One Size Does Not Fit All: Choosing an Appropriate Remediation and Management Approach for Water Quality

David A. Caron
Department of Biological Sciences
University of Southern California
Los Angeles, CA 90089-0371
(dcaron@usc.edu)

Qualifier: This presentation is NOT meant to be an exhaustive overview of specific management practices, but rather to stimulate discussion on some basic principles to think about when planning prevention, mitigation or remediation.

EPA Region 9 HABs Meeting
Southern California Coastal Water Research Project
Costa Mesa, CA
April 25-27, 2017

For assistance in accessing this document please send an email to EPACyanoHABs@epa.gov
Great diversity of aquatic ecosystems
(size, hydrography, chemistry, etc.)

Great diversity of uses
(drinking water, recreation, fisheries, etc.)

These varying features dictate different approaches. Therefore, each approach should be tailored to the system, the existing problem, and the desired outcome(s).
What are your best weapons in choosing an approach(es)?

Guiding Principles:

• Know your endgame (what is the intended use(s) of your resource?).
 • Are there competing interests? (that may change your approach)

• Understand the *upsides* and the *downsides* of possible approaches.
 • BOTH exist: Cost, effectiveness, longevity, aesthetics, etc.

• Try to let sound science dictate action, not politics.
 • Ultimately, only a sound scientific approach will be sustainable.
A few more guiding Principles:

• Acquire basic information on the nature, magnitude and composition of your problem.
 • ESTABLISHING THE PRIMARY DRIVER(S) OF THE PROBLEM IN YOUR ECOSYSTEM IS FUNDAMENTAL.
 • Species, toxins, water chemistries, hydrographies, seasonalities all vary from location to location (sometimes even with an ecosystem).

• Common sense goes a long way.
 • Accumulate data on your system. Evaluate if your approach is working. If not, it may be time to reevaluate your approach.

• Be in it for the long haul.
 • Attempt to design & enact a good long-term strategy for management.
 • Try not to be solely ‘reactive’.
 • Don’t expect an immediate, easy, or cheap solution.
 • There is often no ‘silver bullet’.
Causes of algal blooms
(no real surprises here)

Primary Drivers (generally speaking):

Loading of major nutrients is ultimately the problem:
N, P* are key, Nutrient ratios

‘Higher level’ physical/environmental effects
Climate (including drought)
Residence time***
Weather
affects physical structure of water body
affects nutrient availability
Light (daylength)

NOT strong drivers, per se (but certainly play a role)
Temperature (although it can affect timing, composition)
‘Pollution’ (unless severe or comes with nutrients)
Management: The desirability of ‘quick fix’ solutions

Treatments that bring clarity to Canyon Lake's water called 'amazing'

Alum (potassium aluminum sulfate)
(aggregation & sedimentation)

Lanthanum-rich bentonite clay
(aggregation & sedimentation)

Chelated or unchelated toxic metals
(why chelated?)

And other treatments:
Aeration, mixing, water replacement, UV, sonication, ozone (& other chems), hay, floating islands, biological manipulation, etc, etc...
‘Quick fix’ solutions: The good and the bad of it
(from a scientist’s perspective)

Advantages:
- Immediate improvement in water clarity*,**
- Reduced abundances of ‘problem’ algal/cyanobacterial species*,**
- Removal of nutrients from surface waters*

Potential disadvantages:
- Killing of ALL algal/cyanobacterial species (& the food web) *,**
 (& sometimes desirable micro- & macrofauna)
- Problematic nutrients are not really removed**
- Potential release of intracellular toxins into the water**
- Delivery of toxins in high concentrations to the benthos*,**
- Delivery of high biomass to the benthos (increased O₂ demand) *,**
- Survival and proliferation of more-resistant species*,**
 (Community may shift to less-desirable species)
- Continued remedial activity generally will be required**

*aggregation & sedimentation
**toxic chemical treatments
A case study (addressing the core issue):
Huntington Garden’s Chinese Garden Lake

Garden of Flowing Fragrance

250-310 µg Chlorophyll per liter!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oligotrophic</th>
<th>Mesotrophic</th>
<th>Eutrophic</th>
<th>Hypereutrophic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average total phosphorus</td>
<td>8.0</td>
<td>26.7</td>
<td>84.4</td>
<td>> 200</td>
</tr>
<tr>
<td>Average total nitrogen</td>
<td>661</td>
<td>753</td>
<td>1875</td>
<td>high</td>
</tr>
<tr>
<td>Average Chlorophyll a</td>
<td>1.7</td>
<td>4.7</td>
<td>14.3</td>
<td>>100, range 100-200></td>
</tr>
<tr>
<td>Chlorophyll a, peak concen</td>
<td>4.2</td>
<td>16.1</td>
<td>42.6</td>
<td>>500</td>
</tr>
</tbody>
</table>

| Organization for Economic Cooperation and Development (OECD) in the 1970s and 1980s |

Table 3: A classification of lakes according to the extent of their eutrophication
Issues with Chinese Garden Lake

Phytoplankton community composition

Dominant species: *Cylindrospermopsis*
- Filamentous cyanobacteria
- Nitrogen-fixer (can ‘make’ nitrogen)
- Can store phosphorus
- Known to be a bloom former and a toxin producer: (*saxitoxins, cylindrospermopsin*)

Nutrient sources causing hypereutrophication in CGL

Significant fish population (large koi)
- Fish food additions
- Drainage from fertilized lawn and landscape
- Significant water fowl population (ducks, gulls, etc)
- No turnover of the water in the lake water
 (no removal, replacement of evaporative losses)
Redesigning the Chinese Garden Lake

Mass Balance approach!

Fish food & fish waste

Resuspension & Release from sediments

Land Plant Fertilizers

Fowl waste

Removal of lake water
Redesigning the Chinese Garden Lake

- Well water input
- Land Plant Fertilizers
- Fowl waste
- Fish food & fish waste
- Use of lake water for irrigation
- Resuspension & Release from sediments

Removal of lake water
BEFORE

- Fish food & waste
- Nutrient resuspension & release from sediments
- Wildfowl waste & land runoff

AFTER

- Well water input
- Fish food & waste
- Nutrients removed as sediment
- Wildfowl waste & land runoff
- Lake water removal
Obviously, such a dramatic approach will not work for all (or most) systems, but the basic principles are the same. Before you choose an approach, you might want to...

- **Assess the root cause(s) of your problem.**
 - Too much algae or cyanobacteria? Toxic species present?
 - *Don’t simply pick a method off the shelf, and apply it.*

- **Establish the intended uses of your system.**
 - Drinking water supply? (maybe you don’t want to break those cells open).
 - Recreational use? (scums are highly undesirable).
 - Fisheries? (do you have fish-killing species present?)
 - *Use(s) should guide remedial & management approaches.*

- **Try to choose the *most appropriate* approach.**
 - Based on scientific principles informed by ecosystem assessment (magnitude, hydrography, biology, etc.) & public acceptability.
 - *Avoid the ‘quick fix’ (unless it’s right!). Look for long-term sustainability.*