Placental DNA Methylation Linking Exposures and Newborn Health

Carmen J. Marsit, PhD
Pharmacology & Toxicology
Epidemiology
Geisel School of Medicine at Dartmouth
DNA Methylation is highly tissue specific

Represents functional alteration

Placenta

- First complex organ to form
- Regulates intrauterine environment
- Transport
 - Nutrients
 - Water
 - Gas
 - Waste products
- Immuno-endocrine
 - Hormones
 - Growth factors
Role of Placental Epigenome

MATERNAL ENVIRONMENT
• Growth • Drugs
• Nutrition • Stress
• Exposures

PLACENTAL EPIGENOME

PLACENTAL FUNCTION

• Demonstrate placental molecular features integrate environmental signals
• Link variability in molecular features to Infant Outcomes (and beyond!)
Study Population: Rhode Island Child Health Study

- Hospital-based Birth Cohort
 - Moms enrolled following delivery at Women & Infant Hospital
 - WIH sees 75% of deliveries in RI
 - 2009-2014
 - Total Enrollment n=899

- Mothers
 - 18-40 years old
 - No history of psychological disorders
 - In good physical health

- Infants
 - Viable
 - No known genetic disorders
 - No life threatening illness
 - Term (≥ 37 weeks)

- Oversampled for SGA (small) and LGA (large) infants. Matched to AGA (appropriate)

- Gestation time, infant sex, maternal age (±3 yrs)

Mom
- Medical Chart Review
- Questionnaire
- Maternal blood
- Toenail Samples

Infant
- Clinical Characteristics
- NNNS Assessment
- Placenta
- Cord Blood
- Toenails

Linking Molecular Character with Exposures and Outcomes
Mercury exposures in utero

Sources of exposure
- Dietary (fish, seafood) i.e. methylmercury (MeHg)
 - Biomethylated, biomagnified
- Dental amalgams
- Industrial
 - Minimata disease (Japan) (Harada et al. 1968)
 - Iraqi fungicide contamination incident (Bakir et al. 1973)
- Air Pollution

 - Interferes with placental function (Boadi et al. 1992)

Neurobehavioral effects associated with prenatal and childhood exposure
- Infants: Cerebellum size, CNS damage, poor psychomotor development (Cace et al. 2011; Choi 1989; Llop et al. 2012)
- Children: Memory, attention, language, visual-spatial perception (Faeroe Islands study) (Grandjean et al. 1997)
Preliminary - Discovery Study

Placental DNA Methylation
Illumina HumanMethylation450 array
(192 placental samples, 450,000+ CpG loci)

QA/QC, Normalization, Batch Adjustment (COMBAT),
Limit to Autosomal, non-SNP associated loci only
(192 placental samples, 384,474 CpG loci)

N = 41 infants placental methylation AND Hg data from infant toenail clippings

Identify Loci with Variable Methylation Related to Hg Exposure
Methylation Impacting Neuro-related Genes

- 339 CpG loci associated with infant toenail Hg
- Within genes or gene promoters associated with neurologic outcomes
 - **Neurobehavior** *(CPLX1, LMX1B, ADD2)* (Drew et al. 2007; Glynn et al. 2007; Barreto-Valer et al. 2013; Porro et al. 2010)
 - **Schizophrenia** *(DIXDC1, ARVCF, MAGI2, ZIC2)* (Bradshaw and Porteous 2012; Sim et al. 2012; Mas et al. 2010; Mas et al. 2009; Chen et al. 2005)
 - **ADHD** *(TCERG1L)* (Neale et al. 2010; Karlsson et al. 2012; Hatayama et al. 2011)
 - **Movement disorders** *(NOL3, TP53INP2)* (Russell et al. 2012; Bennetts et al. 2007)
 - **Autism** *(PLXNA4, WNT2)* (Suda et al. 2011; Lin et al. 2012; Kalkman 2012)

Looking at Neurobehavioral Effect

NICU Network Neurobehavioral Scales (NNNS)

- Developed by Lester and Tronick (2004)
 - Built on backbone of Neonatal Behavioral Assessment Scales (NBAS) developed by Brazelton (1973)
- Developed for use in at-risk infant
 - Specifically substance exposed – used in the Maternal Lifestyle Study
 - Designed for broad applicability
 - Generalizable
 - Reproducible
 - Sensitive to variety of infant risk factors
 - Infants from 30 weeks gestation to ~2 months post-partum
- Approx. 30 minute exam performed after 24 hours of life but prior to discharge
- Examine three major area of neurodevelopment
 - Neurological
 - Behavioral
 - Stress/Abstinence
- Summarized into 13 Summary Scales reflecting various aspects of neurodevelopment
 - Can examine individually
 - Used latent profiling strategy to create profiles of neurobehavior (Liu et al Pediatrics 2010)
Focused on “At-risk” profile

Mean-centered score

-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50

Excitability
Arousal
Stress
Handling
Hypertonicity
Hypotonicity
Lethargy
Nonoptimal Reflexes
Habituation
Asymmetric reflexes
Attention
Movement Quality

Not Profile 7
Profile 7
Discovery Scheme

Illumina HumanMethylation450 placental tissue array
(192 placental samples, 450,000+ CpG loci)

QA/QC, Normalization, Batch Adjustment (COMBAT),
Limit to Autosomal, non-SNP associated loci only
(192 placental samples, 384,474 CpG loci)

Subset 1:
N = 41 infants placental methylation AND Hg data from
infant toenail clippings

339 Loci Related to Hg Exposure

Subset 2:
N = 151 infants with placental methylation AND infant
Neurobehavioral Assessments

Examine Relationship of Hg-Associated Loci with
NNNS Profiles
6 CpG Hg-associated loci are associated with NNNS High Excitability Profile

<table>
<thead>
<tr>
<th>Illumina CpG Designation</th>
<th>Gene Symbol</th>
<th>P Value</th>
<th>UCSC CpG Island Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cg13267931</td>
<td>EMID2</td>
<td>8.25x10^-6</td>
<td>Island</td>
</tr>
<tr>
<td>cg14874750</td>
<td>EMID2</td>
<td>6.06x10^-5</td>
<td>Island</td>
</tr>
<tr>
<td>cg23424003</td>
<td>EMID2</td>
<td>7.30x10^-5</td>
<td>Island</td>
</tr>
<tr>
<td>cg27179533</td>
<td>EMID2</td>
<td>5.46x10^-5</td>
<td>Island</td>
</tr>
<tr>
<td>cg27528510</td>
<td>EMID2</td>
<td>9.00x10^-5</td>
<td>Island</td>
</tr>
<tr>
<td>cg14048874</td>
<td>EMID2</td>
<td>0.0023</td>
<td>Island</td>
</tr>
<tr>
<td>cg14175932</td>
<td>EMID2</td>
<td>2.84x10^-5</td>
<td>N Shore</td>
</tr>
<tr>
<td>cg17128947</td>
<td>CPLX1</td>
<td>0.0054</td>
<td>Island</td>
</tr>
<tr>
<td>cg25385940</td>
<td>TTC23</td>
<td>0.0059</td>
<td>N Shore</td>
</tr>
<tr>
<td>cg10470368</td>
<td></td>
<td>0.0075</td>
<td></td>
</tr>
</tbody>
</table>
Placental hypomethylation of EMID2 associated with Risk Behavioral Profile

Non-Risk Profile (n=135) Risk Profile (n=16)
Methylation Correlated with Expression

EMID2 Expression vs. EMID2 Mean Methylation

EMID2

- Collagen protein, unknown placental function
- Variant associated with asthma/airway hyperresponsiveness in nasal passages (Pasaje et al. 2011; Pasaje et al. 2012)
- A SNP within EMID2 mediates side effects on vision and hearing in response to an antidepressant (Adkins et al. 2012)
- More work needed to understand the functional role of this gene in placenta
DNA Methylation as Toxicant Mechanism

- Alterations to genes or pathways can have long-term consequences on development

- DNA methylation is susceptible to environmental signals
 - Toxicant Exposures
 - Maternal Factors/Lifestyle
 - Stress, Psychosocial adversity

- Can then link altered DNA methylation to critical outcomes

- Ongoing work
 - Better defining what environment can do
 - Consequences of these alterations – Various Health Outcomes
Acknowledgments

Funding
NIMH R01MH094609
NIEHS R01ES022223
NIEHS P01 ES022832; EPA RD83544201

Dartmouth
Dave Armstrong
Corina Lesseur Perez
Allison Paquette
Allison Appleton
Dylan Guerin
Brian Jackson
Margaret Karagas & Children’s Center Team

Oregon State
Andy Houseman

Women and Infants
Barry Lester
James Padbury
Joyce Lee
Erica Oliviera

Brown
Jennifer Maccani
Karl Kelsey