SlipStream™ at
PETRO-CANADA

Natural Gas STAR Program
— October 23, 2007

Philip Croteau, P.Eng
Energy Efficiency Engineer
Petro-Canada Oil and Gas
Installation

SlipStream™ Control Valve

SlipStream™ Flow Meter

SlipStream™ shut off valve
Installation

- 2” pipe for vent gas from Unit 1 to Unit 2
- Manual bypass and block & bleed valves for vent gases
- Pipe, control valve, and flow measurement sensor for SlipStream™ gas
- Connection to intake air duct
- SlipStream™ controller

SlipStream™ gas addition, installation to intake air
To Air Filter
Air / Fuel Gas to Air Filter

Warning sign added due to vent gas in air pipe not being “normal”
Unit 2 —
Waukesha 3524GSI with REMVue® Rich-to-
Lean Conversion and SlipStream™
SlipStream™ Results

- Enabled Sept. 6, 2007
- Gas previously vented now used for engine fuel
- Production increased by 0.45 e3m3/day ≈ 16 mscf/d
- Increased gas sales revenue > $40,000 per year
SlipStream™ Results

- Captured vent gases = 10% of total engine fuel
- Less requirement for fuel increases net production from site
- Site CO₂(e) reduction rate = 3,000 tonnes (3,360 tons) per year
- Equivalent to ~600 cars off road for 1 year (5 tons/car/yr)
SlipStream™ Results

- Gas source abruptly turned on, then off
- Minimal engine RPM change
- Full fugitive flow turned off abruptly, then on abruptly
- Governor SP = 1200 RPM
SlipStream™ Results
- Site Vented Methane Escape Reduction

Petro-Canada 06-28 Results
Site Methane Escape

Mscf/d

Original
One Engine R to L
One engine R to L + Slipstream
Both R to L + Slipstream

R to L is a Rich to Lean conversion

22.8 Mscf/d
SlipStream™ Results
- GHG REDUCTION

Petro-Canada 06-28 Results
September 2007

A comparison of the original compared to the present.
There is a potential further improvement with the rich-to-lean conversion of the second engine.

Based on observed 85% load on each unit
SlipStream™ Results — Economics

- Unit HP: 840 BHP
- REMVue® R to L Fuel savings: 15% (8-18%, 35%)
- Annual Maint Savings: $20,000
- Gas Price: $6.64/Mscf
- SlipStream™ Amount: 12%
- GHG Credit: $13/ton
- Daily Production: 6.4 MMscfd
- Heating Value: 1,000 BTU/scf
- Production Increase: 0%
- REMVue® AFR Cost: $80,000
- REMVue® SlipStream™ Increment: $30,000
SlipStream™ Results — Economics

REMVue Project ROI Economics

- GHG Value
- Production increase
- Maintenance savings
- Slipstream Fuel
- Fuel savings
- REMVue Cost

Months

US Dollars

- $250,000
- $200,000
- $150,000
- $100,000
- $50,000
- $0
- $50,000
- $100,000
- $150,000
- $200,000
- $250,000
- $300,000

REM Technology Inc.
Impact for Petro-Canada

- 164 compressors, 184,000 HP at 71% utilization
- Approximately 50% of the fleet is Sweet Service
- Several units with gas engine drivers have been converted from rich burn combustion to lean burn using REMVue® AFR

- Estimate 90% use instrument gas
- Estimate 80% are reciprocating compressors, offering packing vent gas recovery
- Estimate 50% sites with additional sources of vented gas, glycol dehy reboilers, tanks
Potential for Petro-Canada

Petro-Canada Oil and Gas is clearly in a developmental role of evaluating this new technology.

We will continue to monitor the performance and benefits of the project and assess its applicability to other sites (sweet gas applications, packing vents, instrument gas).

We are pleased to have taken the opportunity to participate in the demonstration project. We will continue to work closely with REM Technology in order that we all continue to develop and share in the benefits.
Summary

- Petro-Canada Overview
  - One of the larger gas producers in Canada

- SlipStream™ Technology Overview
  - Vented gases free; enhances net production

- SlipStream™ Pilot Details
  - Utilizing recovering vent gases from 2 units into one machine
  - Pilot successful

- Results
  - Production increased by >$40,000 per year — independent of site output

- Petro-Canada Plans
  - Implementation of REMVue® and SlipStream™ feeds the bottom line and reduces GHG’s
Thank You!
Getting a free boost!
SlipStream™ is the REM Technology product* designed for utilizing *vented hydrocarbons* as a supplementary fuel source for natural gas engines.

The product is currently in use at a Petro-Canada gas compression site.

*Patents Pending*
Presentation Outline

- Petro-Canada Overview
- PTAC Top 5 Priorities
- SlipStream™ Technology Overview
- SlipStream™ Pilot Details
- Results
- Petro-Canada Plans
Petro-Canada Overview

We are a substantially sized integrated oil company with five base business units:

- Canadian East Coast Oil
- Refining and Marketing
- Alberta Oil Sands
- International
- North American Natural Gas

Our North American Natural Gas (NANG) BU explores for and produces natural gas, crude oil and natural gas liquids (NGL) in Western Canada and the U.S. Rockies. We also market natural gas in North America and have established resources in the Mackenzie Delta/Corridor and land holdings in Alaska.

In 2006, we produced 616 MMcf/d of natural gas and 14,200 b/d of crude oil and NGL.
Petro-Canada Overview

NANG Inlet Compression Fleet:

- 164 compressors, 184,000 HP at 71% utilization
- Approximately 50% of the fleet is Sweet Service
- Several units with gas engine drivers have been converted from rich burn combustion to lean burn using REM Vue® AFR

Why efficiency is important at Petro-Canada:

- Improves facility economics, while reducing emissions
- Can improve facility performance and reliability, through measurement and monitoring of initiatives
- Initiatives please the regulators and environmental groups
- Employees feel pride in the initiatives and successes!
Focus - Energy Efficiency Activities

- **Top 5 EE Targets** set out by PTAC (Clearstone)

- **Venting** – being challenged through measurement, low bleed instruments, installation of instrument air vs. using fuel gas, solar powered chemical injection pumps. REMVue® SlipStream™

- **Reciprocating Engines** – REMVue® Air/Fuel Ratio (AFR) Control, JWC waste heat recovery, compressor re-cylindering and rationalization.

- **Heaters and Boilers** – new O2 Analyzers proposed for fired equipment. Also the PTAC study on Lineheater/Fire Tube Immersion Heaters and purchase of new handheld combustion analyzers. Datalogging and increase servicing of lineheaters.

- **Flaring and Incineration** – being challenged through flare measurement and stack top temp reductions and O2 control in incineration.

- **Fugitive Leaks** – Leak Detection and Repair (LDAR – DI&M) with FLIR GasFinderIR camera, demonstration of Spectrasyne DIAL laser.

  - *we’re after them all!*
SlipStream™ Technology

Using Vented Hydrocarbons as Engine Fuel

- Vented HC gas into engine intake
- Can be diluted with air or undiluted
- Suitable for carbureted engines
- Does not require vented gas compression
- Vented fuel that is recovered can be considered “free” (fuel for a 1200 HP engine at $6/Mscf costs over $500,000/y)
- Using SlipStream™, up to 50% of engine fuel can come from the vented sources
**SlipStream™ Technology**

**Sources of Vented Gases**

- Instrument gas vents
- Compressor packing leaks
- I/Ps and pneumatic devices
- Gas driven pumps
- Flash gas from oil facilities
- Flange leaks
- Dehydrators
- Engine starting, purging, blow-downs
- Fuel Gas dryers
- Crankcases
Site measurements showed a total of ~13 scf/m plus periodic bursts of >100 scf/m.

Engine fuel consumption at 85% load = 110 scf/m = 160 Mscf/d
SlipStream™ Pyramid

- Up to an additional 10-30-50% more fuel savings
- Substantial GHG savings

REM Vue®

Air-Fuel Ratio
- Stoichiometric
- Lean Burn
- Rich-to-Lean

- Up to 25% fuel savings
- Increased runtime
- Increased throughput
- Reduced maintenance
- Reduced GHG
Natural Gas Engine Efficiency Improvement

REMVue® Rich-to-Lean Conversion

What is the Rich-to-Lean Conversion?
- A process in which excess air is added to the air-fuel mixture of a rich burn or stoichiometric engine

What are the benefits?
- Reduced engine emissions
- Improved fuel conversion efficiency
- Lower operating temperatures
- More natural gas gets to market instead of burned in the engine
Site Details

- Two Waukesha 3524GSI engines (840 HP at 1200 RPM)
  - each driving a Sullair PC40L screw compressor
- Suction pressure = 140 – 210 kPag (20–30 psig)
- Discharge pressure = 700 – 1200 kPag (100–175 psig)
- Fuel gas used for Instrument drive gas
Site Details

- Instrument gas used on both engines
  - Cost of site air compressor and piping was estimated at $150K and was not installed during original construction.
  - Primary sources of vented gases are the cactus dryers and instrumentation
  - Units equipped with “low bleed” pneumatic devices

- All vent gases (except engine starting and blow-down) previously collected to a single vent per unit

- Unit 1 measured flow = 7.1 scf/m
- Unit 2 measured vent flow = 6.2 scf/m
- Periodic (1 to 2 minutes) flows of <100 scf/m from pre/post-lube and compressor lubrication pumps

- Unit 1 and 2 vent gases combined for SlipStream™ on Unit 2
Unit 2 REMVue® Control Panel for the Waukesha 3524GSI

With integrated Air-Fuel Ratio, Safety Shutdown, Process Control and SlipStream™
Installation

- SlipStream™ Control Valve
- SlipStream™ Flow Meter
- SlipStream™ shut off valve
Installation

- 2” pipe for vent gas from Unit 1 to Unit 2
- Manual bypass and block & bleed valves for vent gases
- Pipe, control valve, and flow measurement sensor for SlipStream™ gas
- Connection to intake air duct
- SlipStream™ controller

SlipStream™ gas addition, installation to intake air

To Air Filter
Air / Fuel Gas to Air Filter

Warning sign added due to vent gas in air pipe not being “normal”
Unit 2 — Waukesha 3524GSI with REMVue® Rich-to-Lean Conversion and SlipStream™
SlipStream™ Results

- Enabled Sept. 6, 2007
- Gas previously vented now used for engine fuel
- Production increased by 0.45 e3m3/day ≈ 16 mscf/d
- Increased gas sales revenue > $40,000 per year
SlipStream™ Results

- Captured vent gases = 10% of total engine fuel
- Less requirement for fuel increases net production from site
- Site CO₂(e) reduction rate = 3,000 tonnes (3,360 tons) per year
- Equivalent to ~600 cars off road for 1 year (5 tons/car/yr)
SlipStream™ Results

- Gas source abruptly turned on, then off
- Minimal engine RPM change
- Full fugitive flow turned off abruptly, then on abruptly
- Governor SP = 1200 RPM
SlipStream™ Results
- Site Vented Methane Escape Reduction

Petro-Canada 06-28 Results
Site Methane Escape

R to L is a Rich to Lean conversion

<table>
<thead>
<tr>
<th></th>
<th>Mscf/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>35</td>
</tr>
<tr>
<td>One Engine R to L</td>
<td>25</td>
</tr>
<tr>
<td>One engine R to L + Slipstream</td>
<td>5.2</td>
</tr>
<tr>
<td>Both R to L + Slipstream</td>
<td>0.0</td>
</tr>
</tbody>
</table>

22.8 Mscf/d
SlipStream™ Results
- GHG REDUCTION

Petro-Canada 06-28 Results
September 2007

Based on observed 85% load on each unit

A comparison of the original compared to the present.

There is a potential further improvement with the rich-to-lean conversion of the second engine.
SlipStream™ Results — Economics

- Unit HP: 840 BHP
- REMVue® R to L Fuel savings: 15% (8-18%, 35%)
- Annual Maint Savings: $20,000
- Gas Price: $6.64/Mscf
- SlipStream™ Amount: 12%
- GHG Credit: $13/ton
- Daily Production: 6.4 MMscfd
- Heating Value: 1,000 BTU/scf
- Production Increase: 0%
- REMVue® AFR Cost: $80,000
- REMVue® SlipStream™ Increment: $30,000
SlipStream™ Results — Economics

REMVue Project ROI Economics

- GHG Value
- Production increase
- Maintenance savings
- Slipstream Fuel
- Fuel savings
- REMVue Cost

US Dollars

$250,000
$200,000
$150,000
$100,000
$50,000
$0
-$50,000
-$100,000
-$150,000

Months

2 4 6 8 10 12 14 16 18 20 22 24

-150,000 -100,000 -$50,000 $0 $50,000 $100,000 $150,000 $200,000 $250,000

$250,000

2 4 6 8 10 12 14 16 18 20 22 24

-150,000 -100,000 -$50,000 $0 $50,000 $100,000 $150,000 $200,000 $250,000

2 4 6 8 10 12 14 16 18 20 22 24

-150,000 -100,000 -$50,000 $0 $50,000 $100,000 $150,000 $200,000 $250,000

14TH ANNUAL NATURAL GAS STAR IMPLEMENTATION WORKSHOP
Impact for Petro-Canada

- 164 compressors, 184,000 HP at 71% utilization
- Approximately 50% of the fleet is Sweet Service
- Several units with gas engine drivers have been converted from rich burn combustion to lean burn using REMVue® AFR
  - Estimate 90% use instrument gas
  - Estimate 80% are reciprocating compressors, offering packing vent gas recovery
  - Estimate 50% sites with additional sources of vented gas, glycol dehy reboilers, tanks
Potential for Petro-Canada

- Petro-Canada Oil and Gas is clearly in a developmental role of evaluating this new technology.

- We will continue to monitor the performance and benefits of the project and assess its applicability to other sites (sweet gas applications, packing vents, instrument gas).

- We are pleased to have taken the opportunity to participate in the demonstration project. We will continue to work closely with REM Technology in order that we all continue to develop and share in the benefits.
Summary

- **Petro-Canada Overview**
  - One of the larger gas producers in Canada

- **SlipStream™ Technology Overview**
  - Vented gases free; enhances net production

- **SlipStream™ Pilot Details**
  - Utilizing recovering vent gases from 2 units into one machine
  - Pilot successful

- **Results**
  - Production increased by >$40,000 per year — independent of site output

- **Petro-Canada Plans**
  - Implementation of REMVue® and SlipStream™ feeds the bottom line and reduces GHG’s
Thank You!