

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Non-targeted method for measuring multiple chemical exposures among pregnant women

Tracey J. Woodruff, PhD, MPH, Roy Gerona, PHD NIEHS, February 1, 2015

... we must shift ... burden of proof from the individual health care provider and the consumer to the manufacturers **before** chemicals arereleased into the environment." Dr. Jeanne Conry, President **ACOG 2013**

Linda C. Giudice, MD, PhD, President American Society for Reproductive Medicine and Jeanne C. Conry, MD, PhD, President, American Congress of Obstetricians and Gynecologists – October 2013, Washington, DC

Since PRHE's inception, we have seen great progress, and 2014 is no different. We know there is more to do in our overall goal towards an environment free of harmful chemicals—but we are proud of our work so far.

> Tracey Woodruff, PhD, MPH, Professor and Director, UCSF PRHE

PEEC Faculty Development Investigator Roy Gerona and PRHE Director Tracey Woodruff

Saunak Sen UCSF Associate Professor

Rachel Morello-Frosch UC Berkeley Professor

Industrial Chemicals in Virtually Every U.S. Pregnant Woman

University of California San Francisco

Program on Reproductive

Majority of Chemicals Not Tested Before Entering the Market

University of

University of California San Francisco

Program on Reproductive Health and the Environmen

Decades

Linking Science to Action

The Exposome Approach

The Exposome Approach

RADIATION

STRESS

LIFE-STYLE

INFECTIONS

DRUGS

DIET

POLLUTION

External environment

Improves children's health by identifying and preventing harmful environmental chemical exposures that occur during pregnancy.

Figure 1. The Double Jeopardy of Prenatal Exposures to Chemical and Social Stressors That Affect Fetal Growth

Chemicals in our Body Study

- Information on demographics, stress, chemical exposure (ex: work, neighborhood, self-perceived stress, food security)
- Biological specimens
 - Maternal blood (2nd trimester)
 - Maternal and cord blood at delivery (3rd trimester)

Specimen	Collaborator		
PBDEs	June-Soo Park		
(serum)			
PFCs	Roy Gerona		
(serum)			
CRH	Mike McMaster		
(plasma)	Susan Fisher		
Telomeres	Elizabeth		
(whole	Blackburn		
blood)			

Pregnancy Exposures to Environmental Chemicals Children's Center

- Pioneer a non-targeted screening method for Environmental Organic Acids (EOAs) LC-QTOF/MS to screen for multiple chemical exposures in pregnant women
- Use targeted methods to confirm the presence and identify levels of select EOAs detected through our nontargeted screen.
- Assess differences in exposure to six EOAs by race/ethnicity and socioeconomic status (SES)

Study Design

Analytical Platform:

Quadruple Time-of-Flight Mass Spectrometer (LC-QTOF/MS) Agilent LC 1260-QTOF 6550

Study Population and biospecimen: Serum samples from pregnant women. N = 200

Chemicals of Interest:

Environmental Organic Acids (EOAs), such as phenols, phthalates, acidic pesticides

CiOB 2 – Demographics (N = 88)

Moffitt Long Hospital=41

Non-Targeted Analytical Platform

Time-of-Flight Mass Spectrometer (TOF MS)

Separate molecules by ionization, and sorts by mass (molecular weight, MW).

Usually used in tandem with chromatography (LC or GC)

Mass Range: 75-600 amu (TOF); 75-600 amu (MS/MS) LOD Range: 0.1 ng/mL – 10 ng/mL

TOF MS – Run Modes

Goal is to capture full spectrum of chemicals, both positive, negative, and non-polar

Ion Source and Chemical Coverage

Matching QTOF-LC/MS output to Chemisome database

Chemisome Database

Priority:

- 1. High production volume & pesticides
- 3. Government priority

Sources:

N = 5,221

(TOF measurable n = 3,135)

Name	• CAS	Chemicalclass	 Formula 	-1
zirconium dioxide	1314-23-4		ZrO2	
zinc selenite	13597-46-1		ZnSeO3	
zinc sulphide	1314-98-3		ZnS	
tungsten trioxide	1314-35-8		W03	
tungsten carbide	12070-12-1		WC	
Vanadium pentoxide (orthorhombic crystalline	form 1314-62-1		V205	
divanadium trioxide	1314-34-7		V2O3	
titanium oxide sulphate	13825-74-6		TIOSO4	
dichloride titanium oxide	13780-39-7		TIOC12	
Titanium dioxide	13463-67-7		TIO2	
Titanium	7440-32-6	Metal	T122	0
Thorium dioxide	1314-20-1		ThO2	
strontium sulphide	1314-96-1		SrS	
strontium carbonate	1633-05-2		SrCO3	
Sulfite liquors and Cooking liquors, spent	66071-92-9	Mixtures	SO3	
tin sulphide	1314-95-0		SnS	
Silicon dioxide	7631+86+9333		SiO2	0
Selenium sulfide	7446-34-6		SeS	0
selenium dioxide	7446-08-4		SeO2	
Cocamide diethanolamine	68603-42-9		RCON(C2H2OH)2	0
phosphine	7803-51-2		PH3	
lead titanium trioxide	12060-00-3		PbTiO3	
lead telluride	1314-91-6		PbTe	
lead selenide	12069-00-0		PbSe	
lead sulphide	1314-87-0		PbS	
lead monoxide	1317-36-8		PbO	
lead diazide	13424-46-9		PbN6	
lead sulfochromate yellow	1344-37-2		PbCrO4	
orange lead	1314-41-6		Pb3O4	
Lead	7439-92-1	Metal	Pb	
diphosphorus pentasulphide	1314-80-3		P4S10	
diphosphorus pentaoxide	1314-56-3		P2O5	
zinc oxide	1314-13-2		Ozn	
pentalead tetraoxide sulphate	12065-90-6		O8Pb5S	
zinc bis(dihydrogen phosphate)	13598-37-3		O8P2Zn	
tetralead trioxide sulphate	12202-17-4		O7Pb4S	
I and titanium streamlum autida	10606 01 0		OF DETUTE	

Environmental Organic Acids

Results – EOA hits by individual

Priorities

- Use in everyday consumer products and high volume use
- Identified in at least 80% of study participants
- Novel chemical exposures not measured in large biomonitoring studies or in pregnant women.

Targeted analysis candidate chemicals

Mono-n-pentyl phthalate

(Di-n-pentyl phthalate metabolite plasticizers, PVCs)

No production volume information on DnPP

Benzophenone-1

(UV absorber) National Production Volume (IUR 2006) < 500,000 lbs

Bisphenol-S

(Bisphenol-A substitute)

BPA substitute, confirmed by reference standards

Results – Targeted analysis

Zota, Calafat & Woodruff EHP 2014

2005-06 NHANES sampling cycle

2007-08

2009-10

2001-02

2003-04

Study Personnel

Project 2

- PI: Tracey Woodruff, PhD, MPH
- Collaborator: Roy Gerona, PhD, Saunak Sen, PhD, Rachel Morello-Frosch PhD, MPH (UC Berkeley)
- Study Assistants:

Jackie Schwartz, MPH, Cheryl Godwin de Medina, BS, Priscila Valdez Lopez, BS, Cynthia Melgoza Canchola, MPH, Matt Friesen, BS, Thomas Lin, BS

Summary

- 1. ~50 participants recruited
- 2. Goal to add cord serums
- 3. Need identification of sources
- 4. Move toward prevention

Information for Families

Resources for health care professionals to promote environmental health

Resources to help your family reduce their

Mission: To create a healthier environment for human reproduction and

> *velopment* by advancing scientific inquiry, clinical care,

Research

alth policies that prevent

Resources to advance science-based policy solutions.

our