Engineering an organotypic culture model of endocardial cushion morphogenesis

Kyle Grode

Office of Research and Development
National Health and Environmental Effects Laboratory

March 11th, 2017

Disclaimer

The information in this presentation has been reviewed and cleared for public dissemination according to EPA policy. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.
Congenital heart defects

- Most common type of birth defect.
- Affect 1 out of every 100 infants born in the United States.
- Leading cause of infant deaths due to birth defects.
- Genetic etiology is identified in less than 20% of cases.

Image credit: CDC
Cardiac developmental toxicity

- Due to maternal illness, drug, or environmental exposure.

- Association between exposure to organic solvents (e.g. TCE) and valve and septal defects.

- Endothelial-to-mesenchymal transition (EndMT) is sensitive to the effects of organic solvents.
EndMT during cushion morphogenesis

Embryonic heart

- OFT
- Myo
- Endo
- AVC

Endocardial cushion

- Blood flow (V → A)
- Endocardium
- Myocardium

Key behaviors:
- Mehanosensation
- ECM production

Contraction
- ECM production
EndMT during cushion morphogenesis

Embryonic heart

- Endo
- Myo
- OFT
- AVC
- CJ

Endocardial cushion

- Blood flow
- V → A
- Cardiac jelly

Key ECM components

- Hyaluronan
- Collagen
- Fibronectin
EndMT during cushion morphogenesis

Embryonic heart

Endocardial cushion

Blood flow

Key EndMT signals:
- VEGF
- TGF-β and BMP
- VEGF
EndMT during cushion morphogenesis

Embryonic heart

Endocardial cushion

V Blood flow A

Cardiac jelly

Mesenchyme

Key behaviors

Proliferation Differentiation ECM production
Project goal

To develop a human cell culture model of EndMT to study chemical effects on cardiac septation and valve development.
Key aspects to recapitulate in model

Endocardial cushion

- Blood flow

Cell types
- Endocardial
- Myocardial

Chemical signals
- TGF-β
- BMP
- VEGF

Mechanical signals
- Cardiac jelly
- Blood flow
Key phenotypic changes to measure in model

Endothelial phenotype

- Endothelial cells
 - VE-cadherin
 - PECAM-1
 - VEGFR2

Intermediate phenotypes

- **End**
- **Mes**

Mesenchymal phenotype

- Mesenchymal cells
 - Snail
 - α-SMA
 - Slug
 - Vimentin
 - Twist
 - Fibronectin
Initial approach

To induce endothelial cells cultured on fibronectin (FN)-coated plastic to undergo EndMT using myocardial-derived signals.
Primary and iPSC-derived endothelial cells
Experimental workflow for EndMT induction - 1

Cell seeding

- HUVEC
- hiPSC-EC
- HCAEC
- HMVEC

Serum starvation

1 day

Culture media

- Complete
- Reduced serum
- Reduced serum and lacking growth factors
- Basal

TGF-β1 treatment

5 days

Immunostaining

Cell markers

- VE-cadherin
- Snail
- PECAM-1
- Slug
- VEGFR2
- Twist
- α-SMA
- Vimentin
- SM22a
HMVEC undergo EndMT on FN-coated plastic
Revised approach

To induce endothelial cells cultured on hyaluronan (HA)-based hydrogel to undergo EndMT using myocardial-derived signals.
Experimental workflow for EndMT induction - II

Cell seeding
- Cell types: HUVEC, hiPSC-EC

Serum starvation
- Culture media: Reduced serum

TGF-β1 treatment
- Culture media: Reduced serum and lacking growth factors
- Duration: 5 days

Immunostaining
- Cell markers: VE-cadherin, SM22a
HUVEC undergo EndMT on HA-based hydrogel
Next steps in model development
Acknowledgments

Sid Hunter
Andrew Schwab
Mitch Rosen
Maria Hoopes
Susan Jeffay
Harriette Nichols

Virtual Tissue Models project

Tom Knudsen
Barbara Abbott
Nancy Baker
Cindy Wolf
Dave Belair
Kate Saili
Todd Zurlinden

Image credit: qthomasbower (https://www.flickr.com/photos/qthomasbower/3470650293/), under CC license
Questions?