

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

3- dimensional micro-gas chromatography device for rapid and sensitive indoor air chemical exposure assessment

Xudong (Sherman) Fan, Katsuo Kurabayashi, and Rudy Richardson

Biomedical Engineering Department Mechanical Engineering Department School of Public Health

(February 3, 2015)

Center for Wireless Integrated MicroSensing & Systems

1

Outline

• Challenges for indoor (S)VOC assessment

• Introduction

- Gas chromatography (GC)
- Micro-GC (µGC)
- Comprehensive 2-D GC/ μ GC (GC x GC or μ GC x μ GC)

• Smart multi-channel multi-dimensional GC

- Concept
- Comparison
- On-column vapor detectors
- 2-D smart GC
- 3-D smart GC

• Proposed project

Challenges for indoor (S)VOC assessment

- 1. Large number of (S)VOCs to be quantified Cleaning products, pesticides, *etc*. Interference background
- 2. Temporal variations
- 3. Spatial variations

An instrument should be

- 1. Able to analyze many (S)VOCs
 - qualitatively (type of molecule)
 - quantitatively (how much)
- 2. Portable (in-situ measurement)
- 3. Rapid (temporal measurement)

Introduction

Gas chromatography (GC) + Mass Spectrometer⁵

• Best analytical tool to analyze hundreds of volatile organic compounds (VOCs)

GC on a chip Micro-GC (µGC) or portable GC

• First demonstrated in 1979 (first lab-on-a-chip device)

Terry et al., IEEE Trans Electron Devices, ED-26, 1880 (1979)

- Less power consumption
- Can be automated

•

•

• Low chromatographic resolution and peak capacity \rightarrow co-elution

General concept of multi-dimensional separation⁷

- 2-D gel electrophoresis as an example
- Two independent separations based on two distinct properties (*e.g.*, charge and mass)
- Enhanced separation capability or resolution

2nd-dimensional separation by mass

Total peak capacity = $N_1 \times N_2$

 N_1 : peak capacity for 1st separation N_2 : peak capacity for 2nd separation

Multi-dimensional GC

How to translate the 2-D (or higher-dimensional) gel electrophoresis concept to 2-D GC?

Difficulties:

• Vapors are difficult to be held in place

Comprehensive 2-D GC or μGC (GC x GC, μGC x μGC)

- 1st-dim column: long (5-30 m), coated <u>non-polar</u> stationary phase
- 2nd-dim column: very short (0.5-1 m), coated with <u>polar</u> stationary phase
- Vapor molecules undergo two separations by vapor pressure and polarity
- Total peak capacity = $N_1 \times N_2$ (ideally)

M. M. Bushey et al., Anal. Chem. 62, 161 (1990).
Z. Liu et al., J. Chromatogr. Sci. 29, 227 (1991).
Phillips et al., J. Chromatogr. A 703, 327 (1995).
J. Dallüge et al., J. Chromatogr. A 1000, 69 (2003).
J. V. Seeley et al., Anal. Chem. 85, 557 (2012).

Working principle of GC x GC or µGC x µGC

UNIVERSITY OF MICHIGAN

Comments on GC x GC (or µGC x µGC)

Advantages:

• Improved peak capacity $(N_{GCxGC} > N_{GC})$

J. V. Seeley et al., J. Chromatogr. A 962, 21 (2002).L. M. Blumberg et al., J. Chromatogr. A 1188, 2 (2008).

Drawbacks:

1. Reduction of n_1 by a factor of $\sqrt{1+0.5(P_M/\sigma_{1,0})^2}$ due to modulation (sampling theory) P_M : modulation period; $\sigma_{1,0}$: unmodulated peak width from the 1st-dim column

2. Insufficient 2^{nd} -dimensional separation (low n_2)

- Limited by the modulation period
- Only a few seconds in order to avoid wrap-around issue
- Peak capacity below theoretical prediction of N₁ x N₂.
 N_{GCxGC} is only 5-10X better than N_{GC} (under optimal condition)
- 4. Complicated 2-D chromatogram re-construction
 ➢ Has only one end-column detector
- 5. Difficult to scale up for higher dimensional separation

Scale up to GC x GC x GC

- 1st-dim column: long (25 m), coated <u>intermediate polar</u> stationary phase
- Modulation #1 period: ~5 seconds
- 2nd-dim column: **shorter** (5 m), coated with **<u>non-polar</u>** stationary phase
- Modulation #2 period: ~0.2 seconds
- 3rd-dim column: **shortest** (0.55 m), coated with **polar** stationary phase
- Peak capacity: $N_1=175$, $N_2=5$, $N_3=4 \rightarrow$ Total peak capacity = 3500 or 58/min

Comments:

- 1. Doable, but benefit is diminishing?
- 2. Very complicated hardware and 3-D chromatogram re-construction
- 3. More stringent requirements on higher-dimensional separation (e.g., very short separation time)
- 4. Rarely explored

- E. B. Ledford, Jr. et al., J. High Resol. Chromatogr. 23, 205 (2000).
- N. E. Watson et al., Anal. Chem. 79, 8270 (2007).
- W. C. Siegler et al., J. Chromatogr. A 1217, 3144 (2010).

Center for Wireless Integrated MicroSensing & Systems

Some general thoughts on current GC² and GC³

Problem: Information about the 1st-dim (or low dimension) separation is missing Current solution: We rely on <u>a modulator</u> and a detector at the end and to figure it out Re-construction of 1-dim requires sufficient 2-dim separation

Problem: 1st-dim and 2nd-dim separation are not completely independent. They are connected through <u>a modulator</u>

- → Conflicting requirements
 - Short modulation period for better 1st-dim separation re-construction
 - Long modulation period for better 2nd-dim separation

Current solution: We try to optimize or balance the 1st- and 2nd-dim separation

Why do we need a modulator?

• To sample the elution from the 1st-dim separation and provide the 1st-dim retention time

Is it necessary?

Revisit 2-D gel electrophoresis

- 1st- and 2nd-dim separation are independent
- 1st-dim separation can be measured directly
- No modulator, no re-construction

Revisit the interface between two separations

New concept of smart multi-channel multi-dimensional micro-GC

Non-destructive flow-through on-column vapor detector

- Rapid, sensitive, no interference with the flow
- Watch, but not touch
- No additional dead volume

Center for Wireless Integrated MicroSensing & Systems

Examples of smart 2-D and 3-D GC architectures

Working principle

Using 1x2-channel 2-D micro-GC for illustration

Advantages

- 1. No modulation on the low-dimension effluent
 - No broadening
 - Entire analyte (not just a slice of it) will be sent to the next separation (improved detection limit)
- 2. Long high-dimension separation (adjustable dynamically)
 - $\succ N_{\text{total}} = N_1 \times N_2 \times N_3 \dots$
 - \triangleright N₂, N₃ can be large, not limited by the modulation period
 - > Can do temperature ramping
- 3. No thermal modulator is needed. Only simple thermal injectors are needed.
 - Simple and robust, easy to fabricate, less power consumption
- 4. Easy construction of multi-dimensional chromatogram
 - Directly read from the vapor detectors
- 5. Cascadable
 - Can scale up to 3-D, 4-D, etc. by simply adding more columns to the preceding columns
 - Independent control of each dimension of separation
- 6. Versatile
 - General purpose instrument

Tailored for specific analytes

Center for Wireless Integrated MicroSensing & Systems

Comparison (1)

Heart-cutting technology

Total peak capacity = $N_1 + N_2 \times M$ (M: # of cuts)

Comparison (2)

	Number of cuts	Time window selection	Window width
Heart-cutting	A few times Each cut contain multiple peaks	Pre-determined	50-100 seconds <i>Depending on applications</i>
Smart GC	N ₁ times Each cut has one peak	Informed decision Made by the system	Depending the peak width Dynamically adjustable
GC x GC	3 x N ₁ times Each cut has 1/3 peak	Periodic window Blindly, even without analyte	~1-10 second

Comparison (3) - Comparison

Isothermal operation				
	Total peak capacity	Total assay time	Peak capacity production	
Comp. GC ²	19968	100 min	200/min	
Comp. GC ³	87360	100 min	874/min	
1x2 smart GC ²	38828	100 min	388/min	
1x2x4 smart GC ³	570000	108 min	5278/min	

Temperature ramping operation					
Total peak capacity Total assay time Peak capacity production					
Comp. GC ²	11018	15 min	735/min		
Comp. GC ³	79560	60 min	1326/min		
1x2 smart GC ²	502600	100.8 min	4984/min		

Development of flow-through on-column vapor detectors

On-column flow-through vapor sensors (Overview)²⁴

Requirements:

- Non-destructive
- No interference with gas flow
- No or minimal dead volume

Possible candidates:

- TCD (thermal conductivity detector)
- SAW (Surface acoustic wave detector)
- Chemi-resistor
- Chemi-capacitor
- Nanoelectronics (graphene, nanotubes)
- Optical vapor sensors
 - Optical ring resonator (fabricated on chip)
 - Optofluidic ring resonator (capillary based or fabricated basehing)
 - Optical interferometric sensor (Fabry-Perot sensor)

Shopova et al., Anal. Chem. 80, 2232 (2007)
Sun et al., Opt. Express 16, 10254 (2008)
Sun et al., Analyst 135, 165 (2010)
Reddy et al., Lab Chip 12, 901 (2012)
Scholten et al., Appl. Phys. Lett. 99, 141108 (2011)
Scholten et al., Lab Chip 14, 3873 (2014)
Kulkarni et al., Nature Commun. 5 3779 (2014)

On-column flow-through vapor sensors (Graphene²⁶)

Response time: < 0.1 s Detection limit: 1-10 pg (ppb) Array detection

Kulkarni et al., Nature Commun. 5 3779 (2014)

Smart 2-D GC

Simple example

Scale up to more channels

¹D column: 2 m long, i.d. = 0.25 mm, RTX-1 coating ²D column: 0.8 m long, i.d. = 0.25 mm, Carbowax coating

Results

Liu et al., Anal. Chem. 84, 4214 (2012)

Analysis

	Nonane (#12)	Limonene (#15)
t ₁	119 s	179 s
σ1	4.36 s	4.95 s
n ₁	20	31
t ₂	12.9 s	26.5 s
σ ₂	0.465 s	1.1 s
n ₂	11	14
Total peak capacity $(n_1 \times n_2)$	240	434
Total analysis time for analyte	200 s	276 s
Peak capacity production	72/min	94/min

Peak capacity
$$n = \frac{\sqrt{N}}{4R_s} \ln(\frac{t}{t_0}) + 1$$

N: plate number

 R_s : desired resolution (R_s =1 in the above table)

- t: retention time
- t₀: hold-up time

Center for Wireless Integrated MicroSensing & Systems

Temperature ramping

¹D column: 2.7 m long, i.d. = 0.25 mm, HP-5 coating. Temperature ramping:

Room temperature for 3 min and then heated up to 150 °C at a rate of 20 °C/min

²D column: 0.7 m long, i.d. = 0.25 mm, Carbowax coating. Room temperature

Assay time is much shorter

Liu et al., Anal. Chem. 84, 4214 (2012)

Analysis

	Methyl salicylate (#14)	Jasmone (#17)	Caryophyllene (#19)
t ₁	180 s	640 s	1,079 s
σ_1	9.1 s	46.9 s	34 s
n ₁	37	36	92
t ₂	175 s	72.7 s	50.1 s
σ ₂	8.8 s	2.3 s	3.9 s
n ₂	53	67	25
Total peak capacity $(n_1 \times n_2)$	1,961	2,412	2,300
Total analysis time for analyte	410 s	894 s	1,260 s
Peak capacity production	287/min	162/min	110/min

Higher peak capacity Higher efficiency

Move to µGC system

¹D column: 1 m long, 0.24 mm x 0.15 mm cross section, OV-1 coating ²D column A: 0.5 m long, 0.24 mm x 0.15 mm cross section, OV-215 coating ²D column B: 0.25 m long, 0.24 mm x 0.15 mm cross section, OV-215 coating

Center for Wireless Integrated MicroSensing & Systems

34

Results (Isothermal)

Separation of 31 workplace hazardous volatile organic compounds reported by California Standard Section 01350 Specification

Liu et al., Lab Chip. 13, 818 (2013)

UNIVERSITY OF MICHIGAN

Results (Temperature ramping)

Analysis time is shortened

UNIVERSITY OF MICHIGAN

Selective detection (Heart-cutting detection)

- 1. Good for specific targets
- 2. Stand-by mode operation

Liu et al., Lab Chip. **13**, 818 (2013)

Smart 3-D GC

Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013)

Setup

¹D column: 0.8 m long, i.d. = 0.25 mm, Rtx-5 ms coating ²D column: 1 m long, i.d. = 0.25 mm, Rtx-1 coating ³D column: 3 m long, i.d. = 0.25 mm, SUPELCOWAX-10 coating Isothermal at room temperature Flow rate = 6.5 mL/min

Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013)

Simple example

Center for Wireless Integrated MicroSensing & Systems

Isothermal separation of 22 analytes

Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013)

3-D chromatogram

3-D chromatogram

2-D chromatogram projected from 3-D chromatogram

Chen et al., Anal. Chem. DOI: 10.1021/ac401152v (2013)

	Chlorobenzene (#18)	m-xylene (#22)
t ₁	65.5 s	91.5 s
σ1	4.5 s	6.4 s
n ₁	19	20
t ₂	23 s	95 s
σ ₂	1.46 s	5 s
n ₂	15	25
t ₃	116 s	64 s
σ3	1.35 s	1.35 s
n ₃	76	24
Total peak capacity $(n_1 \times n_2 \times n_3)$	21,660	12,000
Total analysis time for analyte	937 s	1,476
Peak capacity production	1,336/min	488/min

- 3-D starts to show the strength of high-dimension of separation
- With increased number of dimensions, total peak capacity increases

Proposed project

To develop an automated field-deployable multi-channel 3-dimensional micro-gas chromatography device capable of rapid (\sim 20 minutes), sensitive (\sim ppb to sub-ppb), and *in-situ* analysis of >100 indoor (S)VOCs for human exposure assessment.

Proposed task #1 (Year 1)

- 1. Microfabrication to reduce the cost and system complexity
- 2. Modular design for ease of scale-up and re-configuration

Proposed task #1 (Year 1)

- 1. Simulation to better understand the smart GC design
- 2. Algorithm for better peak detection
- 3. Algorithm to more efficiently use analysis time and peak capacity How to maximize the total peak capacity while minimizing the assay time

Simulation for smart 1x2x4 channel GC³ (Most recent result)

- Isothermal operation for all 3 dimensions
- 150 VOCs
- Able to separate 94% of 150 VOCs in 6 minutes

Proposed task #2 (Year 2)

System assembly and testing

μGC	Weight	Size	Sensitivity	Automation	Total analysis time
3-D	2-3 kg	Desktop	1-10 pg	Yes	<20 min. for 150 VOCs

Proposed task #3 and #4 (Year 3)

3-D GC measurement of 150 (S)VOCs related to indoor environment

20 min analysis time Quantification of >90% of 150 (S)VOCs Building a 3-D chromatogram reference library Benchmarking against standard GC-MS

Acknowledgement

Former and current lab members:

Post-doctors

Ian M. White, Siyka I. Shopova, Jiwon Lee, Robert Nidetz, Girish Kulkarni

Ph.D. students

Yuze Sun, Jing Liu, Jung Hwan Seo, Karthik Reddy, Kee Scholten, Di Chen, Menglian Zhou, Hongbo Zhu, Girish Kulkarni

Undergraduate students

Xiyu Zhang, Pascal Sturmfels

Sponsors:

<u>EPA:</u> 83564401

<u>NSF:</u>

- ECCS-1405870
- IIP-1443335
- IIP-1342917
- ECCS-1128157
- IOS-0946735
- ECCS-0729903

<u>University of Michigan:</u> WIMS² <u>Global Challenges for a Third Century</u>

Former and current collaborators:

Dr. Greg Fry-Mason (Sandia National Lab) Prof. Jack Schultz (University of Missouri) Prof. Yogesh Gianchandani (University of Michigan) Prof. Edward Zellers (University of Michigan) Prof. Katsuo Kurabayashi (University of Michigan) Prof. Zhaohui Zhong (University of Michigan) Prof. Rudy Richardson (University of Michigan)

End of the presentation

Contact information

xsfan@umich.edu http://www.bme.umich.edu/labs/fanlab/index.php

