Forecasting and remote sensing of harmful algal blooms on the other coasts

Rick Stumpf
National Ocean Service
National Centers for Coastal Ocean Science
Hazards of Harmful Algal Blooms (HABs)

Shellfish poisoning
Economic
Fish kills
Marine mammals and birds
Freshwater swimming
Drinking water
Clogging desal plants

California sea lion undergoing stomach pumping after poisoning (photo courtesy Dr. Francis Gulland, Marine Mammal Center, Sausalito, CA)
Why does HAB forecasting matter?

- Toledo, >$2 million economic loss from two-day bloom impact
 - Annually $11M for chemical treatment (nbcnews.com)
 - Methods will help with P reduction targets
- Florida tourism loss, $6M per month per county
 - Health, ER admissions 54% increase in respiratory, 40% increase in gastro-intestinal
- Gulf of Maine halo effect
 - 2005 $10’s millions lost seafood
Cyanobacterial (freshwater) HABs

Deaths at dialysis center in Brazil in 1996
Drinking water issue, cyano-toxins pose risk of liver & kidney damage

Toledo 2014

Toledo 2015, with no risk!

Tom Feran,
The Plain Dealer
Coastal HABS
Public Health Threats/Animal Mortality/Ecosystem Disruption
Impacts Coastal HABs

<table>
<thead>
<tr>
<th>Name</th>
<th>Human & Animal* Poisoning</th>
<th>Fish Kills</th>
<th>Water Discoloration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amnesic Shellfish Poisoning (ASP)</td>
<td>Yes**</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ciguatera Fish Poisoning (CFP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Diarrhetic Shellfish Poisoning (DSP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neurotoxic Shellfish Poisoning (NSP)</td>
<td>Yes**</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Paralytic Shellfish Poisoning (PSP)</td>
<td>Yes**</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Brown Tide</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CyanoHABs</td>
<td>Yes**</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Golden Alga</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Mammals, birds, turtles, often protected species
** Can cause human or animal deaths
Some regions with chronic severe HABs

- Pacific NW
- CA
- TX
- FL/AL
- Erie
- C.Bay
- G.Maine
HAB Operational Forecast System Concept: National Capability, Regional Implementation

Inputs
- Ocean Color, currents
- Public Health Data, *In situ* Observations
- Hydrodynamic Models
- Met Forecasts (Winds)
- Biological Models

Analysis & Interactive GIS Portal
- Web Services, Web Mapping Services
- Can ingest all formats (ASCII, GRIB2, netCDF, etc)
- Export mapping tools for multiple formats (.shp, .kml, .geotiff, etc)

Output Products
- Regionally Specific Operational Products
- Web Updates
- Skill Assessments
- Research and experimental products

Continuing Research to Refine Integration
- SOP’s, Expert System Rules
A harmful algal bloom has been identified in patches from southern Lee to central Collier County. Patchy very low impacts are possible today through Thursday.
HAB Operational Forecast System: Gulf of Mexico *Karenia brevis*

Padre Island National Seashore Closes Park to Dogs (December 9, 2009)

http://tidesandcurrents.noaa.gov/hab
Gulf of Mexico Harmful Algal Bloom Operational Forecast System

Gulf of Mexico Harmful Algal Bloom Bulletin
Region: Southwest Florida
Monday, 03 April 2017
NOAA National Ocean Service
NOAA Satellite and Information Service
NOAA National Weather Service
Last bulletin: Thursday, March 30, 2017

Conditions Report
Not present to medium concentrations of Karenia brevis (commonly known as Florida red tide) are present along- and offshore portions of southwest Florida and not present in the Florida Keys. K. brevis concentrations are patchy in nature and levels of respiratory irritation will vary locally based upon nearby bloom concentrations, ocean currents, and wind speed and direction. The highest level of potential respiratory irritation forecast for Monday, April 3 through Thursday, April 6 is listed below.

County Region: Forecast (Duration)
Southern Pinellas: Very Low (M-Th)
Southern Manatee: Very Low (M-Th)
Northern Sarasota: Low (M-Th)
Northern Sarasota, bay regions: Low (M-Th)
Southern Sarasota: Moderate (M-Th)
Southern Sarasota, bay regions: Low (M-Th)
Northern Charlotte: Moderate (M-Th)
Northern Charlotte, bay regions: Moderate (M-Th)

Gulf of Mexico Harmful Algal Bloom Bulletin
Region: Texas
Thursday, 13 October 2016
NOAA National Ocean Service
NOAA Satellite and Information Service
NOAA National Weather Service
Last bulletin: Tuesday, October 11, 2016

Conditions Report
Karenia brevis (commonly known as Texas red tide) ranges from not present to high concentrations along the Texas coast from the Corpus Christi Bay to Rio Grande regions. K. brevis concentrations are patchy in nature and levels of respiratory irritation will vary locally based upon nearby bloom concentrations, ocean currents and wind speed and direction. The highest level of potential respiratory irritation forecast for Thursday, October 13 through Monday, October 17 is listed below.

County Region: Forecast (Duration)
Bay region-Corpus Christi Bay: Moderate (Th-M)
Bay region-Upper Laguna Madre: Very Low (Th-M)
Aransas Pass to PINS: Moderate (Th-M)
Padre Island National Seashore region: Moderate (Th-M)
Mansfield Pass to Beach Access 6 region: Moderate (Th-M)
Laguna Madre: Low (M)
Bay region-Lower Laguna Madre to Laguna Vista: Low (M)
All Other Texas Regions: None expected (Th-M)

Check http://tidesandcurrents.noaa.gov/hab/beach_conditions.html for recent, local observations. Over the past few days, reports of respiratory irritation and discolored water have been received from the Corpus Christi Bay region.

Analysis
Karenia brevis concentrations range between 'not present' and 'high' along the Texas coast from Aransas Pass to the Rio Grande (TPWD, 10/11-13). In the Corpus Christi Bay region, sampling this week continues to indicate up to 'high' K. brevis concentrations throughout the bay with corresponding reports of respiratory irritation and discolored water (TPWD, 10/11-12). Sampling in the Upper Laguna Madre detected a 'very low' K. brevis concentrations where previous sampling indicated K. brevis was not present (TPWD, 10/11). Recent sampling in the Padre Island National Seashore region continues to indicate up to low K. brevis concentrations (TPWD, 10/12). New sampling around the Lower Laguna Madre to Laguna Vista region continues to confirm K. brevis concentrations have decreased in the last week with only 'background' concentrations detected on 10/10 (Texas Red Tide Rangers). Detailed sample information and a summary of impacts can be obtained through Texas Parks and Wildlife Department at: http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/redtide/stats.ptml

For information on area shellfish restrictions, contact the Texas Department of State Health Services.

To see previous bulletins and forecasts for other Harmful Algal Bloom Bulletin regions, visit: http://tidesandcurrents.noaa.gov/hab/bulletin/index.html

Detailed sample information can be obtained through FWC Fish and Wildlife Research Institute at: http://myfwc.com/webdata/norstaxa

Satellite chlorophyll image with possible K. brevis HAB areas shown by red polygon(s), when applicable. Points represent cell concentration sampling data from March 24 to 31, red (high), orange (medium), yellow (low b), brown (low a), blue (very low b), purple (very low a), pink (present), and green (not present). Cell count data are provided by Florida Fish and Wildlife Conservation Commission (FWC) Fish and Wildlife Research Institute. For a list of sample providers and a key to the cell concentration categories, please see HAB-OFS bulletin guide:
http://tidesandcurrents.noaa.gov/hab/hab_publication/habs_bulletin_guide.pdf

Detailed sample information can be obtained through the Texas Parks and Wildlife Department at: http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/redtide/stats.ptml

For information on area shellfish restrictions, contact the Texas Department of State Health Services.
Florida, developing improved respiratory forecast

Prototype forecast tool combining NDFD wind with cell concentrations.

Improved satellite data to direct beach sampling

HABscope developed to bring in volunteer networks

Video frame of K. brevis cells

NOAA/NOS, GCOOS, Mote Marine Lab, NASA
Addition of Flow Cytobot in Texas

Dinophysis detected 2008, *Karenia* in recent years

- Dinoflagellates produce the toxins *okadiac* acid and *dinophysis* toxins
- Causes diarrhetic shellfish poisoning (DSP)
- FlowCytobot has been critical for detection
Gulf of Maine Transition

4nd year of cyst cruise led by NOAA, helped by WHOI

\textit{Alexandrium} biological model now in ROMS “trunk”, evaluations of biology happening on NCEP computers, hydro model integration across NOS

Environmental Sample Processor (ESP) deployment - early warning to Maine

Multi-partnered investment (> $20M) across NOAA, with EPA, FDA, NERACOOS, NSF, Canada DFO, Maine DMR
Gulf of Maine Seasonal forecast

Gulf of Maine Red Tide Forecast Predicts Small Bloom for 2016

Posted on April 7th, 2016 (1 year ago) in Forecasting, Harmful Algal Blooms

This summer the Gulf of Maine red tide is predicted to be the smallest observed over the last eleven years, as forecast by researchers at Woods Hole Oceanographic Institution (WHOI) and North Carolina State University.

Conditions are ripe for another large bloom in New England waters; weather and ocean conditions will determine outcome.

Courtesy: Don Anderson, WHOI
Forecast Model types

Gulf of Maine Cyst Map

Lake Erie Satellite cyan index Sep 2011

Lake Erie with POM model (3-D behavior in demonstration)

Gulf of Maine Transport with ROMS 3-D model and biological response
Lake Erie Forecasts, run routinely since 2008

Experimental Lake Erie Harmful Algal Bloom Bulletin
National Centers for Coastal Ocean Science and Great Lakes Environmental Research Laboratory
27 July 2015, Bulletin 04

The Microcystis cyanobacteria bloom continues in the western basin. The bloom extends from west of West Sister Island, veering southward to the coast, then curving to the northeast through the islands toward the central basin and up to the Canadian coast.

Figure 1. Cyanobacterial Index from NASA’s MODIS-Terra data collected 24 July 2015 at 12:00 pm EDT. Grey indicates clouds or missing data. Black

Figure 2. Nowcast position of bloom for 27 July 2015 using GLCFS modeled currents to move the bloom from the 24 July 2015 image.

http://coastalscience.noaa.gov/research/habs/forecasting
Lake Erie Transition from NCCcOS (Research) to CO-OPS (for operations)

Toledo increased monitoring because of bloom increase identified in bulletin.
Bulletin forecasts twice per week post-Toledo

Improved integration of GLERL field data, and using operational high res (FVCOM) model for transport.

-- Bulletin Aug 1 a.m.
-- Toledo water ban late Aug 1 (Fri)
-- Next bulletin issued Aug 4 (Mon) a.m.
Accomplishments:
Lake Erie ready for operations FY17

- 2016 was 8th season.
- 2000 subscribers + media distribution
- Stakeholder discussions
- Transition plan
- Research improvements now possible

One product for Lake Erie, location relative to intakes

-- Bulletin Aug 1, 2014 a.m.
-- Toledo water ban late Aug 1 (Fri)
-- Next bulletin issued Aug 4 (Mon) a.m.
Bulletin PDF images are geoPDF, check locations
New models being developed

3-D model for Lake Erie to predict blooms subsurface or surface
Annual assessment of blooms
Comparison with Phosphorus Load

compare bloom biomass with total bioavailable phosphorus (TBP)
2016 Seasonal forecast milder than 2014 & 2015.

Correct, but several models overestimate internal loading from 2015.

Western Lake Erie Bloom severity

- NOAA
- Heidelberg Univ.
- Univ. Michigan
- LimnoTech
- NC State U.

- 2016 severity 3.2
- ensemble forecast 5.5
- model values 4.1 - 5.8
- uncertainty 3 - 7

Significant

- Mild

EPA Region 9, April 2017
From Lake Erie to rest of country, CyAN, Collaboration with EPA, USGS, NASA

- Testing “bulk” methods with time series analysis of FL, OH, and CA (2008-2011)
- Frequency maps and surface drinking water intake monitoring methods
Evaluation of other products

Karlodinium veneficum bloom (not fluorescing) in Chesapeake Bay (12/19/2016)

Maryland Dept of the Environment. Fish kill Dec 19, 2016. “*Karlodinium veneficum*, a toxin producing saltwater algae, pushed remarkably far into the freshwater end of the Chesapeake Bay estuary in 2016.”
NOAA’s Ecological Forecasting Roadmap

NOAA’s Ecological Forecasting Roadmap will:
- Leverage NOAA-wide capability
- Establish priorities and collaborations
- Build-on existing infrastructure and partnerships
- Improve quality and delivery of products and services

To achieve:
- Operational forecasts based on strong science
- Delivery of more consistent, efficient, reliable, and national forecasts (tailored to region-specific needs)

NOAA initial focus areas: Harmful Algal Blooms, Hypoxia, Pathogens
Biggest needs for modeling

Initializing operational models, we don’t have enough data on bloom location.

Scenario models, for most areas, insufficient data on initialization.

Validating operational model comparison (is one model “better”), we don’t have enough data on bloom location.
HAB Observing Networks: Development & Transition

Objective: promote development & transition to operations of regional & national HAB observing networks

Rationale: observations & measurements of HAB species & toxins are important for:

- support of forecasting
 - validate satellite/airborne observations
 - data assimilation for model correction
- early warning of HAB events
- assessing bloom toxicity (potential impacts)
- identifying drivers of HAB growth & toxicity
HAB Observing Networks: Where are we going?

Overall Aim: observing networks will be fully integrated as components supporting a national HAB forecasting infrastructure

As we develop & deploy observing capabilities:
- identify & understand regional observing needs useful to managers & stakeholders

 focus on ‘observations’ not ‘technologies’

- leverage existing infrastructure to provide contextual data (IOOS RAs, NDBC, NWS, etc.)

- plan for data dissemination & assimilation
Health: *Pseudo-nitzschia* in Pacific NW, Amnesic Shellfish Poisoning

Slide courtesy of V. Trainer
California C-HARM
HINDCASTING *Pseudo-nitzschia*

- Focus on 2009 (*Anderson et al. 2011*)
- DINEOF reconstruction at 5-day intervals

Red: Cell Counts
Blue: Predicted Probability

2009 Hindcast versus Cell Counts, Santa Barbara
Five year vision

- Lake Erie, convert demonstration to true operations, FY17
- Gulf of Maine complete transition, FY18
- Improve Florida to public need, beach resolution FY19
- Transition California domoic acid to NOAA
- National cyano network (EPA, USGS, NASA)
- Implement Pacific NW, transition to NOAA
- Continue improvements, evaluate new areas

- Alaska, Puget Sound, Long Island Sound, Ciguatera, random events
“Emerging” problem areas

- Puget Sound
- Green Bay
- Saginaw Bay
- LI Sound
- IRL
- Caribbean
- Alaska
Detecting HABs in Freshwater Cyanobacteria Assessment Network

- Satellite monitoring in larger lakes and reservoirs, OLCI and MERIS
- Estimate human exposure to cyanotoxins
- Disseminate info → expedient public health advisories
- Decrease costs of monitoring
- Reduce exposures
- Create a standard approach for early HAB detection based on new satellite data (OLCI)
- Retrospective with MERIS
- Evaluate Landsat

EPA, NASA, NOAA, and USGS

Sentinel-3 satellite
Launched February 2016
CyAN. National scope

Red points are locations of water quality data.

MERIS tiles outlines in gray.

Insets are test MERIS files.
CyAN objective of providing data, tools, and “bulk” analysis

EPA EnviroAtlas (Data dashboard)

Android mobile apps

RSTools (ArcGIS) support for CyAN data (developed for CA WaterBoard)
Northern Florida clear Scenes, MERIS to OLCI comparison

07Feb2007

11Feb2017