Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.
Modeling Organ-Specific Aristolochic Acid Toxicity Using an Integrated Liver-Kidney Organotypic System

Elijah Weber
Problem: Aristolochic Acid Nephropathy (AAN)

Aristolochia clematidis

Aristolochic Acid (AA-I)

- Chinese-herb nephropathy (CHN) / Balkan endemic nephropathy (BEN)
- Chronic kidney disease (CKD) and upper urinary tract urothelial carcinoma (UUC)

IARC classifications:

Herbal remedies containing plant species of the genus *Aristolochia* are carcinogenic to humans (Group 1).

Naturally occurring mixtures of AA are probably carcinogenic to humans (Group 2).
• Can we model AAN using an ex vivo organotypic system?

• Direct and functional coupling of liver → kidney to recapitulate 1st pass metabolism/bioactivation
Platform: Nortis Microphysiological System (MPS)

Technical details:

- Gas-permeable PDMS silicone, polycarbonate base, collagen type I ECM, with a microscope coverslip
- Incorporation of “bubble traps” (port 1) at media entry point, as well as option for “ablumenal” flow (ports 2/4)
- Diameter of “tubule” is ~120 µM with an internal volume of ~70 nL
- Typical flow rate of 0.5-1.0 µL/min
- A 6 mm tubule contains ~5000 PTECs
Development of a microphysiological model of human kidney proximal tubule function

Elijah J. Weber1,7, Alenka Chapron1,7, Brian D. Chapron1,7, Jenna L. Voellinger1, Kevin A. Lidberg1, Catherine K. Yeung2,6, Zhican Wang1,8, Yoshiyuki Yamaura1,9, Dale W. Hailey3, Thomas Neumann4, Danny D. Shen1,2, Kenneth E. Thummel1, Kimberly A. Muczynski5, Jonathan Himmelfarb5,6 and Edward J. Kelly1

1Department of Pharmaceutics, University of Washington, Seattle, Washington, USA; 2Department of Pharmacy, University of Washington, Seattle, Washington, USA; 3Department of Biological Structure, University of Washington, Seattle, Washington, USA; 4Nortis Inc., Seattle, Washington, USA; 5Department of Medicine, University of Washington, Seattle, Washington, USA; and 6Kidney Research Institute, University of Washington, Seattle, Washington, USA
What is the role of the liver in AA-I first-pass metabolism?
Study Design
AA-nephrotoxicity via hepatic bioactivation
DNA adduct formation from bioactivated AA-I
The role of the liver in bioactivation of AA-I

Aristolochic Acid-I (AA-I)

LIVER

NQO1
Nitroreduction

AL-I-NOH
SULTs
Sulfation

CYP1As
Demethylation

AL-I-NOSO₃

LIVER→KIDNEY

Efflux→Uptake (Hepatic MRPs) (Renal OATs)

Transporters

Kidney Toxicity (Geno-/Cyto-)

Alternative Metabolic Fate (NOT Geno- or Cytotoxic)
Acknowledgements

- EPA STAR
 Elaine Faustman
 Terry J. Kavanagh
 Edward J. Kelly
 Bill Altemeier

- Edward J. Kelly
 Jonathan Himmelfarb
 David L. Eaton
 Shirley Chang, PhD

- Stony Brook Univ.
 Arthur Grollman
 Viktoriya Sidorenko
 Thomas Rosenquist
 Kathleen Dickman

Grant Support
NCATS UH3TR000504

*This presentation was developed under Assistance Agreement No. 83573801 awarded by the U.S. Environmental Protection Agency to Elaine M. Faustman. It has not been formally reviewed by EPA. The views expressed in this presentation are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this presentation.