Developing Sour Gas Resources with Controlled Freeze Zone™ Technology

Dr. Charles (Chuck) Mart
Research Manager – Gas Technology
ExxonMobil Upstream Research Company
Houston, Texas, USA
Global Perspectives:
Outlook for Natural Gas Supply/Demand

- Natural gas expected to be the fastest growing fuel source for the next 20 years
- Demand growth expected in power generation sector because of lower emissions and greater efficiency with natural gas fired units
- Domestic and imported supplies will be needed to meet regional gas demands via pipeline and LNG deliveries
Global Perspectives:

Challenges with Sour Natural Gas Resources

- Provide clean-burning natural gas from increasingly sour gas resources
 - As much as 1/3 of global conventional resources have significant amounts of CO$_2$ and H$_2$S
 - Fields with CO$_2$ contents greater than 30% and H$_2$S content greater than 10% are encountered more frequently

- Management of contaminants
 - Increased focus on CO$_2$ removal and disposition
 - Alternatives to sulfur production
 - Geosequestration of CO$_2$

- Challenging economics for developing sour gas reserves
 - Smaller amounts of valuable hydrocarbon
 - Remote gas developments
Controlled Freeze Zone™

Controlled Freeze Zone™ process

- **Production wells**
- **Inlet dehydration and refrigeration**
 - Refrigerant lowers temperature to about -50°F
- **Feed gas**
- **CFZ section**
 - Conventional distillation
- **Injection wells**
 - Liquid CO₂ and H₂S
 - CO₂ and other gases sequestered and injected into dedicated wells

Gas from fields:
- Methane / CO₂ / H₂S

Methane to sales
Controlled Freeze Zone™: Technology Uses a Different Approach

Rather than avoiding solidification of CO₂, control it and confine it to specially designed section in distillation column.
CFZ™ Advantages: Capital Costs and Energy Efficiency

Overall Costs
- 10 - 27% lower overall capital costs
- 12 - 37% cost savings for treating

Sales Revenue
- 5 - 16% more energy efficient
- 4 - 8% greater sales

Less Equipment
Lower Costs

Lower Emissions
More Gas Supply
Controlled Freeze Zone™:
History of Technology Development

- Invented at Exxon Production Research Co. in 1983
 - Original patent granted in 1985
- Pilot plant operated in 1986
 - Proved CFZ™ concept for CO$_2$ removal
- Engineering studies and process improvements 1987+
 - Six additional patents
 - Nine pending patent applications
- Commercial Demonstration Plant operation to begin in 2010
 - Test wide range of compositions, with CO$_2$ and H$_2$S
 - Integrate with acid gas injection
 - Provide design basis for world-scale plant
Case Study: **Summary of CFZ™ Incentives**

- **Significant capital and operating expense savings**
 - Fewer processing steps and less equipment for all applications
 - Reduction or elimination of solvents and additives
 - Lower acid gas injection costs
 + High pressure separation
 + Liquid acid gas stream can be pumped for reinjection vs. costly compression
 - Provides alternative for sulfur plants
- **Higher efficiency provides more clean gas supply**
- **Environmental benefits**
 - Allows economic CO₂ injection for geosequestration or EOR