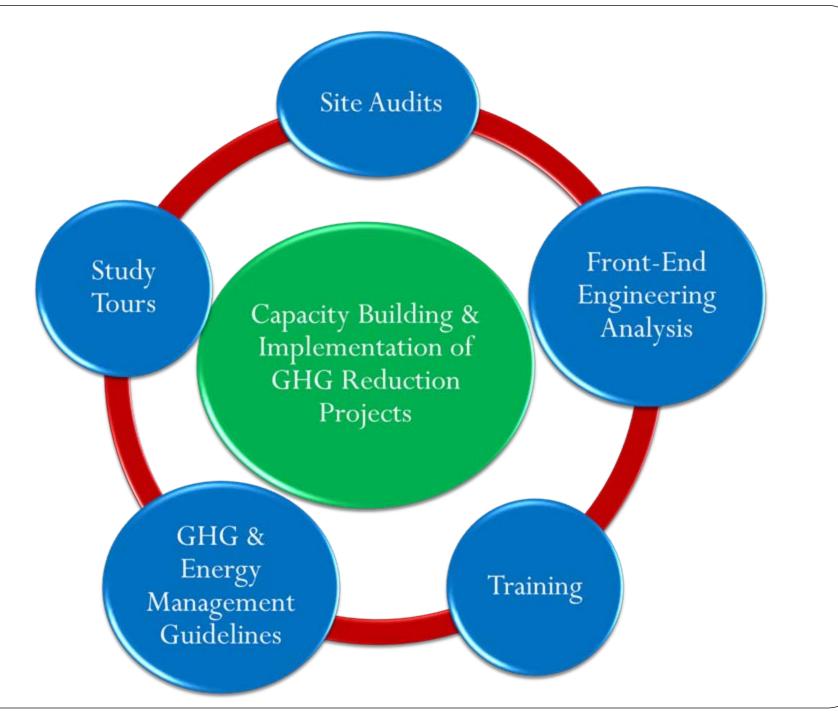


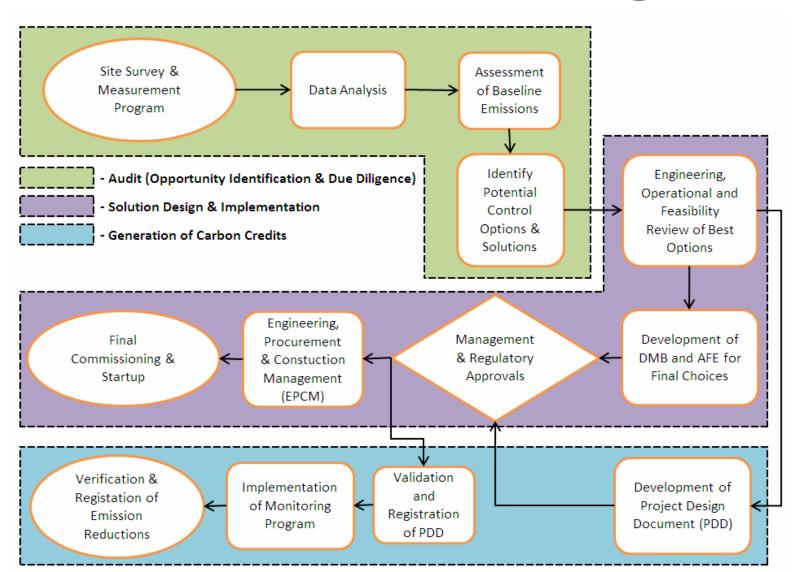
The China National Petroleum Corporation's (CNPC) Methane to Markets Experience

November 2nd, 2010 New Orleans

Presented by:


David Picard (Clearstone Engineering Ltd)

Objectives


- Raise awareness of cost-effective opportunities to reduce CH₄ emissions and improve energy efficiencies at oil and natural gas facilities in China.
- Share lessons learned in North America and other countries.
- Work toward achieving significant cost-effective GHG emission reductions in China.
- Capacity building.

General Project Flow Diagram

Site Audits

- Conducted jointly by experts from CNPC RISE and North America.
- Utilized a range of specialized testing equipment and data analysis methods.
- Key objective was to identify and quantify all significant methane reduction and energy efficiency improvement opportunities.
- Practical means for training and technology transfer.

Site Audits: Target Opportunities

- Fugitive equipment leaks.
- Process venting:Casing Gas VentingGlycol Dehydrators
- Flaring.
- Storage losses.
- Combustion and thermal efficiencies of natural gas-fired heaters and boilers.
- Compressor inefficiencies.
- Engine inefficiencies.
- Overall process optimization.

Measurement and Detection Equipment

Equipment used during surveys:

- Infrared thermal imaging camera.
- Combustion and emission analyzers.
- Various velocity and flow meters.
- Hi-flow sampler.
- Combustible gas detectors.
- Pressure and temperature sensors.

Fugitive Equipment Leaks

Engines and Process Heater Combustion Analysis

Casing Gas Venting and Flaring

Flare Systems

Field Measurement Activities at CNPC Facilities

- NW China (September, 2007):
 - 1 natural gas processing plant (1996).
 - 4 oil batteries (early 1990's).
 - 1 central oil treating facility (early 1990's).
 - 5 oil well production pads (early 1990's).

Field Measurement Activities at CNPC Facilities

- Central China (November, 2008):
 - 3 natural gas processing plants (1980 to 2004).
 - 2 gas distribution meter stations (early 1990's).
 - 1 gas battery (early 1987).
 - 2 compressor stations (1988 & 1995).

Field Measurement Activities at CNPC Facilities

- NW China (May, 2009):
 - 2 natural gas processing plants (1997 & 2000).
 - 1 oil station (1992).
 - 1 oil battery.
 - 1 power generation plant.

Front End Engineering Analysis

- A detailed analysis of energy efficiency and methane emission reduction opportunities identified in the site audit reports
- Develop a short list of technology options with the potential to achieve cost effective energy efficiency gains and reductions in methane emissions
- Consult with equipment suppliers to collect detailed technical information for the various options
- Obtain budgetary pricing from technology providers for these technologies

Front End Engineering Analysis

- Identify site specific constraints that may limit application of certain technologies (e.g. space restrictions, capacity bottlenecks, utilities etc.)
- Prepare a design basis memorandum (DBM) with the supporting engineering information required to proceed with detailed engineering
- Provide recommendations for the most practical and cost effective options to pursue
- DBM to include sufficient technical and cost details for CNPC to perform an evaluation and make recommendations to management for implementation.

Front-end Engineering Analysis – Group Discussion

- Engine and compressor management systems
 - Air-to-fuel ratio control
 - Ignition systems and speed governors
 - Compressor vent gas recovery
 - Compressor and engine performance monitoring

- Flare systems:
 - Ultrasonic flare meters.
 - Fuel-efficient and reliable pilots.
 - Purge gas management.
 - Flare gas recovery systems.

- Onsite power generation using waste gas streams:
 - Micro-turbine generators.
 - Small natural gas generators.
- Vent and casing gas recovery:
 - Tank vapor recovery units.
 - Reciprocating compressor packages.
 - Scroll compressor units.

- Process heaters:
 - Air-to-fuel ratio control.
 - Combustion efficiency monitoring.
 - Flame failure detection.
- Waste heat recovery:
 - Reciprocating engine heat recovery.
 - Gas turbine heat recovery.

- Glycol dehydration:
 - Optimized glycol circulation rates.
 - Still column condenser and thermal oxidizer.

Study Tours

- Meetings with selected technology vendors in Calgary and Houston.
 - 1 to 2-hour presentations and demonstrations by each vendor followed by a question and answer period.
- Visits to the manufacturing facilities of selected vendors.
- Visits to oil and gas facilities where specific technologies of interest are in use.

Study Tour – Vendors' Office and Shop Visit

Study Tour – Oil and Gas Facilities Tour

Energy and GHG Management Guidelines - Purpose

- Guidance for verifiably reducing energy consumption and methane and non-methane emissions:
 - Opportunity identification and quantification techniques.
 - Where to focus efforts.
 - Practical control options.
 - Best management practices.
 - Ongoing performance monitoring.
 - Relevant regulatory requirements and performance.
 Standards.
 - Guidance on generating marketable carbon credits.

Next Steps

- Continued site audits.
- Additional training on data analysis methods.
- Rollout of the developed guidelines.
- CNPC evaluating the purchase of measurement and testing equipment.
- CNPC putting forward specific implementation project ideas for senior management approval.

Thank you

