Agent Based Modeling of Neurovascular Unit Development

Todd J. Zurlinden, Katerine S. Saili, Thomas B. Knudsen

National Center for Computational Toxicology
Office of Research and Development
Research Triangle Park, NC

Horizons and Challenges in Organotypic Culture Models for Predictive Toxicology
Society of Toxicology Satellite Session
March 11, 2017

This work does not necessarily reflect EPA policy
U.S. Environmental Protection Agency
• **Problem:** Multiscale modeling approach will improve toxicity predictions for chemicals from organotypic culture models

• **Hypothesis:** Use of computer models that recapitulate morphogenesis will improve analytically and theoretically based predictions of developmental toxicity.

• **Integration:** A model system which recapitulates the biology, and leverages both knowledge of cell-cell interactions and the available high-throughput *in vitro* profiling data
Computational neurovascular unit (cNVU) focus

- Vascularization of the neuroepithelium results from angiogenesis.
 - Sprouting from the perineural vascular plexus.

- Microglia, resident macrophages of the brain, meditate neurogenic and angiogenic signaling.
 - Are they mediators of developmental toxicity?

- A cellular-dynamic computational systems model of microglial function can improve our ability to understand and predict NVU DevTox.

Agent-Based Modeling and Simulation (ABMS): a heuristic approach to reconstruct tissue dynamics using knowledge of biochemistry and cell-by-cell interactions.

- Program each agent (cell) to follow specific rules
- Interactions of agents gives rise to emergent features (phenotypic outcomes)
- Qualify emergent feature with experimentally derived phenotypes (tissue level morphology)
- Make toxicodynamic predictions by integrating biological knowledge & high throughput data

CompuCell3D*: open source modeling environment

- Rules (steppables) for distinct cell behaviors (growth, proliferation, apoptosis, differentiation, polarization, motility, ECM, signal secretion, …);
- Rules coded in Python for cell-autonomous ‘agents’ that interact in shared microenvironment and self-organize into emergent phenotypes.

*James Glazier and colleagues, Indiana University
• **Goal**: build a cellular ABM that simulates microglia-mediated angiogenesis and neurogenesis.

• **Simulate**: exposure to ToxCast chemicals predicted to be neurovascular disruptors
 - Data from neurogenesis (ArunA) and angiogenesis (Vala)

• **Qualify**: simulation outputs against cell-based angiogenic and neurogenic assays.
 - proliferation, migration, tubulogenesis, branching, etc.
Cell-signaling network

Stalk Cell

Tip Cell

NICD

dll4

notch

NICD

dll4

vegfr3

vegfr2

CSF1

Migration (ventricle)

Anastomoses

VEGF-C

Microglia

NICD < Threshold

Tip Cell

Neuroepithelium

VEGF-A

cs1r
1. Vessel Stabilization

- Neuroepithelium
- Stalk Cell
- Tip Cell
- dll4
- notch
- NICD
- VEGF-A
- vegfr2
- vegfr3
- CSF1
- cs1r
- VEGF-C
- Migration (ventricle)
- Anastomoses

NICD < Threshold Tip Cell
1. Vessel Stabilization

Neuroepithelium

Tip Cell

NICD < Threshold

Tip Cell

dll4

notch

vegfr2

CSF1

vegfr3

NICD

tomoses

VEGF-A

 dll4

notch

NICD
2. Microglia Anastomosis

- Neuroepithelium

- Stalk Cell
 - dll4
 - NICD
 - notch

- Tip Cell
 - dll4
 - notch
 - NICD
 - vegfr2
 - vegfr3
 - CSF1

- Migration (ventricle)
- Anastomosis
 - CSF1
 - vegfr3
 - dll4
 - notch
 - NICD < Threshold
 - Tip Cell
 - VEGF-C
 - Microglia
cNVU boundary conditions

VEGF-A (NPC gradient)

Perineural Plexus
Neuroepithelium
Ventricular Surface

Tata et al., PNAS, 2016
Vascularization without microglia

Perineural Plexus

Neuroepithelium

Ventricular Surface
Embryonic vasculature
Toxicity-specific predictions

• Utilize concentration-response assays for Csf1r in ToxCast
 – Csf1r inhibition tied directly to microglia abundance (growth/survival)
 – *in vivo* studies demonstrate a decrease in vascular branching in the absence of microglia.

Rymo et al., PLoS one, 2011

Csf1^{op/op}: microglia “knockout”

mouse retina
Quantitative response: microglia abundance

2x 1.5x 1x (prototype) 0.8x

0.6x 0.4x 0.2x 0x
Towards a functional cNVU model

• Preliminary description of the role of microglial-endothelial interactions

• Next steps – include more cell types and features to better recapitulate NVU development
 – Capture neuroprogenitor cell NVU contribution
 – Incorporate 3D dynamics and vascular flow
 – Integrate available biological knowledge with HTS ToxCast data to simulate NVU developmental processes and toxicities

Brown et al., *Biomicrofluidics*. 2013
Acknowledgements

• Tom Knudsen (mentor)
• Kate Saili (NCCT)
• Sid Hunter (NHEERL-ISTD)
• Andrew Schwab (NHEERL-ISTD)
• Nancy Baker (Leidos)
• Richard Spencer (Leidos-EMVL)
• Florent Ginhoux (A*STAR)
• Aymeric Silvan (A*STAR)
• Virtual Tissue Modeling Group
Thank You

Questions?