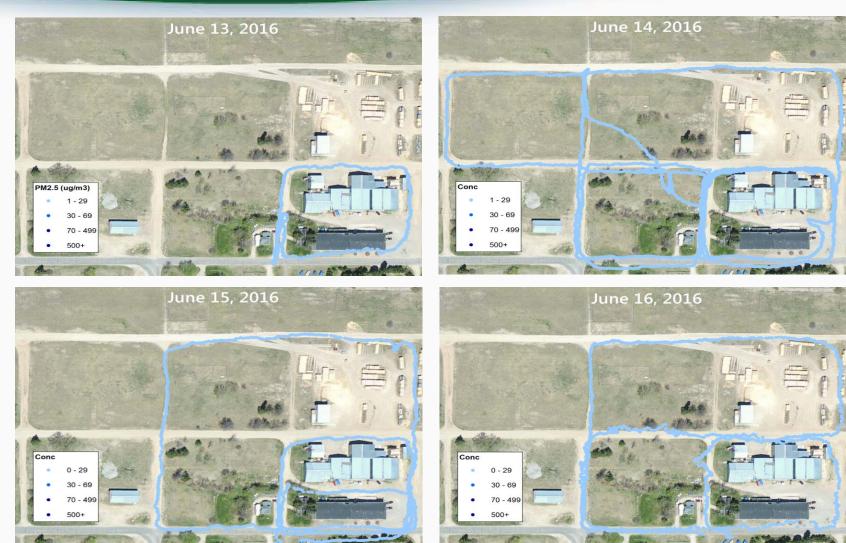


### Phase 2: Near-Source Monitoring



8

- Collected data near a 1940's boiler/kiln on June 13-17, 2016
  - MicroPEM and both AirBeams (AirBeam A is working under more moderate, summertime conditions)
- Performed meteorological forecasts 1-day ahead to determine which site to monitor at each day given forecasted prevailing winds
- Set up a small meteorological tripod to monitor wind speed and direction
- Performed mobile monitoring with one AirBeam to examine spatial gradients near the source


### Phase 2: Study Design



UNITED STATES

### **Phase 2: Preliminary Results**





Next Step: Analyze data and determine comparability of sensor readings under ambient vs. near- source conditions

#### Preliminary Results – Do Not Cite or Quote

### **Sensor Study - Observations & Next Steps**



### • Observations

- AirBeams performed inconsistently (one performed well despite harsh conditions, other did not perform)
- MicroPEM required frequent in-field calibration and substantial post-processing using data from a second sensor
- Multiple off-the-shelf sensors should be used to collect sensor data
- Next Steps
  - Analyze collocation and near-source sensor data
  - Consider effect of particle size/shape in reading of sensor



# Questions