

Comparison of Leak Detection and Measurement Methodologies

Presented by

Paul Tupper, Shell Global Solutions (US) Inc.

Joe Wilwerding, Sage Environmental Consulting

Why This Topic?

- Product Recovery Opportunities
- Process/Worker Safety
- Emissions Inventory Reporting Requirements
- Potential GHG Emission Reporting Requirements

Common Gas Processing Fugitive Emission Sources

- Potential Leak Sources
 - Compressor unit valves
 - Fuel and relief valves
 - Piping and vessel flanges
 - Online gas analyzers
 - Compressor packing and seals
 - Tank/thief hatches and vents
 - Pneumatic instrumentation

Leak Detection Methods

- Method 21 (Instrument)
- Optical Imaging (IR Camera)
- Methane LASER
- LEL/CGI Meters
- Other Methods
 - Snoop (Method
 - DIAL

Primary Emissions Estimations Methods

- Method 21-based Emission Factors/ Equations
- IR Camera Leak/No-leak Emission Factors
- High Flow Sampler Direct Measurement

What Is It ?

- Work practice regulation/fugitive emissions identification method
- Test leak interfaces on various types of plant processing equipment with hydrocarbon analyzer
- Did bagging studies to correlate volumetric (ppm) readings from analyzer to measured mass flow rates
- Used to set thresholds for repair under various regulations (NSPS, MACT, other)

- Estimate Emissions
 - Monitor equipment and collect screening value
 - Use 1995 Protocol for Estimating Equipment Leaks Table 2–10 for non-pegged screening values >0 ppm
 - Enter screening value into equation for specific equipment type monitored to get estimated mass emissions rate for leak

TABLE 2-10. PETROLEUM INDUSTRY LEAK RATE/SCREENING VALUE CORRELATIONS^a

Equipment type/service	Correlation ^{b, c}		
Valves/all	Leak rate $(kg/hr) = 2.29E-06 \times (SV)^{0.746}$		
Pump seals/all	Leak rate $(kg/hr) = 5.03E-05 \times (SV)^{0.610}$		
Othersd	Leak rate $(kg/hr) = 1.36E-05 \times (SV)^{0.589}$		
Connectors/all	Leak rate $(kg/hr) = 1.53E-06 \times (SV)^{0.735}$		
Flanges/all	Leak rate $(kg/hr) = 4.61E-06 \times (SV)^{0.703}$		
Open-ended lines/all	Leak rate $(kg/hr) = 2.20E-06 \times (SV)^{0.704}$		

Estimate Emissions (cont.)

For hydrocarbon analyzer pegged values, use Table 2-14

TABLE 2-14. 10,000 ppmv and 100,000 PPMV SCREENING VALUE PEGGED EMISSION RATES FOR THE PETROLEUM INDUSTRY

Equipment type/service	10,000 ppmv pegged emission rate (kg/hr/source) ^{a,b}	100,000 ppmv pegged emission rate (kg/hr/source) ^a
Valves/all	0.064	0.140
Pump seals/all	0.074	0.160 ^C
Others ^d /all	0.073	0.110
Connectors/all	0.028	0.030
Flanges/all	0.085	0.084
Open-ended lines/all	0.030	0.079

Estimate Emissions (cont.) For analyzer zero values, use Table 2-12

TABLE 2-12. DEFAULT-ZERO VALUES: PETROLEUM INDUSTRY

Equipment type/service	Default-zero emission rates ^{a,b} (kg/hr/source)
Valves/all	7.8E-06
Pump seals/all	2.4E-05
Others ^C /all	4.0E-06
Connectors/all	7.5E-06
Flanges/all	3.1E-07
Open-ended lines/all	2.0E-06

Other Method 21-Based Emissions Estimations Techniques

- Leak / No-Leak: Not Used Frequently With Today's Analyzer Technology
 - Use 10,000 ppm threshold to define leak and non-leak
- Use Average Factors Where Method 21 Is Not Practical /Possible Or Screening Value Data Is Not Available
 - Easiest, but usually results in highest calculated emissions
 - Today's plant fugitive emissions profile looks different than 30 years ago
 - Better technology equipment (material, packing and seals)
 - Better plant maintenance
 - More awareness on lost product

Gas Processing Plant Analysis

Total Process Units	6	2	Avg Tons VOC per Unit	
Equipment Type	Equipment Counts	Leak Percentage	Leak (>10k ppm)	No-Leak (<10k ppm)
Valves	87054	4.6%	57.2	0.28
Compressors	197	1.6%	0.042	0.003
Pumps	523	3.3%	0.24	0.034
PRVs	2085	0.8%	0.214	0.037
	57.7	0.4		
Total			58	.0

What Is It?

- Cameras Which Are 'Tuned' to Wavelengths in Which Energy is Absorbed by Hydrocarbons
- Best-demonstrated Field Technology is Passive IR
 FLIR GasFindIR
- Detection Sensitivities Much Higher Than Method 21
- Can Quickly Scan Larger Areas and Optically Confirm The Presence and Source of Large Leaks
- Can Be Fitted With Longer Lenses to Easily Spot Large Leaks from the Facility Perimeter

Estimate Emissions

AIR & WASTE MANAGEMENT A S S O C I A T I O N SDICE 1907

- Use AWMA Industry Technical Paper
 - ISSN:1047-3289 J. Air & Waste Manage. Assoc.
 57:1061-1070
- Not Adopted/Approved By EPA
- May Meet 'Best Available Data' Standards For Normal Emissions Reporting Requirements

- Estimate Emissions (cont.)
 - Studies Show Lower Emissions Than Standard Method 21 Emission Factor-based Emissions

Figure 5. Comparison of total emissions by component type using the OAG screening dataset for the hypothetical refinery.

Estimate Emissions (cont.)

 Use Table 3 Factors Based on Emissions Detection Sensitivity Threshold Used for Optical Imaging

Table 3. Leak/no-leak EFs derived from 1000 MC simulations using the OAG SVC percentages for each component type.

· · ·		1995 EPA	EF (g/hr/component) for Specified AWP Leak Definition (g/hr)			
Type	Туре	Factors ^a	3	6	30	60
Valves	No-leak Leak	0.88 160	0.019 55	0.043 73	0.17 140	0.27 200
Pumps	No-leak Leak	13 420	0.096	0.13	0.59 310	0.75 350
Flanges	No-leak Leak	0.06 38	0.0026 29	0.0041 45	0.0100 88	0.014
All Components	No-leak Leak	0.33 69	0.0070 56	0.014 75	0.051 150	0.081 210

Method 21 vs Optical Imaging

- Required To Implement an LDAR Program By Federal Regulations (NSPS, MACT, etc)?
- Now Can Use New AWP to Satisfy Regulatory Requirements
- Sage Cost-Effectiveness Study (2009 NPRA White Paper)

Method 21 vs Optical Imaging

- Sage Cost-Effectiveness Study (2009 NPRA White Paper)
 - AWP Program Percent Savings: Imaging Speed and Monitoring Frequency Sensitivity Analysis

	Ratio of Quarterly to Annual Inspections Required in 27,500 Valve LDAR Program						
Ratio of IR Camera							
Imaging Rate to a							
400-component/day							
M21 Monitoring Rate	0.1	0.25	0.5	1	2	5	10
1	-402%	-318%	-248%	-188%	-146%	-115%	-104%
2	-195%	-145%	-104%	-69%	-44%	-27%	-20%
3	-126%	-87%	-55%	-29%	-10%	3%	8%
4	-92%	-58%	-31%	-9%	7%	18%	22%
5	-71%	-41%	-17%	3%	17%	27%	30%
6	-57%	-30%	-7%	11%	24%	33%	36%
7	-47%	-21%	0%	17%	28%	37%	40%
8	-40%	-15%	5%	21%	32%	40%	43%
9	-34%	-10%	9%	24%	35%	43%	45%
10	-30%	-7%	12%	27%	37%	44%	47%

17

High Flow Sampling

What Is It?

- Originally Intended To Be a Powered Dilution
 Probe, But Really Is a Shortcut Bagging Technique
- How Used:
- High flow rate of air increases leak capture efficiency to near 100% (much like a laboratory hood)
- Probe end adapters improve the capture efficiency by blocking off wind

Target Emission Services, Canada

High Flow Sampling

- Calculate Emissions
 - The Flow Meter And Analyzer are Meant for Methane Service
 - Uses a catalytic oxidation/thermal conductivity detector
 - Calibrate to methane
 - 2 Samples are Taken at Different Flow Rates To Ensure Full (Within +/-10%) Capture of Leak
 - Leak Calculation Performed:
 - Leak = Flow x (Gas sample Gas background) x 10-2
 - Results reported in liters/min or scfm CH₄
 - Measureable leak rates from 0.05 to 8.00 scfm
 - Shell Has Developed an Adaptation Which Allows High Flow Sampling to be Used to Estimate VOC/HAP Emissions

 Mentioned as a Primary Method in O&G GHG Reporting

Conclusions

Comparison Chart of Leak Detection and Estimation Methodologies for Method 21, Optical Imaging & High Flow Sampling

		Optical	High Flow
LDAR Parameter	Method 21	Imaging	Sampling
Equipment Cost	Low	High	Medium
Monitoring Speed	Low	High	Very low
Overall Cost-Effectiveness for			
Detecting Leaks	Medium	Medium	Low
Ease of Estimating Emissions*	High	High	High
		Medium to	High for Sampled
Accuracy of Estimated Emissions	Medium	Low	Components
Acceptance of Emissions			
Estimation Methods	High	TBD	High

* All methods require allocate of estimated emissions over time if more than one monitoring/sampling event exists.

Differential Absorption Light Detection and Ranging (DIAL)

DIAL Technology Implications

Alberta Refinery Study

Table 8: Comparison of VOC Estimates and DIAL Measurements

	NPRI Report 2004 (tonnes/y)	DIAL C ₂₊ Measurements (tonnes/y)
stack or point release	98.69	not measured
storage or handling	153.0	5,090 ¹
fugitive releases	407.1	4,880
spills	11.5	not measured
Total	670.4	9,970

1) emissions from tanks vary with wind speed and other factors

DIAL Technology Implications (cont)

- Flares and Vapor Combustion Units Also Being Evaluated
- City Of Houston Has Been Given an EPA Grant To Use DIAL For Further Analysis of Fugitive Emissions
- EPA Is Evaluating Data Collected to Date For Comparison To Current Emission Factors

Questions?

Please Contact:

Shell Global Solutions (US) Inc. Paul Tupper +1 (281) 544-7757 paul.tupper@shell.com

Sage Environmental Consulting Joe Wilwerding +1 (303) 799–0105 joew@sageenvironmental.com