Why Quantify Emission Rates?

- Justification for repair/control costs.
- Prioritization and optimization of efforts?
 - Typically 80 to 90% of emissions contributed by the top 10 leakers at each site.
- Objective performance monitoring.
- Potential to generate marketable GHG credits.
Performance Requirements:

- Reasonable cost.
- Readily available.
- Sufficient accuracy for economic evaluations (e.g., ±25% or better).
Traditional Approaches:

- **Target Applications:**
 - Generally limited to smaller to medium sized equipment components and leak rates.

- **Basic constraints:**
 - Requires easy or supplied access to leaks.

- **Potential Issues:**
 - Composition dependencies.
 - Potential safety issues (H$_2$S or relief events).
 - Backpressure limitations.
 - Detection limitations.
 - High temperature surfaces.
 - Surfaces with heavy ice or frost accumulation.
Traditional Approaches:

- Methods:
 - Bagging
 - Time consuming and costly to apply.
 - Applicable for small to moderate leak rates.
 - End-of-Pipe Capture and Measurement Techniques
 - Calibrated Bag
 - Full-flow flow meters.
 - Hi-Flow Sampler
 - Convenient approach for smaller to medium sized leaks (e.g., 8 to 10 scfm or $29,400 to $36,700/y at $7/mscf).
 - Velocity Probes.
Non-traditional Methods:

- Target Applications:
 - Vent and flare systems.
 - Area, and volume sources.
 - Inaccessible or unsafe to access sources.

- Basic Constraints:
 - Generally more costly and complicated to use.

- Potential Issues:
 - Weather dependent.
 - Susceptible to interferences.
 - Require suitable downwind access (i.e., remote sensing methods).
 - Potentially reduced resolution and accuracy.
Non-traditional Methods:

- Methods:
 - Tracer techniques:
 - In–line tracer methods.
 - Transient response (e.g., ASHRAE building methods).
 - Pollutant-to-tracer ratio technique.
 - Remote plume sensing methods.
 - DIAL (ftp://public:access@ts.clearstone.ca).
 - Back-calculation using atmospheric dispersion models and upwind/downwind monitoring data.
 - AIRDAR.
Non-traditional Methods:

- Methods:
 - Source modeling (i.e., estimation from process operating data and engineering principles):
 - Mass balance and energy balance techniques.
 - Process simulators.
Where should measurement efforts be focused?

<table>
<thead>
<tr>
<th>Major Category</th>
<th>Sub-Category</th>
<th>Typical Leak Frequency (%)</th>
<th>Component Count (% of Total)</th>
<th>% Contribution to Total Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recip Comp Units</td>
</tr>
<tr>
<td>Connectors</td>
<td>All</td>
<td>1.2</td>
<td>87.3</td>
<td>1.9%</td>
</tr>
<tr>
<td>Valves</td>
<td>Control Valves</td>
<td>14.6</td>
<td>0.3</td>
<td>4.2%</td>
</tr>
<tr>
<td></td>
<td>Block Valves</td>
<td>4.0</td>
<td>10.4</td>
<td>1.7%</td>
</tr>
<tr>
<td>Open-Ended Lines</td>
<td>All</td>
<td>NA</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>Pressure Relief Devices</td>
<td>All</td>
<td>14.6</td>
<td>0.2</td>
<td>6.0%</td>
</tr>
<tr>
<td>Pressure Regulators</td>
<td>All</td>
<td>16.3</td>
<td>0.3</td>
<td>0.1%</td>
</tr>
<tr>
<td>Blowdown Systems</td>
<td>Pressurized Stn or Comp Unit</td>
<td>73.5</td>
<td>0.1</td>
<td>20.2%</td>
</tr>
<tr>
<td></td>
<td>Depressurized Recip Comp</td>
<td>73.3</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>DepressurizedCentr. Comp</td>
<td>61.1</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>Recip</td>
<td>86.1</td>
<td>0.1</td>
<td>57.0%</td>
</tr>
<tr>
<td></td>
<td>Centrifugal</td>
<td>95.2</td>
<td>0.1</td>
<td>0.0%</td>
</tr>
<tr>
<td>Flow Meters</td>
<td>Orifice Meters</td>
<td>20.2</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Instrument Controllers</td>
<td>All</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total Highlighted</td>
<td></td>
<td>1.7</td>
<td>92.2%</td>
<td>90.9%</td>
</tr>
</tbody>
</table>
Compressor Seal Vents:

- **Causes of Emissions:**
 - Seal wear.

- **Typical Measurement Problems:**
 - Potentially multiple leakage points:
 - Centrifugal:
 - Lube oil degassing reservoir.
 - Seal Vent.
 - Reciprocating compressors:
 - Distance piece and packing case vents.
 - Lube oil drain tank vent.
 - Crank case vent.
 - Potentially large flows.
 - Minimal tolerance to any back-pressure.
 - Fouling due to lube oil mist.
Compressor Seal Vents:

- **Typical Measurement Problems:**
 - Oily roof-tops and limited roof-top access.
 - Lack of ports on vent lines.
 - Possibly weather caps on vent outlets.

- **Measurement Approaches.**
 - Vane anemometers.
 - Diaphragm meters or calibrated bags where some backpressure can be tolerated.
 - Hi-Flow Sampler
 - Quantitative remote sensing methods.

- **Permanent Solutions:**
 - Flow switches.
 - Rotameters.
Blowdown and Vent/Flare Systems:

- Causes of Emissions (During Passive Periods):
 - Purge gas.
 - Leakage past the seats of blowdown/relief valves (5 to 10% leak and 1 to 2% of these contribute over 75% of the emissions).
 - Blowdown or drain valves not fully closed.
 - Compressor seals.

- Typical Measurement Problems:
 - Potentially large flows.
 - Difficulty accessing end of pipe.
 - Limited or no suitable ports for insertion of velocity probes.
Blowdown and Vent/Flare Systems:

- Typical Measurement Problems:
 - Low flow velocities.
 - Potentially wet or fouled environment inside pipe.
 - Safety concerns (relief episodes).

- Measurement Approaches.
 - Micro-tip vane and thermal dispersion anemometers.
 - In-line tracer tests.
 - Ultrasonic sensors (portable & online).
 - Remote sensing methods.

- Permanent Solutions:
 - Ultrasonic transit-time flow meters.
 - Flow switches.
Storage Tanks:

- Causes of Emissions:
 - Working and breathing losses.
 - Flashing losses.
 - Unaccounted for contributions:
 - Unintentional Gas carry-through.
 - Leaking drain and dump valves.
 - Malfunctioning level controllers.
 - Inefficient upstream gas/liquid separation.
 - Piping changes resulting in storage of unstablized product.
 - Non-routine storage of unstablized product in atmospheric tanks.
 - Malfunctioning vapor recovery systems:
 - Faulty blanket gas regulators or pressure controllers.
 - Fouled vapor collection lines.
 - Leaking roof fittings and seals.
Storage Tanks:

Typical Measurement Problems:
- Multiple roof openings.
- Edge-of-roof access only.
- Dependence on pump in/out activity and meteorological conditions.
- Fall protection and potentially confined space training required.
- Interpretation and extrapolation of results.

Measurement Approaches:
- Velocity profiles across openings.
 - Vane anemometers.
- Tracer techniques.
- DIAL

Engineering Calculations
- API E & P TANKS Model (Flashing, working and breathing losses).
Storage Tanks – Remote Emissions Measurement
Storage Tanks – Unaccounted Losses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Plant #1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gas Plant #2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gas Plant #3</td>
<td>1 663</td>
<td>57</td>
<td>813</td>
<td>441 371</td>
</tr>
<tr>
<td>Gas Plant #4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gas Plant #5</td>
<td>95</td>
<td>93</td>
<td>1 325</td>
<td>24 559</td>
</tr>
<tr>
<td>Gas Plant #6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gas Plant #7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gas Plant #8</td>
<td>4 469</td>
<td>2 651</td>
<td>37 801</td>
<td>1 880 267</td>
</tr>
<tr>
<td>Gas Plant #9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6 227</td>
<td>2 801</td>
<td>39 939</td>
<td>2 346 197</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>692</td>
<td>311</td>
<td>4 438</td>
<td>260 689</td>
</tr>
</tbody>
</table>

Best options by source:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRVs</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OELs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blowdown Systems</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flare Systems</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tanks</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-point Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Conclusions on Leak Measurement:

- A selection of measurement techniques is needed.
- Instrumented solutions are the best choice for large potential emitters:
 - Compressor seals.
 - Flare and vent systems.
 - Metering of gas blanketing systems.