Well Venting and Completion Emission Estimation

2009 Natural Gas Star Annual Workshop
Emission Estimation
Well Venting and Completion

• Difficult Sources to Characterize with Multiple Variables and Complex Physics
• Well Venting
 – Calculation Methodology
 – Pressure Transient Analysis
 – Orifice Measurement of Three Phase Flow
• Completion Flow-back
 – Pressure Drop Across Choke Flow Model
• None of These are “Accurate” in an Absolute Sense
• All of These are Accurate Enough to Enable Management
Well Venting - Calculation

- **Vent Volume** = \((\text{Vent Time} - 30 \text{ min}) \times (1/1410) \times \text{MCFD}\) + (Well Blowdown Volume)
 - Function of Vent Time, Normal Production Rate, and a Blow-Down Value
 - Limitations of Method
 - Post Blow-Down Value is Under the Assumption of Line Pressure
 - Does Not Account for Well-bore Fluid Column Weight or Volume

- **Well Blowdown Volume**

 VOLUME Calculation
 \[
 \text{corrected volume (mscf)} = \frac{\text{depth} \times 3.1416 \times (\text{diameter}/2 \times \text{diameter}/2) \times ((\text{tubing pressure} + \text{atmospheric pressure})/14.7) \times (520/(\text{temp}+460))/B19/1000}{10}
 \]

 (Please note: "z" factor changes with composition, pressure & temperature)

 - altitude (feet above sea level) = 7000
 - site atmospheric pressure (psia) = 11.3
 - shut-in tubing pressure (psig) = 500
 - temperature of gas in pipeline (F) = 75
 - well depth (ft) = 10000
 - diameter of production casing (inches) = 7
 - diameter of vessel (ft) = 0.58
 - compressibility (z) = 0.87
 - corrected volume (mscf) = 103.9
Venting Estimation
Pressure Analysis

- 17 Wells Studied
- Used Relation Between Pressure & Flow
- Utilized Relief Valve Calculation to Develop Linear Expression
- Choke Flow is Accounted Using this Method

Wamsutter Vent Estimates

\[y = 0.026x + 0.2756 \]

\[R^2 = 1 \]

Fluid Levels are from Surface Down

Separator

Pressure at Wellhead psig

MMSCFD of Gas

Series 1
Linear (Series 1)
Follow-up Pressure Analysis

- Same Pressure Data
- Evaluated Using “Visual Flow” and “Flarenet” Model Systems
- Results:
 - Flow up pipes ≤1.875” diameter:
 \[\text{Vent volume (MCF)} = 0.49 \times \text{time} + 8.5 \]
 - Flow up pipes with >1.875” diameter:
 \[\text{Vent volume (MCF)} = 1.5 \times \text{time} + 21 \]
- Enabled Funding for Automation Approach

Limitations
- Population Size and Representativeness
- Does Not Account for Reservoir Influx
Orifice Metering of Blowdown

- Quite Depleted Reservoir Energy Area
- 4 Distinct Production Horizons
 - Picture Cliff (Sand)
 - Mesa Verde (Sand)
 - Dakota (Sand)
 - Fruitland (Coal)
 - Dual Completed Comingled Wells
- Approximately 30 Wells In Study Population
 - Split Between Formation/Well Types
 - Orifice Meter Installed on Vent Line
 - Multiple Blowdown Runs per Well
 - 3 Phase Flow
- Limitations
 - 3 Phase Flow Accuracy
 - Representativeness of Study Population
Orifice Metering Results

- Formation Specific Vent Volume per Minute

<table>
<thead>
<tr>
<th>Vent Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dakota</td>
</tr>
<tr>
<td>Mesa Verde</td>
</tr>
<tr>
<td>Fruitland</td>
</tr>
<tr>
<td>Picture Cliff</td>
</tr>
<tr>
<td>Cmgl</td>
</tr>
</tbody>
</table>

- Minutes of Venting are Tracked – Automation Based
- Agreement With Other Data

<table>
<thead>
<tr>
<th>Company X Vent Rate Comparison</th>
<th>BP Vent Emissions Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well</td>
<td>Vent time</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>7.7</td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
Orifice Metering – Outcome

Southern San Juan Quarterly Vent Volumes

Automation Based Well/Vent Control
• ~2,300 Wells
• ~$12 MM Investment
• ~99% Vent Reduction
• >21 BCF Cumulative Volume Reduction
Completion Flow-back Estimation

- Post Frac Well Clean-up
 - Flared or Vented
- Volume Calculated Based on Pressure Drop Across Choke
- Very Complex Calculations
 - Subcritical and Critical Velocity Handling
 - Fluid Properties and Z Factor Handling
 - Thermodynamics Handling
- Various Models are Available; HySys; AspenTech; Etc. Type Models Include Modules for Choke Flow
- Conservation of Mass is the Fundamental Principle
- Limitations
 - “Slugging” Flow
 - Variable Composition Fluids
 - 2 Phase Flow w/Sand
 - Amount and Frequency of Data Capture and Handling
Completion Flow-back - Simple

Rawlins – Schellhardt Approach

- Dependent On Only Upstream Conditions

\[q_g = \frac{C_f (14.4 / P_{sc}) P_1}{1000 \sqrt{Y_g Z_1 T_1}} \]

- Limitations
 - Simplifying Assumptions

- \(Q_g \) = Gas Flow Rate
- \(C_f \) = Choke Flow Coefficient
- \(P_{sc} \) = Standard Pressure
- \(P_1 \) = Upstream Pressure; psia
- \(T_1 \) = Upstream Temperature, degrees Rankin
- \(Y_g \) = Gas Specific Gravity; (air=1.0)
- \(Z_1 \) = Gas Compressibility Factor at Upstream Conditions