EVALUATION OF MOBILE SOURCE EMISSIONS AND TRENDS USING DETAILED CHEMICAL AND PHYSICAL MEASUREMENTS

Drew Gentner
Department of Chemical and Environmental Engineering
Yale University

Robert Harley, Allen Goldstein
Department of Civil and Environmental Engineering
University of California, Berkeley
Acknowledgments

- UC Berkeley: Tim Dallmann, Arthur Chan, Gabriel Isaacman, Steven DeMartini, Brian McDonald, and Dave Worton.

- Aerodyne: Ezra Wood, Tim Onasch, Scott Herndon, John Franklin, Ed Fortner, Doug Worsnop

- LBNL: Tom Kirchstetter, Kevin Wilson

- Research funding:
 - US Environmental Protection Agency (Grant # RD834553)
A Highway Tunnel Laboratory

Vehicle emissions measured at Caldecott tunnel in SF Bay area:

West Fan Room

Fresh Air Duct

Exhaust Duct

Traffic Bore

East Fan Room

4% uphill grade

1 km
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Tunnel Measurement Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>Infrared absorption</td>
</tr>
<tr>
<td>Nitric Oxide (NO)</td>
<td>Chemiluminescence</td>
</tr>
<tr>
<td>NO_2, CO, HCHO, C$_2$H$_4$</td>
<td>Tunable infrared laser spectroscopy</td>
</tr>
<tr>
<td>PM mass & composition</td>
<td>Aerosol mass spectrometer</td>
</tr>
<tr>
<td>Black Carbon (BC)</td>
<td>Aethalometer</td>
</tr>
<tr>
<td>Light absorption & scattering (532 nm)</td>
<td>Photoacoustic spectrometer and reciprocal nephelometer</td>
</tr>
<tr>
<td>Light absorption (630 nm)</td>
<td>Multi-angle absorption photometer</td>
</tr>
<tr>
<td>Light extinction (630 nm)</td>
<td>Cavity attenuation phase-shift</td>
</tr>
</tbody>
</table>
On-Road NO$_x$ Emission Factor Trends

McDonald et al. (JGR 2012)
Fuel Sales Trends, 1990-2010

McDonald et al. (JGR 2012)
National On-Road NO$_x$ Emission Trends

McDonald et al. (JGR 2012)
Aerosol Mass Spectrometer (SP-AMS)

- Heated tungsten vaporizer combined with laser to vaporize organic \textit{and} refractory aerosol (e.g., soot)
- Both vaporizers on at all times
- Operate in fast MS mode to capture individual truck plumes

Onasch et al. (AS&T 2012)
Sample AMS Data – Diesel Truck Plume

![Sample AMS Data](image)
Capturing Individual Truck Exhaust Plumes

- Chemical speciation of exhaust particles, including trace elements
- Independent measurements of NO and NO₂
- Peak in CO₂ denotes capture of exhaust plume

Graph showing the concentration of various pollutants over time.
HDDT Emission Factor Distributions

Dallmann et al. (ACP 2014)
Cumulative Contributions to Total Emissions from Heavy-Duty Diesel Trucks

Dallmann et al. (ES&T 2012)
OA mass spectra similar for Gasoline and Diesel

Dallmann et al. (ACP 2014)
GC-MS Analysis of Organic Compounds

Previous GC-MS analyses of vehicular OA emissions typically identify only a small fraction (~5%) of total mass.

We analyzed tunnel OA and liquid diesel fuel by photo-ionization mass spectrometry using vacuum ultraviolet (VUV) photons instead of electron ionization (EI).

Contacts: Allen Goldstein (UCB) & Kevin Wilson (Lawrence Berkeley National Lab)
Electron Ionization (EI) versus Vacuum Ultraviolet (VUV) Ionization

n-eicosane (C_{20}H_{42})

EI
70 eV

n-triacontane (C_{30}H_{62})

VUV
10.5 eV
Sample GC-MS Results for Tunnel OA

Worton et al. (ES&T 2014)
Chemical Composition of Tunnel OA

- PAHs ($N_{DBE} = 7+$)
- hexacyclic alkanes ($N_{DBE} = 6$)
- Extrapolated mass from EI

'light duty' bore

'mixed' bore

lubricating oil

Worton et al. (ES&T 2014)
Diesel Fuel Speciation
(Gentner et al. PNAS 2012)

![Graph showing the speciation of diesel fuel.](image)

- **Total Aliphatic:** 75%
- **Total Aromatic:** 25%
- PAHs: 4%
- Aromatics: 19%
- Tricycloalkanes: 5%
- Bicycloalkanes: 13%
- Cycloalkanes: 21%
- Alkanes: 30%

Carbon Number

Diesel Fuel [WtC%]
Gasoline and Diesel and SOA Yields
(Gentner et al. PNAS 2012)
Diesel Contribution to On-Road Emissions

Stabilized Running Emissions – as of 2010

Dallmann et al. (ES&T 2013)
A review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions

Summarizes evidence, research needs, and discrepancies between top-down and bottom-up SOA estimation methods

Analyzes key inconsistencies between molecular-level understanding and regional observations

Discusses the effect of emission controls (e.g. exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions

Key takeaways: Urban secondary organic aerosol formation from gasoline and diesel vehicle emissions

- Both gasoline and diesel vehicles are responsible for some urban SOA.
- The SOA yield of diesel exhaust in chamber studies is consistent with the SOA yield predicted from fuel components.
- SOA yields for older gasoline vehicles (pre-LEV, before 1994) are also consistent, but newer (LEV1+2) have greater observed SOA yields despite lower VOC (and IVOC) emission factors (w/ unidentified precursors).
- SOA from diesel vehicles is due to mix of aromatic AND aliphatic precursors. All explainable gasoline SOA is from aromatics.
- Aftertreatment of diesel exhaust: Diesel particulate filters (DPFs) with oxidation catalysts reduce SOA precursor emissions.
- There is no weekday/weekend variation in SOA in greater Los Angeles, so diesel trucks are determined to not be dominant contributors.
Future research priorities

Emissions
- Real-world emissions: Realistic vehicle operating modes/cycles, and the lifetime efficacy of exhaust aftertreatment technologies
- Characterize the unspeciated ~30% of LEV-1/2 gasoline emissions
- Magnitude and composition of VOC emissions and SOA yields from emerging LEV-3 vehicles (starting 2017)
- Emerging fuels and fuel reformulation

Chemistry & Modeling
- SOA yield studies on: precursor wall losses and understudied SOA precursors
- Multigenerational SOA formation after initial stages of oxidation
- Auto-oxidation of unsaturated, non-aromatic hydrocarbons
- Past and future changes in urban chemistry (incl. indirect effects of motor vehicle emissions on SOA formation chemistry)
- Modeling motor vehicle SOA with a better representation of the complex organic mixtures in vehicle emissions
 - Need comprehensive emissions data on VOCs, IVOCs, and SVOCs (diesel VOCs need to be included)
Summary

- On-road engines are important air pollution source
 - In 2010, diesel was dominant on-road source of BC, POA, and NO\textsubscript{x}
 - Emission factor distributions are becoming increasingly skewed
 - High-emitting tail of distribution responsible for majority of running emissions

- Novel approaches used to characterize emissions
 - Aerosol Mass Spectrometer (SP-AMS)
 - BC, OA, zinc and phosphorus (lube oil additives) measured in individual truck plumes
 - POA mass spectra very similar for gasoline & diesel engine emissions & lube oil
 - GC-MS analysis using Vacuum Ultraviolet (VUV) photons
 - EI analysis (70 eV) of diesel and lube oil leads to near-total fragmentation of parent molecular ions, and leaves most of the emitted HC mass unidentified (“UCM”)
 - Use of softer (9-10.5 eV) photo-ionization preserves molecular ions; greatly enhances ability to identify and quantify organics present in diesel fuel and vehicle emissions
Publications

Publications

