BUILDING

INVESTMENT-DRIVEN GROWTH

Carbon Credits for Directed Inspection & Maintenance

Columbia Gulf

Fransmission.

A NiSource Company

Partner Experience: NiSource

Jeff McCombs, Nisource ESS Program Leader

2010 Annual Implementation Workshop New Orleans, LA Tuesday, November 2, 2010

Agenda

Background and Methodology

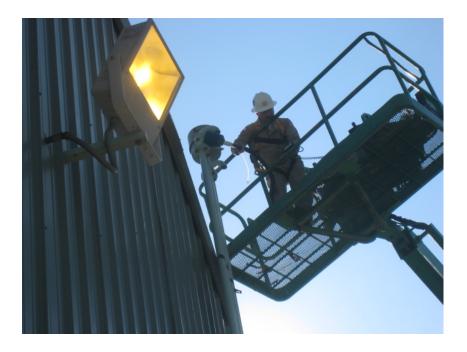
- Findings
- Future work
- Takeaways
- Questions

Background

NiSource (NYSE: NI):

- Engaged in natural gas transmission, storage, and distribution
- Delivers energy to 3.8 million customers from the Gulf Coast through the Midwest to New England

Columbia Gulf Transmission (CGT):

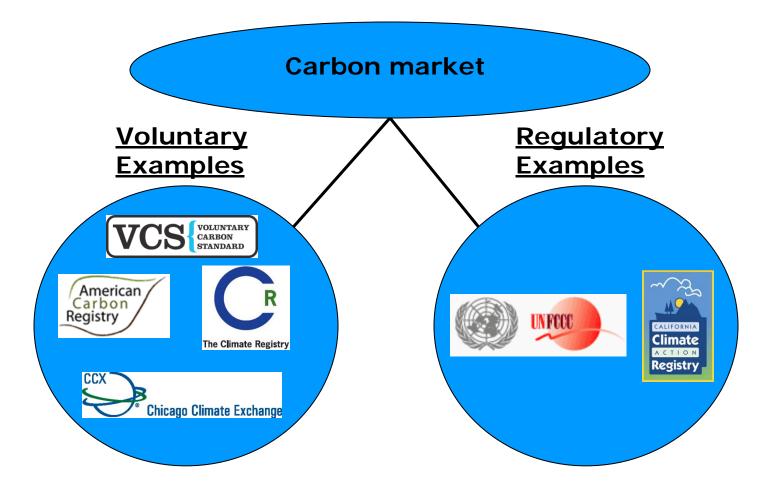

- Subsidiary of NiSource
- Interstate pipeline system of approx 3,400 miles of pipeline
- 11 compressor stations with nearly 0.5 million horsepower

Background: Natural Gas STAR Participation

- CGT has been a Partner since 1999
- 2001 and 2004 Transmission Partner of the Year (along with Columbia Gas Transmission)

Can You Find the Leak?

???


Background: Methane Emissions

- A colorless, odorless gas potent greenhouse gas (GHG) with:
 - 100-year global warming potential of 21
 - Atmospheric lifetime of ~12 years
- Difficult to detect or see using human senses
- Project barriers and lack of financial incentive:
 - Lack of gas ownership
 - No regulatory or SOP justification to address leaks
- VCS methodology provides outlet for:
 - Reducing emissions
 - Generating revenue

Background: The Carbon Market

Carbon market brings together generators and buyers of GHG emissions reductions

Background: Voluntary Carbon Standard (VCS)

Q: What problem does VCS solve?

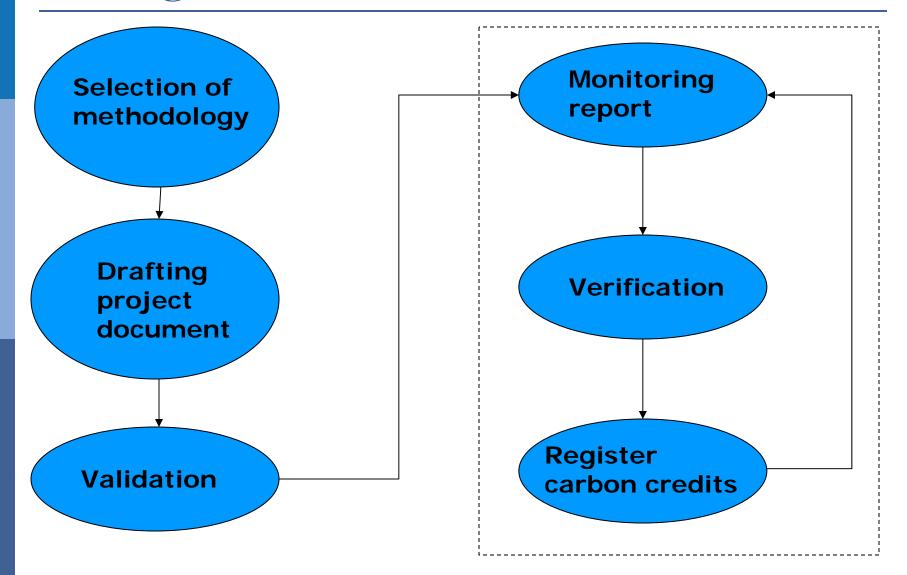
A: The lack of a well-defined carbon market in the U.S.

What is it?

- Organization that provides framework for establishing standards to obtain carbon credits
- Creates and propagates guidance documents detailing how to attain carbon credits
- Establishes procedures and standards for carbon registries

Background: Voluntary Carbon Standard (VCS)

- Credits must be: 1) real, 2) additional, 3) measurable, 4) permanent, 5) independently verified, 6) unique, and 7) conservative
- Can use existing methodologies under approved programs (such as Kyoto Clean Development Mechanism) <u>OR</u> use new VCS methodology


Background: Key Issues for Carbon Credits

Additional:

- Does this project go beyond the "business-as-usual" scenario?
- Barrier analysis, including proof of exceeding common practice in industry
- Real: have happened
- Measureable: can be quantified with proper equipment
- Transparent: clear, easily traceable path of work performed (especially with measurement and record-keeping)
- Conservative: so as not to overestimate amount of reductions

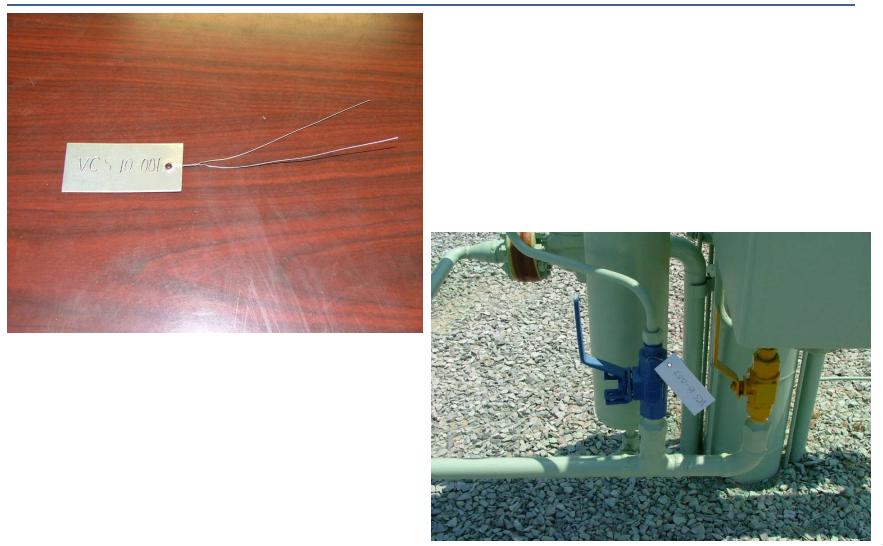
Background: Process

Methodology: Clean Development Mechanism AM0023

- "Leak reduction from natural gas pipeline compressor or gate stations"
 - Methane-specific
 - Very specific detection, measurement, monitoring, and record-keeping requirements
 - More stringent than Leak Detection and Repair (LDAR)

•	UNFCCC/CCNUCC	IMIR
CDM - Executive Board		AM0023 / Version 03 Sectoral Scope: 10 EB 50
	Approved baseline methodology AM0023	
"Leak	reduction from natural gas pipeline compressor or gate	e statious"
Source		
This baseline methodol	ogy is based on the proposals from the following proposed	d methodology:
baseline study,	eak reduction from natural gas pipeline compressor or gate monitoring and verification plan and project design docur on behalf of MoldovaGas.	
This methodology also	refers to the latest approved versions of the following tool	E
 "Tool for the d 	emonstration and assessment of additionality".	
	egarding the proposed new methodologies and the tools, a secutive Board, please refer to < <u>http://cdm.unfccc.int/goto</u>	
Selected approach fro	m paragraph 48 of the CDM modalities and procedure	5
"Existing actual or hist	orical emissions".	
Applicability		
stations and gate station	plicable to project activities that reduce leaks in natural ga is in natural gas long-distance transmission systems, as we tion systems including pressure regulation stations by esta actices:	ell as to other surface
 Where natural j and repair leaks 	gas pipeline operators have no current systems in place to s;	systematically identify
	n be identified and accurately measured; oring system can be put in place to ensure leaks repaired n	emain repaired.
	logy shall be used in conjunction with the approved monit tion from natural gas pipeline compressor or gate stations'	
Additionality		
"Tool for the demonstra	e project activity shall be demonstrated and assessed using ation and assessment of additionality" agreed by the CDM considerations noted below.	
	dm.unfccc.int/gete/MPappmeth>.	

Leak Detection Instruments


Heath Consultants Gasurveyor

Leak detection

Leak Tagging

Leak Measurement

Hi Flow® SamplerCalibrated bagging techniques

CGT personnel calibrating a Hi Flow Sampler[™]

Leak Measurement

Quantifing packing vent with Hi Flow Sampler

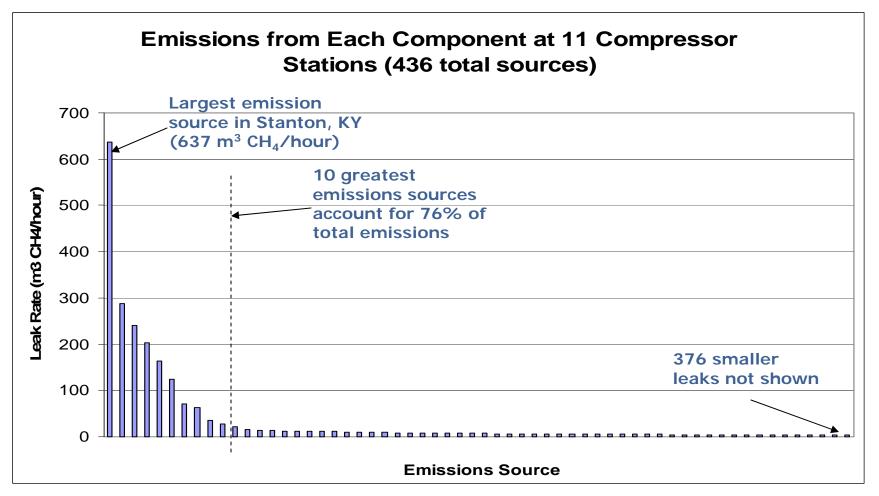
Using calibrated vent bag for rod packing emissions

- Baseline studies conducted at 11 compressor stations
- Over 430 leaks found
 - 39 leaks per station on average
- Common leak types detected and quantified:
 - Suction and discharge valves
 - Open-ended line (OEL)/vent line
 - Blowdown valve
 - Compressor seal and rod packing
 - Doghouse vent

Rayne, LA: compressor unit valves (suction and discharge)

Stanton, KY

- Largest emissions from valve leaks (compressor suction and discharge)
 - As high as 637 m³/hour
- Other sources:
 - Thread fittings, gaskets, tube connections
- Total station emissions: 1,333 m³ methane/hour


All Site Emissions			
Site	Total Emissions (m ³ CH ₄ /hour)		
Stanton, KY	1,333		
Hampshire, TN	543		
Corinth, MS	128		
Delhi, LA	111		
Houma, LA	92		
Rayne, LA	88		
Inverness, MS	58		
Clementsville, KY	28		
Banner, MS	27		
Alexandria, LA	23		
Hartsville, TN	12		
Total	2,443		

Rayne, LA: common blowdown vent

A majority of the total methane emissions can be reduced by repairing a minority of the leaking sources

Future Work

- Repairs performed on major leaking sources
 - Reduces majority of emissions
 - NOT cost-effective unless carbon credits involves
- Numerical values of credits determined from reduced leak rate
 - Baseline emissions monitoring emissions = reductions
 - Reductions quantified as voluntary carbon units (VCUs)

Takeaways

- Carbon credits in the voluntary market are difficult to obtain
 - Large burden of proof (additionally: e.g., financial barrier, common practice)
 - Monitoring, data collection, and reporting must be conducted according to VCS standards and procedures
- Methodology provides unique opportunity for transmission companies to positively affect climate change
 - Reduce emissions
 - Earn revenue

Questions?

Contact Info:

Jeff McCombs jmccombs@nisource.com Program Leader—Nisource Environmental,Safety & Sustainability

