

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Enhanced-throughput platforms to model neural vasculature on synthetic hydrogels

Eric H. Nguyen

University of Wisconsin - Madison, Department of Ophthalmology and Visual Sciences

March 11, 2017 Presented to EPA Satellite Meeting

WISCONSIN INSTITUTES FOR MEDICAL RESEARCH

Neurovasculature and the Blood Brain Barrier

Neurodegeneration

Failure and disruption of microvasculature can lead to damage to the central nervous system

 Σ

The Neurovascular Unit

Objective:

- Generate in-vitro neurovascular unit models to detect chemicals that potentially compromise neurovascular tissue

Endothelial Cells	Pericytes	Astrocytes
IPSC-ECs (CDI)	Human Brain- derived Pericytes (ScienCell)	IPSC-ACs (CDI)

Step 1: Create environments to induce physiological cell behaviors

Step 2: Treat tissue models with drugs and toxins to gain insight on their effects on neurovascular networks

Chemically-defined hydrogels

Chemically-defined hydrogels that **recapitulate specific ECM parameters can modulate cell behavior**

Poly(ethylene glycol) hydrogel modifications

+ CRGDS / RGDFdC

Cell-adhesion

+ K**C**GGPQGIWGQG**C**K

Crosslinking-stiffness

iPSC-ECs form interconnected networks on synthetic hydrogels

 \mathcal{D}

Synthetic

iPSC-ECs form interconnected networks on synthetic hydrogels and Matrigel

Synthetic

Matrigel

Green: CD31 Blue: DAPI

Network area measurements

PEG

Matrigel

Total Endothelial Network Area – Pericyte and Astrocyte co-cultures

Triple Co-Culture

Endothelial Network Area in the presence of VEGF inhibitor Sunitinib Malate

	Sunitinib
Co-culture	Disruption (+/-)
EC only	?
EC- Pericyte	?
EC- Astrocyte	?
Triple – Low	?
Triple – High	?

Astrocyte and Pericytes

Identify which cell types are affected by toxic exposure

Identify which cell types protect endothelial networks from disruption

Pericytes fail to prevent Sunitinib-mediated endothelial network disruption

Pericytes fail to prevent Sunitinib-mediated endothelial network disruption

0.1% DMSO

40 uM Sunitinib

Red: EC Green: PC

Scale Bar: 0.5 mm

1 PC : 20 EC

Astrocytes prevent Sunitinib-mediated endothelial network disruption

Astrocytes prevent Sunitinib-mediated endothelial network disruption

EC Only EC : AC 2:1 DMSO 40 µM Sunitinib EC, AC imaged EC imaged

Scale Bar: 0.5 mm

Red: EC Green: AC

Sunitinib Treatment causes network reorganization but not disruption

Scale Bar: 0.5 mm

Red: EC Green: AC

Endothelial Network Area in the presence of VEGF inhibitor Sunitinib Malate

	Sunitinib
Co-culture	Disruption (+/-)
EC only	+
EC- Pericyte	+
EC- Astrocyte	-
Triple – Low	+
Triple – High	-

Sunitinib:

- Astrocytes prevent complete disruption of endothelial cell networks. Requires sufficient density of astrocytes in coculture.

Sunitinib Treatment causes reorganization of astrocytes in co-culture

AC:EC Ratio

Scale Bar: 0.5 mm

DMSO

Sunitinib

18

AC:EC Ratio

₹

ž N OI

AC:EC Ratio

Tubulogenesis assay to screen blinded chemical compounds

HUVECs

Neurovascular Unit to screen blinded chemical compounds

Conclusions

- Synthetic Hydrogels enable network formation by endothelial cells and co-cultures
- Co-cultures of endothelial cells, pericytes and astrocytes enables systematic identification of active and affected cell types in chemical exposure
- Co-cultures of endothelial cells detect differential inhibitory activity from panels of blinded chemical compounds

Bioinspired Materials Laboratory

Dr. William L. Murphy

Graduate Students Matt Parlato Eric Nguyen Ngoc Nhi Le Anna Breiner Clements Hamisha Ardalani Angie Xie Andrew Khalil

John Krutty

Postdocs/Specialists/Scientists Jim Molenda Ulrika Muller Michael Schwartz William Daly Connie Chamberlain Bernard Binder Gianluca Fontana Xiaohua Yu Andrew Dias Cheryl Soref Hau Le Undergraduate Students Cody Bindl Matthew Zanotelli Steve Jeehwan Lee Anna Kellner Jacob Blitstein Richard Giza Leona Li Todd Le

Former Graduate Students

Justin Koepsel David Belair Samantha Schmitt

Sheibani Laboratory

Dr. Nader Sheibani Dr. Christine Sorenson

Postdocs/Specialists/Scientists

Debra Fisk Eric Nguyen Ismail Zaitoun Mohammed Ali Saghiri Jim Wang Soesiawati Darjatmoko Zafer Gurel Mitra Foomardian

Graduate Students

Juliana Falero Perez Nasim Jamali

<u>Undergraduate Students</u> Erin Pankratz Cassidy Slinger

Funding sources

National Institutes of Health

Biotechnology Training Program University of Wisconsin-Madison Doctoral Studies funded by NIH GMS

chemistry

THE WEBSITE OF THE AMERICAN CHEMICAL SOCIETY

University of Wisconsin-Madison GERS-Graduate Engineering Research Scholars A place to suceed in higher education and beyond

Human MAPs Center

UNIVERSITY OF WISCONSIN-MADISON

Synthetic screening platform detects inhibition with high sensitivity

ANTI-VEGF

Semaxinib (SU5416)

sFLT-1

Vatalaninb (PTK787)

	Synthetic Matrigel		
Conc.	Inhib	oition	
(ug/ml)	(+/-)		
1	+	-	
0.5	+	-	
0.25	+	-	
0.125	+	-	
0.062	+	-	
0.031	+	-	
0.015	+	-	
0.008	+	-	

	-	
	Synthetic	Matrigel
Conc.	Inhibition	
(uM)	(+/-)	
40	+	-
20	-	-
10	-	-
5	-	-
2.5	-	-
1.25	+	-
0.625	+	-
0.3125	+	-

	Synthetic	Matrigel	
Conc.	Inhibition		
(ug/ml)	(+/-)		
1	+	-	
0.5	-	-	
0.25	-	-	
0.125	+	-	
0.062	+	-	
0.031	+	-	
0.015	+	-	
0.008	-	-	

	Synthetic	Matrigel
Conc.	Inhib	ition
(uM)	(+/-)	
20	+	-
10	-	-
5	-	-
2.5	-	-
1.25	-	-
0.625	-	-
0.3125	-	-
0.1562	+	-

Sutent (Sunitinib)

	Synthetic	Matrigel	
Conc.	Inhibition		
(uM)	(+/-)		
40	+	+	
20	+	-	
10	+	-	
5	+	+	
2.5	+	-	
1.25	+	-	
0.625	+	-	
0.3125	+	-	

HUVECs on synthetic hydrogels demonstrate increased sensitivity to known VEGF inhibitors compared to Matrigel

VEGF-independent mechanisms of network inhibition

Prinomastat HCL

K**C**GGPQGIWGQG**C**K

Matrix metalloproteinase inhibition disrupts endothelial network formation on synthetic hydrogels but not Matrigel

Identifying culture conditions for network formation

Chemically-defined PEG

- CRGDS, cyclic RGD
- 7 adhesion peptide concentrations
- 3 stiffness levels
- 3 VEGF concentrations

Use a material discovery system that defines hydrogel properties and VEGF concentration in media to discover environments to comparable to Matrigelbased environments.

Enhanced-throughput material discovery

Enhanced throughput experimentation is necessary for efficient exploration of pro-angiogenic materials

28 Ack: Ngoc Nhi Le, William Daly, David Belair

Enhanced-throughput material discovery

Objective: Optimize hydrogels for 2D tubulogenesis and toxicity screening

> 300 conditions tested

Ack: Ngoc Nhi Le, William Daly, David Belair

29

Synthetic screening platform detects VEGF inhibition with high consistency

PEG Hydrogel

Matrigel

- Enhanced-throughput experimentation to co-vary cell-hydrogel adhesion, mechanical stiffness and soluble VEGF detected culture conditions to promote 2D endothelial network formation
- Fundamental advantages in synthetic cultures versus Matrigel
 - Consistency between replicates
 - Sensitivity to chemical compounds

Sunitinib Malate Treatment – Triple co-cultures

Sunitinib Treatment causes network reorganization but not disruption

Compound 31 – ECs Only

DMSO

Compound 31

Compound 31 results in inhibited EC spreading and cell clumping

Compound 31 – NVU, lo support density

DMSO

Compound 31

Compound 31 results in inhibited EC spreading and cell clumping

Compound 31 - NVU, hi support density - Not quantitatively detected

Compound 40 – ECs Only

DMSO

Compound 40

Compound 40 results in enhanced network connectivity

Compound 40 – NVU, lo support density

DMSO

Compound 40

Compound 40 results in enhanced network connectivity

Compound 40 - NVU, hi support density - Not quantitatively detected

Scale Bar: 0.5 mm

Compound 40

NVU Support cells help endothelial network to resist breakage by compounds 47 and 48

Compounds 25 and 26 broaden endothelial networks when NVU support cells are present

Poly(ethylene glycol) (PEG)

Sunitinib Malate Treatment – Triple co-cultures, high density support cells

reorganization but not disruption

Overview

2-Dimensional Tubulogenesis Assay

2-dimensional cell seeding

24-hour cell culture

3-Dimensional Organoid Culture

Encapsulated cell seeding

Side angle view of 3D vascular network

Max. Intensity projection of 3D vascular network

The extracellular matrix: Matrigel

Matrigel: ECM derived from mouse Englebreth-Holm-Swarm tumors, commonly used to study angiogenesis.

Complex material composed of thousands of proteins and biomolecules

Difficult to customize or define, batch-batch variation, extraneous growth factors

Total Endothelial Network Area – Pericyte and Astrocyte co-cultures

Triple Co-culture: Increase network area differentially from duo co-cultures

Total Endothelial Network Area – Pericytes increase network area

Red: EC Green: PC

Total Endothelial Network Area – Astrocytes do not affect network area

Astrocyte - EC

Cell Ratio (AC:EC)

EC only

AC only

1 AC: 2 EC 1 AC: 16 EC

Red: EC Green: AC

Osmotic Stress leads to network disruption in EC-Pericyte co-cultures

5 mM Glucose

30 mM Glucose

Osmotic Stress leads to network disruption in EC-Astrocyte co-cultures

5 mM Glucose

High D-glucose does not disrupt endothelial networks in the presence of Astrocytes and Pericytes

High Glucose **Co-culture** Disruption (+/-) EC only + EC-+ Pericyte EC-+ Astrocyte Triple – Low Triple – High

54

Red: EC Green: AC

High D-glucose does not disrupt endothelial networks in the presence of Astrocytes and Pericytes

Red: EC Green: AC

Astrocytes and Pericytes affect Endothelial Network coherence in the presence of high glucose and VEGF inhibitor Sunitinib Malate

	Sunitinib	High Glucose
Co-culture	Disruption (+/-)	
EC only	+	+
EC- Pericyte	+	+
EC- Astrocyte	-	+
Triple – Low	+	-
Triple – High	-	-

Astrocyte and Pericyte functions:

- Apoptosis
- Tight junction
- Proliferation/Cell cycle
- Reactive Oxygen Species
- GFAP
- Glut-1 transporter
- Growth factor production

Astrocytes and Pericytes affect Endothelial Network coherence in the presence of high glucose and VEGF inhibitor Sunitinib Malate

	High Glucose
Co-culture	Disruption (+/-)
EC only	+
EC- Pericyte	+
EC- Astrocyte	+
Triple – Low	-
Triple – High	-

Glucose:

 Pericytes and Astrocytes prevent complete disruption of endothelial cell networks. Both support cell types must be present in culture.

Matrigel and the tubulogenesis assay

Matrigel's complexity leads to limited:

Consistency Sensitivity

Synthetic screening platform identifies vascular inhibitors in blinded screen

			pVDC
Chemical Name:	Matrigel	Synthetic	score
1,2,4-Trichlorobenzene	0	0	0.000
Decane	0	0	0.000
Tris(2-chloroethyl) phosphate	0	0	0.000
1,2,3-Trichloropropane	0	0	0.002
Pymetrozine	0	0	0.002
Methimazole	0	0	0.002
Diethanolamine	0	0	0.002
Imazamox	0	0	0.007
D-Mannitol	0	0	0.007
Methylparaben	0	0	0.010
Valproic acid	0	0	0.016
2,4-Diaminotoluene	0	0	0.069
Bisphenol A	0	0	0.146
Haloperidol	0	0	0.177
Tris(2-ethylhexyl) phosphate	0	0	0.182
Tris(1,3-dichloro-2-propyl)phosphate	0	0	0.188
Cladribine	0	0	0.196
TNP-470	0	0	0.238
Oxytetracycline dihydrate	0	0	0.260
Celecoxib	0	1	0.269
Docusate sodium	0	0	0.304
C.I. Solvent Yellow 14	0	1	0.306
Reserpine	0	0	0.307
Quercetin	0	1	0.309
Phenolphthalein	0	0	0.327
5HPP-33	1	0	0.327
tert-Butylhydroquinone	0	0	0.336
Triclocarban	1	1	0.362
Triclosan	0	1	0.372
Pyridaben	0	1	0.379
1-Hydroxypyrene	1	1	0.386
Sodium dodecylbenzenesulfonate	0	0	0.429
Disulfiram	1	1	0.432
Fluazinam	1	1	0.434
Octyl gallate	0	1	0.450
Bisphenol AF	0	1	0.457
PFOS	0	0	0.460
4-Nonylphenol, branched	0	0	0.461

pVDC Score: Non-Inhibitory

Inhibitory

Blinded screen of toxic compounds reveals increased sensitivity of synthetic hydrogels

Accuracy:

Sensitivity:

Synthetic – 61% Matrigel – 45% Synthetic – 42% Matrigel – 19%

IPSC-ECs form interconnected networks on specified hydrogels

IPSC-ECs

Green: CD31 Blue: DAPI

The extracellular matrix (ECM)

Adhesion Ligands

 Σ

Integrinbinding molecules

ECM modulates cell fate with multiple cues

ECs form networks on PEG and Matrigel

 \sum

Synthetic

