

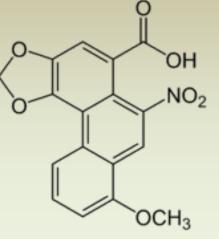
Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use. Modeling Organ-Specific Aristolochic Acid Toxicity Using an Integrated Liver-Kidney Organotypic System

Elijah Weber

UNIVERSITY of WASHINGTON

Department of Pharmaceutics


ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES

SCHOOL OF PUBLIC HEALTH • UNIVERSITY of WASHINGTON

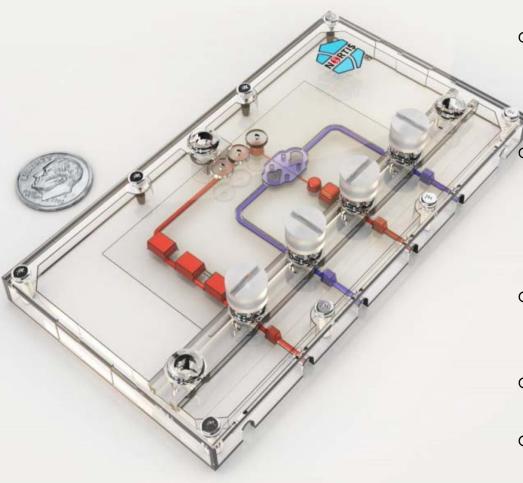
Problem: Aristolochic Acid Nephropathy (AAN)

Aristolochia clematitis

Aristolochic Acid (AA-I)

- Chinese-herb nephropathy (CHN) / Balkan endemic nephropathy (BEN)
- Chronic kidney disease (CKD) and upper urinary tract urothelial carcinoma (UUC)

IARC classifications :


Herbal remedies containing plant species of the genus Aristolochia are carcinogenic to humans (Group 1).

Naturally occurring mixtures of AA are probably carcinogenic to humans (Group 2).

 Can we model AAN using an ex vivo organotypic system?

 Direct <u>and</u> functional coupling of liver→kidney to recapitulate 1st pass metabolism/bioactivation

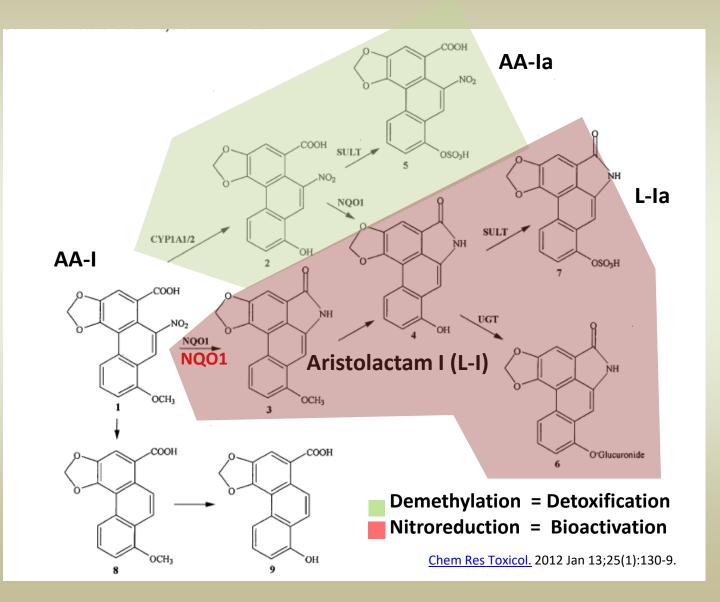
Platform: Nortis Microphysiological System (MPS)

Technical details:

- Gas-permeable PDMS silicone, polycarbonate base, collagen type I ECM, with a microscope coverslip
 - Incorporation of "bubble traps" (port
 1) at media entry point, as well as option for "ablumenal" flow (ports 2/4)
- Diameter of "tubule" is ~120 µM with an internal volume of ~70 nL
- o Typical flow rate of 0.5-1.0 μL/min
- A 6 mm tubule contains ~5000
 PTECs

www.kidney-international.org

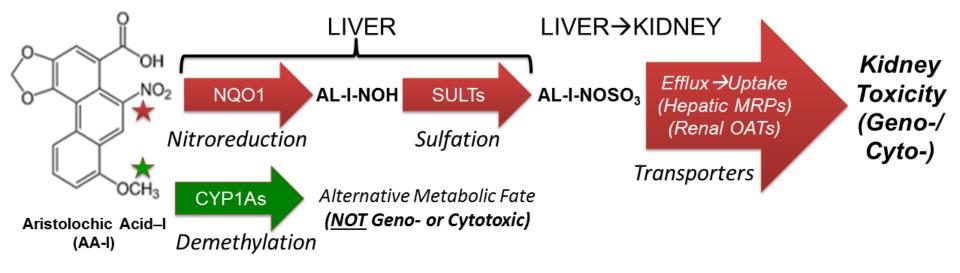
basic research


Development of a microphysiological model of human kidney proximal tubule function

Elijah J. Weber^{1,7}, Alenka Chapron^{1,7}, Brian D. Chapron^{1,7}, Jenna L. Voellinger¹, Kevin A. Lidberg¹, Catherine K. Yeung^{2,6}, Zhican Wang^{1,8}, Yoshiyuki Yamaura^{1,9}, Dale W. Hailey³, Thomas Neumann⁴, Danny D. Shen^{1,2}, Kenneth E. Thummel¹, Kimberly A. Muczynski⁵, Jonathan Himmelfarb^{5,6} and Edward J. Kelly¹

¹Department of Pharmaceutics, University of Washington, Seattle, Washington, USA; ²Department of Pharmacy, University of Washington, Seattle, Washington, USA; ³Department of Biological Structure, University of Washington, Seattle, Washington, USA; ⁴Nortis Inc., Seattle, Washington, USA; ⁵Department of Medicine, University of Washington, Seattle, Washington, USA; and ⁶Kidney Research Institute, University of Washington, Seattle, Washington, Seattle, Washington, USA; ⁴Nortis

What is the role of the liver in AA-I first-pass metabolism?



Study Design

AA-nephrotoxicity via hepatic bioactivation

DNA adduct formation from bioactivated AA-I

The role of the liver in bioactivation of AA-I

Acknowledgements

Edward J. Kelly Jonathan Himmelfarb David L. Eaton Shirley Chang, PhD

<u>Stony Brook Univ.</u> Arthur Grollman

Viktoriya Sidorenko Thomas Rosenquist Kathleen Dickman

<u>Grant Support</u> NCATS UH3TR000504

*This presentation was developed under Assistance Agreement No. 83573801 awarded by the U.S. Environmental Protection Agency to Elaine M. Faustman. It has not been formally reviewed by EPA. The views expressed in this presentation are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this presentation.