

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Engineering a human organotypic model of osteogenesis and morphogenetic fusion

David G. Belair

Disclaimer: The views expressed in this presentation are those of the speaker and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development US EPA | National Health and Environmental Effects Research Lab

March 11, 2017

Embryonic Tissues Undergo Fusion Events During Development

Image Credit: Thomas Knudsen, from Synthetic Biology: 'flipping the switch' on opportunities and challenges with virtual tissues. Presented at CompuCell3D Workshop

Central Research Goal: Develop a model *in vitro* system that could be used to predict chemical effects on developmental fusion events using human cells

Mesenchyme

Morphogenetic Fusion Events in the Embryo Depend on Epithelial-Stromal Interactions

Secondary Palate

Neural Tube

Non-Neural Ectoderm Notochord Mesoderm

The Need for Fusion-Competent Models of Epithelial-Stromal Interactions

Global incidence of orofacial clefting: 0.12%

The Royal Children's Hospital Melbourne Cleft Lip and Palate - an overview

Relevance

The Need for Fusion-Competent Models of Epithelial-Stromal Interactions

Global incidence of orofacial clefting: 0.12%

The Royal Children's Hospital Melbourne Cleft Lip and Palate – an overview

Existing methods for studying palate fusion use animal models, tissue explants, or primary twodimensional tissue cultures that exhibit a tradeoff between throughput and developmental relevance

In Vitro Palatal Cell Culture

Nawshad et al. J Cell Sci. 2007

Pathology of Palate Fusion and Cleft Palate

Bush et al. Development 2012

Pathology of Palate Fusion and Cleft Palate

Bush et al. Development 2012

Growth/Elevation Defects

Adhesion/Fusion Defect

Etiology of cleft palate involves genetic, environmental, and genetic x environmental factors

In Vitro Organotypic Model to Examine Morphogenetic Fusion

In Vitro Fusion

Bring Spheroids Into Contact

Monitor Adhesion and Fusion Mesenchymal/Epithelial Tissu

In Vitro Organotypic Model to Examine Morphogenetic Fusion

Mesenchymal/Epithelial Tissues

In Vitro Organotypic Model to Examine Morphogenetic Fusion

Generating Spheroids of Human Wharton's Jelly Stromal Cells (HWJSCs)

OM: Osteo-induction Medium **GM:** Mesenchymal Growth Medium

HWJSC spheroid size is dependent on

- i. culture conditions
- ii. cell seeding density

11

HWJSC Spheroid Osteogenesis Over Time in Culture

Spheroid culture in osteo-induction medium by day 7 elicits

- i. Down-regulation of mesenchymal markers
- ii. Up-regulation of osteogenic differentiation markers
- iii. Increased alkaline phosphatase activity

Phenotypic Characterization of Mesenchymal Cell Spheroids

Establishing Epithelial-Stromal Co-Culture

Representative maximum intensity projections

Epithelial attachment to osteogenic HWJSC spheroids is maximal at an epithelial/mesenchymal (E/M) ratio of 0.8

Fusion of Epithelial-Stromal Spheroids

Representative z-slices over time (60 µm from bottom)

HWJSC/HPEKp spheroids in culture exhibit fusion behavior reminiscent of palatal tissue fusion over 2 days (removal of epithelial cells from seams) that is complete by day 4

Spheroid Fusion is Dependent on EGF and FGF Signaling

Representative z-slices over time (60 µm from bottom)

Fibroblast growth factor (FGF) and epidermal growth factor (EGF) signaling inhibition interferes with *in vitro* fusion progression in culture

Co-culture Spheroid Fusion Distinct from Mono-culture Spheroid Fusion

HWJSC/HPEKp spheroid fusion d4 d2 = PC2 (14.19%) d2 d1 d0 **d**1 \succ d0 HWJSC spheroid fusion € Z = PC1/(18.74%)

Future Directions

Study Epithelial Morphogenesis in Real-Time

Cross-Validate In Vitro Fusion Model with In Silico Palatogenesis Model

Hutson et al. Chem. Res. Toxicol. 2017

Explore Chemical Effects on *In Vitro* Fusion

Acknowledgements

Toxicity Assessment Division

Barbara D. Abbott (PI) Cynthia Wolf Carmen Wood

Virtual Tissue Models

E. Sidney Hunter Thomas Knudsen Kyle Grode Andrew Schwab Maxwell Leung Tamara Tal Nancy Baker

Research Cores Unit

Witold Winnik Anna Fisher Rachel Grindstaff William Padgett Adam Swank Hongzu Ren

Transcriptomics Analysis of Day 7 HWJSC Spheroids

