SF6 Inventory & Tracking Challenges

Alex Salinas
Principal Manager
Southern California Edison
&
Lukas Rothlisberger
CEO
DILO Company, Inc.
Overview

- Southern California Edison currently has 4694 pieces of GIE in service (4 GIS Subs) ~ 850,000 lbs.

- SCE started actively tracking SF₆ emissions as part of EPA’s voluntary emission reduction program in 1998

- Emission reporting became mandatory in 2011 for both EPA as well as CARB (CA Air Resources Board)

- CARB limits SF₆ emissions to 1% compared to nameplate capacity starting 2020
Major Challenges for SF$_6$ Users

- Additional reporting requirements
- Operational / Procedural
 - Inexperience / Infrequent SF$_6$ handling
 - Handling / Measuring equipment
 - Missing info on work orders
- Tracking / SF$_6$ Management
 - Installed GIE / Nameplate issues
 - Data transfer not in real time
 - Patchwork of different customized programs and Excel spreadsheets to monitor inventories and emissions
 - Disconnect between E&H and field personnel
 - Cylinder tracking / Multiple entry points for cylinders
 - Tracking each SF$_6$ movement
 - Difference between US EPA and State reporting
Reported Emissions

- Actual / Hard Emissions
 - Leakage from GIE
 - Handling Emissions
- Tracking Emissions
 - Recordkeeping Inaccuracies
- Nameplate Issues
 - Nameplate Discrepancies
 - Nameplate Inaccuracies
Federal EPA 98.306 – Data Reporting Requirements

- Each annual report must contain the following information for each electric power system:
 - Nameplate capacity of equipment (lbs) containing SF₆
 - Existing at the beginning of the year (excluding hermetically sealed-pressure switchgear)
 - New during the year (all SF₆ insulated equipment, including hermetically sealed-pressure switchgear)
 - Retired during the year (all SF₆ insulated equipment, including hermetically sealed-pressure switchgear)
 - Transmission miles (length of lines carrying voltages above 35 kV)
 - Distribution miles (length of lines carrying voltages at or below 35 kV)
 - Lbs. of SF₆ stored in containers, but not in energized equipment, at the beginning of the year
 - Lbs. of SF₆ stored in containers, but not in energized equipment, at the end of the year
 - Lbs. of SF₆ purchased in bulk from chemical producers or distributors
 - Lbs. of SF₆ purchased from equipment manufacturers or distributors with or inside equipment, including hermetically sealed-pressure switchgear
 - Lbs. of SF₆ returned to facility after off-site recycling
 - Lbs. of SF₆ in bulk and contained in equipment sold to other entities
 - Lbs. of SF₆ returned to suppliers
 - Lbs. of SF₆ sent off-site for recycling
 - Lbs. of SF₆ sent off-site for destruction
Real World SF$_6$ Emission Tracking Problems

- 4/14/2016 – Substation personnel removes SF$_6$ from GIE containing 340 lbs per nameplate. Upon completion, 245 lbs. is stored in cylinders.

- 5/10/2016 – Environmental questions discrepancy – Substation personnel blames inaccurate nameplate

- Problems & Possible Errors:
 - Long delay between work being performed and records being updated
 - Density was not checked/recorded prior to gas recovery
 - Recovery blank-off pressure unknown – incomplete recovery
 - Residual SF$_6$ in recovery system not accounted for
 - Weighing inaccuracies (weight scale and/or cylinder TW)
 - SF$_6$ emission on the pressure side of equipment (i.e. recovery system/hose leak)
 - Nameplate Inaccuracy
 - All of the above
Eliminating SF$_6$ Recovery Emissions

\[
\left(\frac{P_I - P_F}{P_I} \right) \times 100 = \% \text{ recovered}
\]

P_I = Initial breaker pressure in mmHg (absolute)
P_F = Final breaker pressure in mmHg (absolute)
Impact of Blank-off Pressure on SF\textsubscript{6} Recovery

- GIE containing 340 lbs @ 85 PSIG
- Recovery to 0 PSIG / 760 Torr: 290.0 lbs removed / 60 lbs lost
- Recovery to 200 Torr: 326.0 lbs removed / 14 lbs lost
- Recovery to 50 Torr: 337.0 lbs removed / 3 lbs lost
- Recovery to 5 Torr: 339.7 lbs removed / 0.3 lbs lost

Personnel recovering should be instructed to always reach a blank-off pressure of 5 Torr / for GIE containing < 50 lbs 35 Torr

Properly designed tracking program to immediately alert personnel if recovered gas does not match nameplate
Step by Step SF6 Recovery – Verifying Nameplate

- Verify Temperature/Pressure for proper density
 - Any deviation in pressure will result in nameplate discrepancy
- Recover to < 5 Torr (< 35 Torr for GIE containing < 50 lbs)
 - Difference in recovered SF6 not measurable in GIE containing < 50 lbs
- Use calibrated mass flow scale or weight scale
 - Mass flow scale preferred as it eliminates cylinder TW inaccuracies
 - If using weight scale verify that residual SF6 has been removed from recovery system
- Document blank-off pressure
- * Above info should be reported/saved by tracking software/program
SF$_6$ Inventory Management & Tracking Challenges

- Topics of discussion
- “Please come back next month – I’m working on our EPA/CARB SF$_6$ Reporting”
Tracking software solution

- Real time tracking
- Assist field lever personnel
- Simplifies EPA & CARB reporting
- Monitors GIE, cylinders and handling/measuring/weighing equipment
Necessary Changes to Minimize SF$_6$ Emission Tracking Problems

- Tracking should be in real-time
 - Will immediately alert personnel of potential problem (Incomplete recovery, nameplate issues, weighing issues)

- Improve work instructions
 - Field personnel needs detailed specs as opposed to “Remove SF6 from GIE”
 - A) Check and record temperature/density
 - Will immediately identify possible discrepancy with nameplate info
 - B) Stop recovery only after achieving blank-off pressure < 5 Torr
 - C) Record blank-off pressure
 - Will eliminate recovery emission and can be used to document nameplate inaccuracy

- Utilize highest accuracy weighing tools
 - Use mass flow scales whenever possible
 - Will eliminate discrepancies due to incorrect cylinder TW and residual SF$_6$ remaining in recovery equipment and hoses
Tracking software

<table>
<thead>
<tr>
<th>Container - Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
</tr>
<tr>
<td>C1082</td>
</tr>
<tr>
<td>C1082</td>
</tr>
<tr>
<td>C1084</td>
</tr>
<tr>
<td>C1084</td>
</tr>
<tr>
<td>C1084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tara Weight</th>
<th>Current Gas Weight</th>
<th>Gross Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gas Audit

- Las. Billy made an audit to container with SN C1083.
- Las. Billy made an audit to container with SN C1083.
- Las. Billy created a weighing event for container with SN C1083. Starting gas weight did not match previous ending gas weight. Difference was: 6.00.
- Las. Billy created a weighing event for container 250 CP. The starting weight did not match the previous ending weight.
- Las. Billy created a weighing event for container 250 CP. The starting weight did not match the previous ending weight.
What has worked

- **GIE Nameplate**
 - OEM’s to provide measured SF6 amount when shipping with transport pressure
 - Eliminates most nameplate problems for newly installed GIE

- **Cylinder tracking**
 - Currently only using fleet of 500 SCE owned cylinders
 - New GIE shipped without gas

- **Alerting field personnel to discrepancies**
 - Example: Recovered SF6 doesn’t match nameplate info

- **Real-time emission rate reporting**

- **Immediate completion of EPA/CARB reports**
Lessons learned & continuing challenges

- Importance of employee understanding / buy-in
- Added work for field personnel due to data entry
- System extremely helpful in identifying nameplate issues as well as handling errors immediately
- Having only SCE owned cylinders in system greatly simplifies processes
- Current emission rate and various inventories can easily be checked daily if needed
- Gas vendor can enter SF$_6$ purchases while shipments are in transit – inventories already updated when cylinders are received
- Tremendous time savings for both management as well as field level personnel
Thank you for your attention!

Alex Salinas
Lukas Rothlisberger

www.dilo.com
www.dilodirect.com

www.dilo.com