Tackling WaterSense®
Commercial Kitchens

Andrea Schnitzer
ENERGY STAR®

Stephanie Tanner
WaterSense

Robbie Pickering
Eastern Research Group, Inc. (ERG)

Paul Kuck
Ecova

September 20, 2016
WaterSense and ENERGY STAR are hosting a joint webinar series throughout 2016 to help you tackle your facility’s water use

Tackling WaterSense—Sanitary Fixtures & Equipment
January 28

Tackling WaterSense—Outdoor Water Use
March 30

Tackling WaterSense—Mechanical Systems
May 10

Just Add Water: Incorporating Water Efficiency to Take Your Energy Savings to the Next Level
July 12

Tackling WaterSense—Commercial Kitchens
September 20
Agenda

• Introduction to WaterSense
• Food preservation and preparation equipment
• Dishwashing and food disposal
• Case study
• WaterSense resources
WaterSense Can Help

WaterSense is a voluntary program launched by EPA in 2006 that provides a simple way to identify water-efficient:

• Products
• Programs
• Practices
• Homes

Products are independently certified for water efficiency and performance
WaterSense Labeled Products

More than 19,000 product models have earned the WaterSense label

- Flushing Urinals
- Lavatory Faucets
- Irrigation Controllers
- Tank-Type Toilets
- Showerheads
- Pre-Rinse Spray Valves
- New! Flushometer-Valve Toilets
Water Use Profiles of Commercial Facilities

![Water Use Profiles Diagram]

Created by analyzing data from: New Mexico Office of the State Engineer, American Water Works Association (AWWA), AWWA Research Foundation, and East Bay Municipal Utility District
Why Reduce Commercial Kitchen Water Use?

Save operational costs

• Water and sewer rates have risen well above the Consumer Price Index

Water-energy nexus

• Saving water often saves energy and vice versa
• Water used in kitchens is frequently hot water

Demonstrate leadership in the green marketplace

• Consumers looking for eco-friendly options while dining
• Can assist with certifications such as the Green Restaurant Association
Include water usage in existing energy management efforts

Track water usage in ENERGY STAR Portfolio Manager®

Monitor usage on a per-meal or per-guest basis

Measure water use with properly installed meters and submeters

Conduct a facility water audit and include leak detection in regular assessments
Simple Water-Saving Strategies

• Serve water and refill glasses only upon request
• Install educational signage about leaks
• Don’t thaw food with running water
• Operate kitchen equipment at capacity
• Use a broom or mop to clean floors
How Is Water Used in Commercial Kitchens?

Food preservation

Food preparation

Cleaning and dishwashing
Agenda

- Introduction to WaterSense
- Food preservation and preparation equipment
- Dishwashing and food disposal
- Case study
- WaterSense resources
How Commercial Ice Machines Use Water

Water use depends upon

- Type of ice produced
- Quality of incoming water
- Water cooled vs. air cooled

Water-cooled machines

- Use 100 to 300 gallons of water per 100 pounds of ice produced

Air-cooled machines

- Use less than 50 gallons of water per 100 pounds of ice produced, but can require more energy
Commercial Ice Machines: Best Management Practices (BMPs)

Retrofit options

• Modify single-pass cooling systems to re-circulate the cooling water through a cooling tower or heat exchanger

Replacement options

• Select an appropriately sized machine
• Purchase ENERGY STAR® certified models
 – At least 15 percent more energy-efficient and 10 percent more water-efficient than standard, air-cooled models
• Consider purchasing continuous (i.e., flake or nugget) ice machines
Single-Pass Cooling Savings Potential

1 gal/min
500,000 gal/year
$4,415/year*

2 gal/min
1,000,000 gal/year
$8,830/year*

6 gal/min
3,000,000 gal/year
$26,490/year*

*At national average commercial cost of $8.83 per 1,000 gallons
How Combination Ovens Use Water

Combine three modes of cooking into one unit:

• Steam mode, circulated hot air, and a combination of both

Water use is dictated by steam source

Boiler-based units

• Connected to a central boiler system that provides a constant supply of steam
• Use 30 to 40 gallons of water per hour

Connectionless units

• Have a self-contained water reservoir and heat source
• Use 15 gallons of water per hour or less
Combination Ovens: BMPs

Operational BMPs

• Use steam mode or combination mode sparingly
• Turn the oven off or down during slow times or when not in use
• Ensure oven is loaded to full capacity
• Ensure that doors stay aligned to provide a good seal and retain heat/steam

Replacement options

• Look for ENERGY STAR certified models that use no more than 10 gallons of water per hour or 1.5 gallons per pan per hour
• Select an appropriately sized oven for your cooking needs
How Steam Cookers Use Water

• Used to prepare foods in a sealed vessel that limits escape of air or liquids below a preset pressure

• Traditional boiler-based models: 40 gallons of water per hour

• ENERGY STAR certified connectionless models: 3 gallons of water per hour (90 percent less water)
Steam Cookers: BMPs

Operational BMPs

- Prepare food in batches
- Fill the steam cooker to capacity
- Use only as many steamer compartments as needed
- Set a timer to ensure that the steamer returns to standby mode
- Turn steam cooker off during long periods of non-use

Replacement options

- Look for models that are ENERGY STAR certified
- Choose an appropriately sized cooker for the application
How Steam Kettles Use Water

Use circulating steam inside a kettle jacket to cook food

Boiler-based steam kettle

• Connected to a central boiler
• Require blowdown and can consume 100,000 gallons per year

Self-contained steam kettle

• Have an internal heating element
• Require regular dumping and cleaning
Steam Kettles: BMPs

Operational BMPs

- Turn down or off between uses
- Ensure the lid is secure
- Dump the water in self-contained units daily

Retrofit options

- For boiler-based steam kettles, install a condensate return system

Replacement options

- Purchase a properly-sized steam kettle
- Consider purchasing a self-contained steam kettle
- If daily operations require a boiler-based steam kettle, purchase a model with a condensate return system
Food Preservation and Preparation Savings

Ice Machine
Water use varies
Potential savings: 10%

Combi-Oven
30-40 gal per hour
Connectionless: <15 gph
Possible Savings: 50-75%

Steam Cooker
40 gal per hour
EN能GY STAR: 3 gph
Potential savings: 90%

Ice Machine
Water use varies
Potential savings: 10%
Agenda

• Introduction to WaterSense
• Food preservation and preparation equipment
• Dishwashing and food disposal
• Case study
• WaterSense resources
How Dipper Wells Use Water

- Flow continuously to clean utensils
- Typical flow rates of 0.5 to 1.0 gallons per minute (gpm)
- Efficient models flow at 0.3 gpm or less
- Ensure the requirements of the U.S. Department of Health and Human Services Food Code are met when making changes
Dipper Wells: BMPs

Operational BMPs

• Turn off during slow service periods and at the end of the day
• Keep the flow rate of the dipper well at its minimum level
• Consider rinsing utensils with a sink faucet instead

Retrofit options

• Install an in-line flow restrictor or replace the spigot to reduce the flow rate down to 0.3 gpm or less

Replacement options

• Install dipper wells that eliminate continuous flow
• Replace with a push-button, metered faucet
• Replace with an ENERGY STAR certified dishwasher
How Pre-Rinse Spray Valves Use Water

Remove food residue from dishes prior to dishwashing

Standard pre-rinse spray valves

• Flows at 1.6 gpm
• Models older than 2005: 3.0 to 4.5 gpm

WaterSense labeled pre-rinse spray valves

• At least 20 percent more efficient than standard models
• Flow at 1.28 gpm or less
Pre-Rinse Spray Valves: BMPs

Operational BMPs

- Scrape or pre-soak dishes
- Train staff how to properly use the always-on clamp
- Periodically inspect for scale build-up, leaks, and broken parts

Replacement options

- WaterSense labeled models
 - Flow at 1.28 gpm or less
 - Meet performance requirements for spray force and lifecycle testing

Contact your utility!
Commercial kitchens often dispose of food scraps using a garbage disposal.
Water is run to prevent damage to the food grinder blades.
Some use a sluice trough to feed the garbage disposal:
 - Water is applied continuously at 2.0 to 15.0 gpm.
Pulpers and food strainers are water-efficient alternatives.
Food Disposals: BMPs

O&M BMPs

• Turn off the water during idle periods
• Scrape larger food items into a trash bin
• Avoid putting both hard objects and oil/grease into the disposal
• Periodically inspect the food disposal system
 – Ensure blades remain sharp
 – Dislodge any debris
Food Disposals: BMPs

Retrofit options

• Install a device that adjusts water flow to 1.0 gpm during idle periods based on the disposal’s motor load

Replacement options

• Purchase a garbage disposal with a load sensor
• Install a food pulper
• Replace mechanical food disposal systems with food strainers
How Commercial Dishwashers Use Water

One of the largest water users in commercial kitchens

Many different types, depending upon facility throughput

- Undercounter
- Stationary door- or hood-type
- Conveyor-type
- Flight-type

ENERGY STAR certified models can reduce energy and water use by 40 percent
Commercial Dishwashers: BMPs

O&M BMPs

• Only run dishwashers when full
• Operate the dishwasher at the minimum flow rate and water pressure
• Turn off the machine when not in use

Replacement options

• Choose an appropriately sized machine for your throughput
• Replace existing dishwashers with ENERGY STAR certified models
• Choose models that reuse rinse water
Cleaning and Washing Equipment Savings

- **Dishwasher**
 Potential Savings: 40%

- **Pre-Rinse Spray Valve**
 Potential Savings: 20%

- **Dipper Wells**
 Potential Savings: 40-70%

- **Food Disposal**
 Potential Savings: 75%
Agenda

• Introduction to WaterSense
• Food preservation and preparation equipment
• Dishwashing and food disposal
• Case study
• WaterSense resources
CASE STUDY

Water Efficient Restaurants

SHARI’S CAFÉ & PIES
• Headquarters in Beaverton, Oregon
• 95 locations in Pacific Northwest
• 24-hour, full service family dining

ARBY’S RESTAURANT GROUP
• National QSR
• 1,050 corporate-owned sites
• Very successful energy reduction efforts

Different Operations - Common Drivers
1. Reduce costs
2. Rate trends
3. Social, environmental need
4. Water intensive operations
SHARI’S CAFÉ & PIES

- Started program in 2009
- Audited sites in 2010
- Water identified as a major opportunity
- Water represents 20% of company’s utility cost (electric, natural gas and water)
- Use a holistic, all-of-the-above approach to implementing measures
- Dipper wells stood out as greatest opportunity
SHARI’S CAFÉ & PIES

Projects Implemented

- High-efficiency aerators
- WaterSense pre-rinse spray valves
- ENERGY STAR dishwashers
- ENERGY STAR ice machines
- WaterSense irrigation controls
- Employee engagement
- Dipper wells
Dipper Wells

- Dipper wells identified as major opportunity
- Uses running hot water for sanitation
- Five dipper wells per site
- Implemented various improvement iterations

Hurdles

- Faucets
Results

• 30% same site reduction since 2008
• Expense essentially flat due to rate increases
• 35% reduction goal
• Smart irrigation next major water reduction measure
ARBY’S

- Started program in 2012
- Have implemented award winning energy management program
- Program and measures shared with franchisees
- Water measures are components of energy program
- Creating first water reduction goal in 2017
Projects Implemented

- High-efficiency aerators
- WaterSense pre-rinse spray valves
- ENERGY STAR ice machines
- Employee engagement
- WaterSense irrigation controls
ARBY’S

WaterSense Irrigation Controls

• WaterSense irrigation controls identified as major opportunity
• Weathermatic selected as vendor
• Integrates into Arby’s energy management system
• Installed at 135 sites to date
• 30-70% reduction in irrigation consumption
• Program won Environmental Leader Project of the Year award in 2016

Hurdles

• Inventory of portfolio
• Landscape contractors
Results

- 6.4% reduction per restaurant since 2011
- Integrating water efficiency and goals into strategic resource management program
- Developing reduction goals in 2017
- Continuation of irrigation controls and specifying WaterSense toilets and urinals next major water reduction measures

Per Site Water Use Through Q2
Agenda

- Introduction to WaterSense
- Food preservation and preparation equipment
- Dishwashing and food disposal
- Case study
- WaterSense resources
ENERGY STAR Commercial Kitchen Equipment Calculator

Best Management Practices

WaterSense at Work is an online guide facilities can use to manage water use:

- Water management planning
- Water use monitoring and education
- Sanitary fixtures and equipment
- Commercial kitchen equipment
- Outdoor water use
- Mechanical systems
- Laboratory and medical equipment
- Onsite alternative sources of water
WaterSense Resources

- Water use information by facility type
- Best management practices
- Water-saving tips
- Assessment tools
- Worksheets and checklists
- Live and recorded training webinars
- Case studies and more!

www.epa.gov/watersense/commercial/tools.html
Simple Water Assessment Checklist

<table>
<thead>
<tr>
<th>Water-efficient Project or Practice</th>
<th>Evaluate</th>
<th>Implement</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Educate employees to turn off equipment including all continuous flow equipment, between uses; use automatic shut-off valves where applicable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Educate employees to use “dry” cleaning methods to avoid washing down equipment or areas with a water hose or mop; sweep or mop instead of spray washing with water.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Test water pressure regularly on each floor of the facility to ensure it is within optimal range for fixture and equipment performance; use pressure regulating valves to correct any issues (i.e., optimal pressure is between 20 and 80 psi for most fixtures).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sanitary Fixtures and Equipment

<table>
<thead>
<tr>
<th>Task</th>
<th>Evaluate</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Regularly check all fixtures and valves for scaling and clean as needed.</td>
<td>3.2 - 3.5</td>
<td></td>
</tr>
<tr>
<td>14. Test and calibrate all automatic- and sensor-flushing devices regularly to prevent double/phantom flushes.</td>
<td>3.2 - 3.3</td>
<td></td>
</tr>
<tr>
<td>15. Check tank-type toilets for leaks, broken flappers, and other parts failures regularly.</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>16. Install retrofit dual-flush conversion devices on 1.6-gallon per flush (gpf) flushometer-valve toilets.</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>17. Display instructional signage with all dual-flush devices to ensure proper use.</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>18. Replace old tank-type and flushometer-valve toilets with WaterSense labeled models, which flush at 1.28 gpf or less.</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>
What You Can Do Right Now

- Serve water to guests only on request
- Check to ensure you are using the minimum flow rate needed for water-cooled ice machines, and replace them with ENERGY STAR certified air-cooled models
- Track main meter and submeter readings in ENERGY STAR Portfolio Manager
- Operate cooking equipment in batches, and turn off when not in use
- Replace pre-rinse spray valves with WaterSense labeled models
- When replacing kitchen equipment, install ENERGY STAR certified models to save energy and water
Questions?

ENERGY STAR
For technical questions related to Portfolio Manager or the ENERGY STAR program, please visit:
www.energystar.gov/buildingshelp

WaterSense
www.epa.gov/watersense
www.facebook.com/epawatersense
www.twitter.com/epawatersense

Email: watersense@epa.gov
Helpline: (866) WTR-SENS (987-7367)