Pigment Violet 29 (CASRN: 81-33-4) Bibliography: Supplemental File for the TSCA Scope Document

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer Reviewed Literature Search Results</td>
<td>2</td>
</tr>
<tr>
<td>Fate Literature Search Results</td>
<td>2</td>
</tr>
<tr>
<td>On Topic</td>
<td>2</td>
</tr>
<tr>
<td>Off Topic</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Literature Search Results</td>
<td>29</td>
</tr>
<tr>
<td>On Topic</td>
<td>29</td>
</tr>
<tr>
<td>Off Topic</td>
<td>30</td>
</tr>
<tr>
<td>Exposure Literature Search Results</td>
<td>58</td>
</tr>
<tr>
<td>On Topic</td>
<td>58</td>
</tr>
<tr>
<td>Off Topic</td>
<td>58</td>
</tr>
<tr>
<td>Environmental Hazard Literature Search Results</td>
<td>85</td>
</tr>
<tr>
<td>On Topic</td>
<td>85</td>
</tr>
<tr>
<td>Off Topic</td>
<td>85</td>
</tr>
<tr>
<td>Human Health Hazard Literature Search Results</td>
<td>89</td>
</tr>
<tr>
<td>On Topic</td>
<td>89</td>
</tr>
<tr>
<td>Off Topic</td>
<td>89</td>
</tr>
<tr>
<td>OPPT Risk Assessment, Problem Formulation or Scope Document</td>
<td>98</td>
</tr>
<tr>
<td>On Topic</td>
<td>98</td>
</tr>
<tr>
<td>Gray Literature Search Results</td>
<td>102</td>
</tr>
</tbody>
</table>
This document provides the bibliographic citations that were identified and screened from the initial literature search and the initial categorization of whether citations are on topic or off topic. On topic references are those that may contain data and/or information relevant to the risk evaluation. Off topic references are those that do not appear to contain data or information relevant to the risk evaluation.

Because systematic review is an iterative process, EPA/OPPT expects that some references may move from the on topic to the off topic category and vice versa. Additional on topic references not initially identified in the initial search may also be identified as the systematic review process proceeds. Moreover, targeted supplemental searches may be conducted to address specific needs for the analysis phase (e.g., to locate specific data needed for modeling).

Some of the references supporting the “Scope of the Risk Evaluation for Pigment Violet 29” may not be reflected in the “OPPT Risk Assessment, Problem Formulation or Scope Document” section of this bibliography document. Thus, please refer to the bibliography included in the final scope document for the full list of references.

PEER REVIEWED LITERATURE SEARCH RESULTS
The peer reviewed literature search results include results from comprehensive searches of bibliographic databases. The results were reviewed and determined to either be on topic or off topic with respect to the data needs of the five topic areas presented below. The full literature search strategy is presented in the Strategy for Conducting Literature Searches for Pigment Violet 29- Supplemental File for the TSCA Scope Document.

Citations are presented in the format returned from database searches. In some instances citations may be incomplete (e.g., publication year or journal information may be missing). Efforts to complete citation information are underway. Because each reference was considered for each topic area during screening, a citation may be listed as on topic or off topic in more than one topic area.

Fate Literature Search Results

On Topic
No on topic fate references

Off Topic

Alcalà, MA; Shade, CM; Uh, H; Kwan, SY; Bischof, M; Thompson, ZP; Gogick, KA; Meier, AR; Strein, TG; Bartlett, DL; Modzelewski, RA; Lee, YJ; Petoud, S; Brown, CK. (2011). Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials. 32: 9343-9352. http://dx.doi.org/10.1016/j.biomaterials.2011.07.076.

Fate Literature Search Results

Off Topic

Alucio-Sarduy, E; Singh, R; Kan, Z; Ye, T; Baidak, A; Calloni, A; Berti, G; Duo, L; Iosifidis, A; Beurepa, S; Leclerc, M; Butt, HJ; Floudas, G; Keivanidis, PE. (2015). Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces. 7: 8687-8698. http://dx.doi.org/10.1021/acsami.5b00827.

An, ZS; Yu, JS; Jones, SC; Barlow, S; Yoo, S; Domercq, B; Prins, P; Siebbeles, LDA; Kippelen, B; Marder, SR. (2005). High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv Mater Deerfield. 17: 2580-+.

http://dx.doi.org/10.1002/adma.200500027.

Banal, JL; Soleimaniejad, H; Jrad; FM; Liu, M; White, JM; Blakers, AW; Cooper, MW; Jones, DJ; Ghiggino, KP; Marder, SR; Smith, TA; Wong, WW. (2016). Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide. J Phys Chem C. 120: 12952-12958. http://dx.doi.org/10.1021/acs.jpc.6b04479.

http://dx.doi.org/10.1016/j.dye pig.2013.04.004.

Fate Literature Search Results

Off Topic

Chen, Y; Chen, L; Qi, G; Wu, H; Zhang, Y; Xue, L; Zhu, P; Ma, P; Li, X. (2010). Self-assembled organic-inorganic hybrid nanocomposite of a perylenetetracarboxylic diimide derivative and CdS. Langmuir. 26: 12473-12478. http://dx.doi.org/10.1021/la102094d.

Fate Literature Search Results

Off Topic

Chiu, Tl; Chuang, K; aiH; Lin, C; hiF; Ho, Y; uH; Lee, JH; aw; Chao, CC; Leung, M; anKit; Wan, D; eHuI; Li, CY; u; Chen, HL i. (2009). Low reflection and photo-sensitive organic light-emitting device with perylene diimide and double-metal structure. Thin Solid Films. 517: 3712-3716. http://dx.doi.org/10.1016/j.tsf.2008.12.037.

Chou, W, eiy; Lin, Y; is; Kuo, LL; Liu, SJ; Cheng, HL; Fang, T; uC. (2014). Light sensing in photosensitive, flexible n-type organic thin-film transistors. 2: 626-632. http://dx.doi.org/10.1039/c3tc31966k.

Davis, NJL; K; Macqueen, RW; Roberts, DA; Danos, A; Dehn, S; Perrier, S; Schmidt, TW. (2016). Energy pendant transfer in perylene diimide copolymers. 4: 8270-8275. http://dx.doi.org/10.1039/c6tc02555b.

De Los Cobos, O; Fousseret, B; Lejeune, M; Rossignol, F; Dutreilh-Colas, M; Carrion, C; Boissiere, C; Ribot, F; Sanchez, C; Catton, X; Man, MWC; hi; Durand, JO. (2012). Tunable Multifunctional Mesoporous Silica Microdots Arrays by Combination of Inkjet Printing, EISA, and Click Chemistry. Chem Mater. 24: 4337-4342. http://dx.doi.org/10.1021/cm3022769.

Fate Literature Search Results

Off Topic

Diez-Pérez, I; Li, Z; Guo, S; Madden, C; Huang, H; Che, Y; Yang, X; Zang, L; Tao, N. (2012). Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano. 6: 7044-7052. http://dx.doi.org/10.1021/nn302909t.

Distanov, VB; Berdanova, VF; Gurlakleno, YA; Prezhdo, VV. (2001). An alternative approach to the production of fluorescent colored fibres. Dyes and Pigments. 48: 159-163.

Fan, Q; Cheng, K; Yang, Z; Zhang, R; Yang, M; Hu, X; Ma, X; Bu, L; Lu, X; Xiong, X; Huang, W; Zhao, H; Cheng, Z. (2015). Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater Deerfield. 27: 843-847. http://dx.doi.org/10.1002/adma.201402972.

Feng, X; An, Y; Yao, Z; Li, C; Shi, G. (2012). A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+-mediated perylene diimide aggregates. 4: 614-618. http://dx.doi.org/10.1021/am201616r.

Fate Literature Search Results

Off Topic

Georgiev, NI; Bojinov, VB; Nikolov, PS. (2011). The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes and Pigments. 88: 350-357. http://dx.doi.org/10.1016/j.dyepig.2010.08.004.

Georgiev, NI; Dimitrova, MD; Todorova, YD; Bojinov, VB. (2016). Synthesis, chemosensing properties and logic behaviour of a novel ratiometric 1,8-naphthalimide probe based on ICT and PET. Dyes and Pigments. 131: 9-17. http://dx.doi.org/10.1016/j.dyepig.2016.03.051.

Gong, R; ui; Mu, H; Sun, Y; Fang, X; Yue, P; Fu, E. (2013). The first fluorescent sensor for medium-chain fatty acids in water: design, synthesis and sensing properties of an organic-inorganic hybrid material. 1: 2038-2047. http://dx.doi.org/10.1039/c3tb00355h.

8
Fate Literature Search Results

Off Topic

Gu, P, eiy; Lu, C, aij; Hu, Z, hilun; Li, N, jian; Zhao, TT; Xu, QF; Xu, QH, ija; Zhang, JD; Lu, JM, ei. (2013). The AIEE effect and two-photon absorption (TPA) enhancement induced by polymerization: formation of a monomer with ICT and its AIEE activity as a new photophysical properties by ATRP and a study of their photophysical properties. 1: 2599-2606. http://dx.doi.org/10.1039/c3tc00738c.

Fate Literature Search Results

Off Topic

Hadmojo, WT; Nam, S; oY; Shin, T; aeeJo; Yoon, SC; Jang, SY; Jung, I; nh. (2016). Geometrically controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic devices. 4: 12308-12318. http://dx.doi.org/10.1007/c6ta04344e.

Han, C; Huang, T; Liu, Q; i; Xu, H; Zhuang, Y; Li; J; Hu, J; Wang, A; Xu, K; ai. (2014). Design and synthesis of a highly sensitive "Turn-On" fluorescent organic nanoprobe for iron(III) detection and imaging. 2: 9077-9082. http://dx.doi.org/10.1007/c4tc01759e.

He, Q; Li, T; Yan, C; Liu, Y; Wang, J; Wang, M; Lin, Y; Zhan, X. (2016). Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments. 128: 226-234. http://dx.doi.org/10.1016/j.dyepig.2016.01.034.

Hendsbee, AD; Mcafee, SM; Sun, J; onP; Mccormick, TM; Hill, I; anG; Welch, GC. (2015). Pthalimide-based pi-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells. 3: 8904-8915. http://dx.doi.org/10.1007/c5tco1877c.

Fate Literature Search Results

Off Topic

Huang, C; Sartin, MM; Siegel, N; Cozzuol, M; Zhang, Y; Hales, JM; Barlow, S; Perry, JW; Marder, SR. (2011). Photo-induced charge transfer and nonlinear absorption in dyads composed of a two-photon-absorbing donor and a perylene diimide acceptor. J Mater Chem. 21: 16119-16128. http://dx.doi.org/10.1039/c1jm12566d.

Huang, J; Wang, X; Zhang, X; Niu, Z; Lu, Z; Jiang, B; Sun, Y; Zhan, C; Yao, J. (2014). Additive-assisted control over phase-separated nanostuctures by manipulating alkylthienyl position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. 6: 3853-3862. http://dx.doi.org/10.1021/am406050j.

Im, P; Kang, D; Kim, D; Choi, Y; Yoon, W; Lee, MH; Lee, I; nH; Lee, CR; o; Jeong, KU, n. (2016). Flexible and Patterned Thin Film Polarizer: Photopolymerization of Peryl-ene-based Lyotropic Chroomic Reactive Mesogens. ACS Applied Materials & Interfaces. 8: 762-771. http://dx.doi.org/10.1021/acsami.6b09995.

Jang, J; Nam, S; Yun, W; onMm; Yang, C; Hwang, J; An, T; aKyu; Chung, D; eS; Park, CE, on. (2011). High T-g cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible electronics with low-voltage and air-stable operation. J Mater Chem. 21: 12542-12546. http://dx.doi.org/10.1039/c1jm11544h.

Jeong, YJ; Jang, J; Nam, S; Kim, K; Kim, LH; Park, S; An, TK; Park, CE. (2014). High-performance organic complementary inverters using monolayer graphene electrodes. 6: 6816-6824. http://dx.doi.org/10.1021/am500618g.

Jia, Y; Li, P; Song, W; Zhao, G; Zheng, D; Li, D; Wang, Y; Wang, J; Li, C; Han, K. (2016). Rational Design of a Profluorescent Substrate for S-adenosylhomocysteine Hydrolyase and Its Applications in Bioimaging and Inhibitor Screening. 8: 25818-25824. http://dx.doi.org/10.1021/acs.jchemed.6b09190.

Jiang, XZ; Liu, YQ; Tian, H; Qiu, WF; Song, XQ; Zhu, DB. (1997). An electroluminescence device made with a new fluorescent dye containing 1,3,4-oxadiazole. J Mater Chem. 7: 1395-1398.

Jin, Q; Feng, L; Wang, DD; Dai, ZR; Wang, P; Zou, LW; Liu, ZH; Wang, JY; Yu, Y; Ge, GB; Cui, JN; Yang, L. (2015). A Two-Photon Ratiometric Fluorescent Probe for Imaging Carboxylesterase in 2 Living Cells and Tissues. 7: 28474-28481. http://dx.doi.org/10.1021/acs.chemmater.5b09573.

Fate Literature Search Results

Off Topic

Kalita, A; Hussain, S; Malik, AH; Subbarao, NVV; Iyer, PK. (2015). Vapor phase sensing of ammonia at the sub-ppm level using a perylene diimide thin film device. 3: 1076-1077. 4 http://dx.doi.org/10.1039/c5tc02521d.

Kim, MH, ee; Cho, M, inju; Kim, KH; Hoang, M, aihm; Lee, T, aeWan; Jin, JI; Kang, N, amSu; Yu, J, aeW; Choi, DH. (2009). Organic donor-sigma-acceptor molecules based on 1,2,4,5-tetakis[(E)-(2-5'-hexyl-2,2'-bithiophen-S-y])vinyl]benzene and perylene diimide derivative and their application to the photovoltaic devices. Organic Electronics. 10: 1429-1441. http://dx.doi.org/10.1016/j.orgel.2009.08.004.

Kim, YY; Ree, BJ; KidO, M; Ko, YG, i; Ishige, R; Hirai, T; Wi, D; Kim, J; Kim, W, onl; Takahara, A; Ree, M. (2015). High-Performance n-Type Electrical Memory and Morphology-Induced Memory-Mood Tuning of a Well-Defined Brush Polymer Bearing Perylene Diimide Molecules. 1. http://dx.doi.org/10.1021/acs.orglett.1500197.

Fate Literature Search Results

Off Topic

Li, DX; Zhang, JF; Jiang, YH; Jang, YJ; Kim, DH; Kim, JS. (2012). Plasmonic-coupling-based sensing by the assembly and disassembly of dipycyolamine-tagged gold nanoparticles induced by complexing with cations and anions. Small. 8: 1442-1448. http://dx.doi.org/10.1002/smll.201102335.

Li, H; ua; Li, N; Sun, R; u; Gu, H; Ge; J; Lu, J; Xu, Q; Xia, X; Wang, L. (2011). Dynamic Random Access Memory Devices Based on Functionalized Copolymers with Pendant Hydrazine Naphthalimide Group. J Phys Chem C. 115: 8288-8294. http://dx.doi.org/10.1021/jp1111668.

Fate Literature Search Results

Off Topic

Li, ZW; Yang; QW; Chang; RX; Ma, GC; Chen, MX; Zhang, WQ. (2011). N-Heteroaryl-1,8-naphthalimide fluorescent sensor for water Molecular design, synthesis and properties. Dyes and Pigments. 88: 307-314. http://dx.doi.org/10.1016/j.dyepig.2010.07.009.

Fate Literature Search Results

Off Topic

Liu, J; Tu, GL; Zhou, QG; Cheng, YX; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J Mater Chem. 16: 1431-1438. http://dx.doi.org/10.1039/b514359d.

Liu, J; Zhou, QG; Cheng, YX; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). White electroluminescence from a single-polymer system with simultaneous two-color emission: Polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant on the main chain. Adv Funct Mater. 16: 957-965. http://dx.doi.org/10.1002/adfm.20050761.

Liu, X; Zhang, Y; Pang, X; E, Y, u; Zhan, Y; Yang, D; Tang, J; Li, J; Che, Y; Zhao, J. (2015). Nanocoiled Assembly of Asymmetric Perylenes Diimides: Formulation of Structural Devices. J Phys Chem C. 119: 6446-6452. http://dx.doi.org/10.1021/jpcc.5b00720.

Liu, Y; Zhang, Z; Xia, Z; Zhang, J, ie; Liu, Y; Liang, F; Li, Y; Song, T, ao; Yu, X; Lee, ST; Sun, B. (2016). High Performance Nanostructured Silicon-Organic Quasi-p-n Junction Solar Cells via Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano. 10: 704-712. http://dx.doi.org/10.1021/acs.nano.5b05732.

Locklin, J; Li, DW; Mannsfeld, SCB; Borkent, EJ; Meng, H; Advincula, R; Bao, Z. (2005). Organic thin film transistors based on cyclohexyl-substituted organic semiconductors. Chem Mater. 17: 3366-3374. http://dx.doi.org/10.1021/cm047851g.

Ma, Z; Zhang, P; Yu, X; Lan, H; Li, Y; Xie, D; Li, J; Yi, T, ao. (2015). Sugar based nanotube assembly for the construction of sonication triggered hydrogel: an application of the entrapment of tetracycline hydrochloride. 3: 7366-7371. http://dx.doi.org/10.1039/c5tb01191d.
Fate Literature Search Results

Off Topic

May, B; Poteau, X; Yuan, DW; Brown, RG. (1999). A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butyramino-1,8-naphthalimide. Dyes and Pigments. 42: 79-84.

Min, J; iere; Bronnbauer, C; Zhang, z; hiGuo; Cui, C; Luposnov, YN; Ata, I; Schweizer, P; Przybilla, T; Guo, F; ei; Ameri, T; Forberich, K; Spoerich, E; Baeuerle, P; Ponomarenko, SA; Li, Y; Brabec, CJ. (2016). Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Adv Funct Mater. 26: 4543-4550. http://dx.doi.org/10.1002/adfm.201505411.

Min, J; iere; Zhang, z; hiGuo; Hou, Y; i; Quiroz, COR; Przybilla, T; Brabauer, C; Guo, F; ei; Forberich, K; Azimi, H; Ameri, T; Spoerich, E; Li, Y; Brabec, CJ. (2015). Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene-Diimide Heterojunctions toward High Performance. Chem Mater. 27: 227-234. http://dx.doi.org/10.1021/cm5037919.

Mondal, S; Lin, W; eiH; Chen, Y; uCHi; Huang, SH; an; Yang, R; Chen, B; oH; Yang, T; eiF; Mao, SW; ei; Kuo, MY, u. (2015). Solution-processed single-crystal perylene diimide transistors with high electron mobility. Organic Electronics. 23: 64-69. http://dx.doi.org/10.1016/j.orgel.2015.04.011.

Moniz, T; Queiros, C; Ferreira, R; Leite, A; Gameiro, P; silica, a; nMG; Rangel, M. (2013). Design of a water soluble 1,8-naphthalimide/3-hydroxy-4-pyridone conjugate: Investigation of its spectroscopic properties at variable pH and in the presence of Fe3+, Cu2+ and Zn2+. Dyes and Pigments. 98: 201-211. http://dx.doi.org/10.1016/j.dyeopig.2013.02.020.

Fate Literature Search Results

Off Topic

Morgado, J; Gruner, J; Walcott, SP; Yong, TM; Cervini, R; Moratti, SC; Holmes, AB; Friend, RH. (1998). 4-AcNi - a new polymer for light-emitting diodes. Synthetic Metals. 95: 113-117.

Moscatello, JP; Castaneda, CV; Zaidi, A; Cao, M; Usluer, O; Bisenio, AL; Aidala, KE. (2017). Time-resolved kelvin probe force microscopy to study population and depopulation of traps in electron or hole majority organic semiconductors. Organic Electronics. 41: 26-32. http://dx.doi.org/10.1016/j.orgel.2016.11.001.

Naab, BD; Gu, X; Kurosawa, T; To, JWF; Salleo, A; Bao, Z. (2016). Role of Polymer Structure on the Conductivity of N-Doped Polymers. 2. http://dx.doi.org/10.1002/aelm.201600004.

Nakaya, K; Funabiki, K; Muramatsu, H; Shibata, K; Matsu, M. (1999). N-aryl-1,8-naphthalimides as highly sensitive fluorescent labeling reagents for carnitine. Dyes and Pigments. 43: 235-239.

Nam, S; Hahn, S; ukGyu; Han, H; Seo, J; Kim, C; Kim, H; Marder, SR; Ree, M; Kim, Y. (2016). All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple Bond-Conjugated Perylene Diimide Polymer. 4: 767-774. http://dx.doi.org/10.1021/acs.suschemeng.b500732.

Pang, X; Yu, X; Lan, H; Ge, X; Li, Y; Zhen, X; Yi, T. ao. (2015). Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel. ACS Applied Materials & Interfaces. 7: 13569-13577. http://dx.doi.org/10.1021/acsami.5b03000.

Park, G; eNun; Choi, S; Lee, D; aeHee; Godumala, M; Uddin, MA; Woo, H; anY; Choi, M; inlu; Choi, DH. (2017). Perylene diimide isomers containing a simple sp(3)-core for non-fullerene-based polymer solar cells. 5: 663-671. http://dx.doi.org/10.1039/c6ta09394a.

Fate Literature Search Results

Off Topic

Park, HJ; So, MC; Gosztola, D; Wiederrecht, GP; Emery, JD; Martinson, AB; Er, S; Wilmer, CE; Vermeulen, NA; Aspuru-Guzik, A; Stoddart, JF; Farha, OK; Hupp, JT. (2016). Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. 8: 24983-24988. http://dx.doi.org/10.1021/acsami.6b03307.

Qian, XH; Zhang, YL; Chen, KC; Tao, ZF; Shen, YG. (1996). A study on the relationship between Stok’s shift and low frequency half-value component of fluorescent dyes. Dyes and Pigments. 32: 229-235.

Qiu, B; Yuan, J; un; Xiao, HC; He, D; Qiu, L; Zou, Y; Zhang, Z; Li, Y. (2015). Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b']dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces. 7: 25237-25246. http://dx.doi.org/10.1021/acsami.5b07066.

Qu, Z; Li, P; Zhang, X; Han, K. (2016). A turn-on fluorescent chemodosimeter based on deteurlation for detecting ferrous iron (Fe2+) in living cells. 4: 887-892. http://dx.doi.org/10.1039/c5tb02090e.

Fate Literature Search Results

Off Topic

Reger, DL; Sarianni, E; Horger, J; Smith, MD; Semeniuc, RF. (2010). Supramolecular Architectures of Metal Complexes Controlled by a Strong pi center dot center dot center dot pi Stacking, 1,8-Naphthalimide Functionalized Third Generation Tris(pyrazolyl)methane Ligand. Cryst Growth Des. 10: 386-393. http://dx.doi.org/10.1021/cg100100d.

Savage, RC; Orgiu, E; Mativetsky, JM; Pisula, W; Schnitzler, T; Everslo, CL; Li, C; Müllen, K; Samori, P. (2012). Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique. Nanoscale. 4: 2387-2393. http://dx.doi.org/10.1039/c2nr03088e.

Fate Literature Search Results

Off Topic

Shoae, A; Clarke, TM; Eng, MF; Huang, C; Barlow, S; Espildora, E; va; Luis Delgado, J; Campo, B; Mader, SR; Heeney, M; Mcculloch, I; Martin, N; Vanderzande, D; Durrant, JR. (2012). Charge photogeneration in donor/acceptor organic solar cells. 2. http://dx.doi.org/10.1111/j.1748-0101.2012.02201.x.

Shu, W; ei; Wang, Y; Wu, L; u; Wang, Z; Duan, Q; Gao, Y; Liu, C; Zhu, B; Yan, L. (2016). Novel Carbonothioate-Based Colorimetric and Fluorescent Probe for Selective Detection of Mercury Ions. Ind Eng Chem Res. 55: 8713-8718. http://dx.doi.org/10.1021/acs.iecr.6b02158.

Singh, R; Giussani, E; Mroz, MM; Di Fonzo, F; Fazzi, D; Cabanillas-Gonzalez, J; Oldridge, L; Vaenas, N; Kontos, AG; Faralas, P; Grimsdale, AC; Jacob, J; Muellen, K; Keivanidis, PE. (2014). On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic Electronics. 15: 1347-1361. http://dx.doi.org/10.1016/j.orgel.2014.03.044.

Fate Literature Search Results

Off Topic

Tang, J; Yang, H; Li; J; Wang, Y; ao; Yin, X; Wang, R; ui; Huang, L; Huang, Z. (2010). Ln(3+) enhanced blue fluorescence from novel excimer of 1,8-naphthalimide-conjugated PAMAM. Optical Materials. 32: 1417-1422. http://dx.doi.org/10.1016/j.optmat.2010.05.008.

Fate Literature Search Results

Off Topic

Tao, ZF; Qian, XH. (1999). Naphthalimide hydroperoxides as photoneucleases: substituent effects and structural basis. Dyes and Pigments. 43: 139-145.

Tao, ZF; Qian, XH; Wei, DZ. (1996). 1,8-naphthalimide hydroperoxides as novel intercalating DNA cleavers. Dyes and Pigments. 31: 245-251.

Fate Literature Search Results

Off Topic

Veldkamp, BS; Han, W; onSik; Dyr, SM; Eaton, SW; Ratner, MA; Wasielewski, MR. (2013). Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly. Energ Environ Sci. 6: 1917-1928. http://dx.doi.org/10.1039/c3ee40378e.

Wang, H; Guo, L; inEi; Li, X; uuMei; Zhang, L; iMei; Xu, Q; iuLin; Wu, G; aoFen; Zhou, Y; Zhang, J; unF. (2015). Coumarin-based turn-on fluorescence probes for highly selective detection of Pi in cell culture and Caenorhabditis elegans. Dyes and Pigments. 120: 293-298. http://dx.doi.org/10.1016/j.dyepig.2015.04.031.

Wang, H; ua; Liang, Y; an; Xie, H; Lu, H; Zhao, S; Feng, S. (2016). Unexpected SiMe3 effect on color-tunable and fluorescent probes of dendriphilic polyphenyl napthalamides with aggregation-induced emission enhancement. 4: 745-750. http://dx.doi.org/10.1039/c5tc03344f.

Wang, J; Yao, Y; Dai, S; Zhang, X; Wang, W; ei; He, Q; Han, L; ei; Lin, Y; Zhan, X. (2015). Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. 3: 13000-13010. http://dx.doi.org/10.1039/c5ta02589c.

Fate Literature Search Results

Off Topic

Wang, Y; i; Zhou, J; ie; Wang, X; u; Zheng, X; Lu, Z; Zhang, W, ei; Chen, Y; Huang, Y; an; Pu, X; Yu, J. (2014). An efficient guest/host fluorescent energy transfer pair based on the naphthalimide scaffold, and its application in heavily-doped red organic light-emitting diodes. Dyes and Pigments. 100: 87-96. http://dx.doi.org/10.1016/j.dyepig.2013.08.021.

Wen, Y; Liu, Y; Di, C, an; Wang, Y; Sun, X; Guo, Y; Zheng, J; Wu, W; Ye, S; Yu, G, ui. (2009). Improvements in Stability and Performance of N,N'-Dialkyl Perylene Diimide-Based N-Type Thin-Film Transistors. Adv Mater Deerfield. 21: 1631-+.

http://dx.doi.org/10.1002/adma.200802934.

Fate Literature Search Results

Off Topic

Wu, YQ; Yang, TS; He; Li, X; unC; Wu, J; unC; Yu, T; ao; Li, F; uYou; Huang, CH; ui; Fan, XL, in. (2011). Novel derivatives of niclosamide synthesis Its bioactivity and interaction with Schistosoma japonicum cercariae. Dyes and Pigments. 88: 326-332. http://dx.doi.org/10.1016/j.dyepig.2010.08.002.

Xia, T; Wang, L; Qu, Y; i; Rui, Y; Cao, J; Hu; Y; uu; Yang, J; i; Wu, J; Xu, J. (2016). A thermoresponsive fluorescent rotor based on a hinged naphthalimide for a viscometer and a viscosity-related thermometer. 4: 5696-5701. http://dx.doi.org/10.1039/c6ct01241h.

Xu, L; iQun; Zhang, B; in; Sun, M; Hong, L; Neoh, KG; ee; Kang, E; nT; Fu, G; uO. (2013). CO2-triggered fluorescence "turn-on" response of perylene diimide-containing poly(N,N-dimethylaminomethyl methacrylate). 1: 1207-1212. http://dx.doi.org/10.1039/c2ta00482h.

Yang, DH; ui; Yao, ZQ; Wu, D; Zhang, YH; ui; Zhou, Z; Bu, XH; e. (2016). Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. 4: 18621-18627. http://dx.doi.org/10.1039/c6ta07606h.

Yang, L; ei; Chen, Y; Chen, Y; Song, T; ao; Deng, W; ei; Lv, L; ei; Yang, S; Yan, H; e; Huang, H; ui. (2016). Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. J Power Sources. 324: 538-546. http://dx.doi.org/10.1016/j.jpowsour.2016.05.119.

Yao, Q; Zheng, Y; Cheng, W; Chen, M; Shen, J; ie; Yin, M. (2016). Difunctional fluorescent HSA modified CoFe2O4 magnetic nanoparticles for cell imaging. 4: 6344-6349. http://dx.doi.org/10.1039/c6tb01787h.
Fate Literature Search Results

Off Topic

Ye, G, aol; Zhao, TT; Jin, ZN; Cu, P, eY; Mao, J, JaY; Xu, QH, uu; Xu, QF; Lu, JM, ei; Li, N, alun; Song, Y, jInL. (2012). The synthesis and NLO properties of 1,8- naphthalimide derivatives for both femtosecond and nanosecond laser pulses. Dyes and Pigments. 94: 271-277. http://dx.doi.org/10.1016/j.dyepig.2012.01.001.

Ye, T; Singh, R; Butt, HI; Floudas, G; Keivanidis, PE. (2013). Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. 5: 11844-11857. http://dx.doi.org/10.1016/am4035416.

Yoon, KS; Lee, JY; Kim, T, aeHo; Yu, D, ukMan; Seo, DW, an; Hong, SK; Hong, YT. (2014). Synthesis and properties of densely sulfonated polyketones (sPKs) with rigid backbone structure for PEm cell fuel application. J Ind Eng Chem. 20: 2310-2316. http://dx.doi.org/10.1016/j.jiec.2013.10.006.

Yu, X; Ge, X; Lan, H; Li, Y; Geng, L; Zhen, X; Yi, T. (2015). Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monocomponent Systems. 7: 24312-24321. http://dx.doi.org/10.1021/acsami.5b08402.

Zhan, X; Tan, Z; Zhou, E; Li, Y; Misra, R; Grant, A; DomerCa, B; Zhang, XH; An, Z; Zhang, X; Barlow, S; Kippelen, B; Marder, SR. (2009). Copolymers of perylene diimide with dithienoikathiole and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem. 19: 5794-5803. http://dx.doi.org/10.1039/b907163f.

Zhang, H, ua; Xue, L; Han, J; Fu, YQ; Shen, Y, an; Zhang, Z; Li, Y; Wang, M. (2016). New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport Layer. 4: 8724-8733. http://dx.doi.org/10.1039/c6tao3119f.

Zhang, J; Riskin, M; Tel-Vered, R; Tian, H; Willner, I. (2011). Optically activated uptake and release of Cu2+ or Ag+ ions by or from a photoisomerizable monolayer-modified electrode. Langmuir. 27: 1380-1386. http://dx.doi.org/10.1021/la1040807.
Fate Literature Search Results

Off Topic

Zhang, X; Lu, Z; Ye, L; Zhan, C; Hou, J; Zhang, S; Jiang, B; Zhao, Y; Huang, J; Zhang, S; Liu, Y; Shi, Q; Liu, Y; Yao, J. (2013). A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv Mater Deerfield. 25: 5791-5797. http://dx.doi.org/10.1002/adma.201300897.

Zhang, X; Zhang, J; Lu, H; Wu, J; Li, G; Li, C; Li, S; Bo, Z. (2015). A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. 3: 6979-6985. http://dx.doi.org/10.1039/c5tt01148e.

Zhang, Y; Peng, C; Cui, B; Wang, Z; Pang, X; Ma, R; Liu, F; Che, Y; Zhao, J. (2016). Direction-Controlled Light-Driven Movement of Microribbons. Adv Mater Deerfield. 28: 8538-8545. http://dx.doi.org/10.1002/adma.201602411.

Zhang, Y; Wang, H; Xiao, Y; Wang, L; Shi, D; Cheng, C. (2013). Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BJH) cells and higher electron mobility in space charge limited current (SCLC) devices. 5: 11093-11100. http://dx.doi.org/10.1021/am4033185.

Zhang, Y; uMo; Xie, F; Li, W; en; Wang, Y; Zhang, W; Wang, X; Li, M; Zhang, SXA, n. (2016). A methyl ketone bridged molecule as a multi-stimuli-responsive color switch for electrochromic devices. 4: 4662-4667. http://dx.doi.org/10.1039/c6tc04236d.

Zhang, Z; Zhang, X in; Zhan, C; Lu, Z; Ding, X; He, S; Yao, J. (2013). The leverage effect of the relative strength of molecular solvophobicity vs. solvophilicity on fine-tuning nanomorphologies of perylene diimide bolaamphiphiles. Soft Matter. 9: 3089-3097. http://dx.doi.org/10.1039/c3sm27674r.

Zhao, D; Wu, Q; Cai, Z; Zheng, T; Chen, W; ei; Lu, J; Yu, L. (2016). Electron Acceptors Based on alpha-Substituted Perylene Diamide (PDI) for Organic Solar Cells. Chem Mater. 28: 11193-11146. http://dx.doi.org/10.1021/acs.chemmater.5b04570.

Zhao, J; Li, Y; Zhang, J; Zhang, L, u; Lai, JY, uklIn; Jiang, K; ui; Mu, C; Li, Z; Chan, CL; amC; Hunt, A; Mukherjee, S; Ade, H; Huang, X; Yan, H, e. (2015). The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. 3: 20108-20112. http://dx.doi.org/10.1039/c5ta05339k.

Zhao, L; Ma, T; Bai, H; Lu, G; Li, C; Shi, G. (2008). Layer-by-layer deposited multilayer films of oligo(pyrenebutyric acid) and a perylene diimide derivative: structure and photophysical properties. Langmuir. 24: 4380-4387. http://dx.doi.org/10.1021/la703884d.

Fate Literature Search Results

Off Topic

Zheng, X; Peng, Q; Lin, J; ie; Wang, Y; i; Zhou, J; ie; Jiao, Y; an; Bai, Y; Huang, Y; an; Li, F; Liu, X; Pu, X; Lu, Z. (2015). Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation. 3: 6970–6978. http://dx.doi.org/10.1039/c5tc00779h.

Zheng, Y; Jrad, FM; Parker, TC; Barlow, S; Marder, SR; Saavedra, SS. (2016). Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface. 8: 34089–34097. http://dx.doi.org/10.1021/acsami.6b10731.

Zhu, M; Aryal, GH; Zhang, N; an; Zhang, H; Su, X; Schmehl, R; Liu, X; ue; Hu, J; in; Wei, J; Jayawickramarajah, J. (2015). Host-Guest Interactions Derived Multilayer Perylene Diimide Thin Film Constructed on a Scaffolding Porphyrin Monolayer. Langmuir. 31: 578–586. http://dx.doi.org/10.1021/la504297w.

Zhu, YY; Gu, SX; i. (2014). Reduction of the 3,4,9,10-perylenediimides and the formation of eletrodeposited films based on their radical anions. 1. http://dx.doi.org/10.1088/2053-1591/1/3/035102.

Zhuang, H; Zhou, Q; Li, Y; Zhang, Q; Li, H; Xu, Q; Li, N; Lu, J; Wang, L. (2014). Adjustment of ON-state retention ability based on new donor-acceptor imides through structural tailoring for volatile device applications. 6: 94–100. http://dx.doi.org/10.1021/am405000c.

Engineering/Occupational Exposure Literature Search Results

On Topic

Engineering/Occupational Exposure Literature Search Results

On Topic

Engineering/Occupational Exposure Literature Search Results

Off Topic

Alcala, MA; Shade, CM; Uh, H; Kwan, SY; Bischof, M; Thompson, ZP; Gogick, KA; Meier, AR; Strein, TG; Bartlett, DL; Modzelewski, RA; Lee, YJ; Petoud; S; Brown, CK. (2011). Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials. 32: 9343-9352. http://dx.doi.org/10.1016/j.biomaterials.2011.07.076.
Alucio-Sarduy, E; Singh, R; Kan, Z; Ye, T; Baidak, A; Calloni, A; Berti, G; Duo, L; Iosifidis, A; Beaupre, S; Leclerc, M; Butt, HJ; Floudas, G; Keivanidis, PE. (2015). Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces. 7: 8687-8698. http://dx.doi.org/10.1021/acsami.5b00827.
An, ZS; Yu, JS; Jones, SC; Barlow, S; Yoo, S; Domerq, B; Prins, P; Siebbeles, LDA; Kippelen, B; Marder, SR. (2005). High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv Mater Deerfield. 17: 2580-+. http://dx.doi.org/10.1002/adma.200500027.
Banan, JL; Soleimanejad, H; Jrad, FM; Liu, M; White, JM; Blakers, AW; Cooper, MW; Jones, DJ; Gigginno, KP; Marder, SR; Smith, TA; Wong, WWH. (2016). Energy Migration in Organic Solar Concentrators with a Molecularily Insulated Perylene Diimide. J Phys Chem C. 120: 12952-12958. http://dx.doi.org/10.1021/acs.jpcr.6b04479.
Engineering/Occupational Exposure Literature Search Results

Off Topic

Bojinov, VB; Simeonov, DB; Georgiev, NI. (2008). A novel blue fluorescent 4-(1,2,2,6,6-pentamethylpiperidin-4-ylloxy)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Dyes and Pigments. 76: 41-46. http://dx.doi.org/10.1016/j.dyepig.2006.08.006.

Bonetti, S; Prosa, M; Pistone, A; Favaretto, L; Sagnella, A; Grisin, I; Zambianchi, M; Karges, S; Lorenzoni, A; Posati, T; Zamboni, R; Camaioni, N; Mercuri, F; Mucchini, M; Melucci, M; Benfenati, V. (2016). A self-assembled lysinated perylene diimide film as a multifunctional material for neural interfacing. 4: 2921-2932. http://dx.doi.org/10.1039/c5tb02299a.

Brochstzaint, S; Politl, MJ. (1999). Solubilization of 1,4,5,8-naphthalenediimides and 1,8-naphthalimides through the formation of novel host-guest complexes with alpha-cyclodextrin. Langmuir. 15: 4486-4494.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Cai, Y; Gao, Y; a; Luo, Q; Li, M; Zhang, J; Tian, H; e; Zhu, W, eIH. (2016). Ferrocene-Graded Photochromic Triads Based on a Sterically Hindered Ethene Bridge: Redox-Switchable Fluorescence and Gated Photochromism. 4: 1410-1416. http://dx.doi.org/10.1002/adom.201600029.

Cao, X; Meng, L; Li, Z; Mao, Y; Lan, H; Chen, L; Fan, Y; Yi, T, ao. (2014). Large Red-Shifted Fluorescent Emission via Intermolecular pi-pli Stacking in 4-Ethynyl-1,8-naphthalimide-Based Supramolecular Assemblies. Langmuir. 30: 11753-11760. http://dx.doi.org/10.1021/la503299.

Castro-Carranza, A; Nolasco, JC; Estrada, M; Gwosiecki, R; Benwadhi, M; Xu, Y; Cerdeira, A; Marsal, LF; Ghibaudo, G; Iniguez, B; Pallares, J. (2012). Effect of Density of States on Mobility in Small-Molecule n-Type Organic Thin-Film Transistors Based on a Perylene Diimide. I E E E Electron Device Letters. 33: 1201-1203. http://dx.doi.org/10.1109/LED.2012.2201441.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Chen, Y; Chen, L; Qi, G; Wu, H; Zhang, Y; Xue, L; Zhu, P; Ma, P; Li, X. (2010). Self-assembled organic-inorganic hybrid nanocomposite of a perylenetetracarboxylic diimide derivative and CdS. Langmuir. 26: 12473-12478. http://dx.doi.org/10.1021/la102094d.

Chiu, TL; Chuang, K; aiH; Lin, C; hiF; Ho, Y; uH; Lee, JH; aw; Chao, CC; Leung, M; anK; Wan, D; eHui; Li, CY; u; Chen, HL. i. (2009). Low reflection and photo-sensitive organic light-emitting device with perylene diimide and double-metal structure. Thin Solid Films. 517: 3712-3716. http://dx.doi.org/10.1016/j.tsf.2008.12.037.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Davis, NJL; K; Macqueen, RW; Roberts, DA; Danos, A; Dehn, S; Perrier, S; Schmidt, TW. (2016). Energy transfer in pendant perylene diimide copolymers. 4: 8270-8275. http://dx.doi.org/10.1039/c6ta02555b.

De Los Cobos, O; Fousseret, B; Lejeune, M; Rossignol, F; Dutreilh-Colas, M; Carrion, C; Boissiere, C; Ribot, F; Sanchez, C; Cattoen, X; Van, MWC; hi; Durand, JO. (2012). Tunable Multifunctional Mesoporous Silica Microdots Arrays by Combination of Inkjet Printing, EISA, and Click Chemistry. Chem Mater. 24: 4337-4342. http://dx.doi.org/10.1021/cm302769a.

Diez-Pérez, I; Li, Z; Guo, S; Madden, C; Huang, H; Che, Y; Yang, X; Zang, L; Tao, N. (2012). Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano. 6: 7044-7052. http://dx.doi.org/10.1021/nn302090t.

Distanov, VB; Berdanova, VF; Gurkalenko, YA; Prezhdo, VV. (2001). An alternative approach to the production of fluorescent colored fibres. Dyes and Pigments. 48: 159-163.

Dutta, AK; Vanoppen, P; Jeuris, K; Grim, PCM; Pevenage, D; Salesse, C; De Schryver, FC. (1999). Spectroscopic, AFM, and NSOM studies of 3D crystallites in mixed Langmuir-Blodgett films of N,N'-bis(2,6-dimethylphenyl) 3,4,9,10-perylenetetracarboxylic diimide and stearic acid. Langmuir. 15: 607-612.
Engineering/Occupational Exposure Literature Search Results

Off Topic

Everett, TA; Twite, A; myA; Xie, A; Battina, SK; Hua, D; uHy; Higgins, DA. (2006). Preparation and characterization of nonanobis-perylene diimide - Polyelectrolyte composite thin films. Chem Mater. 18: 5937-5943. http://dx.doi.org/10.1021/cm061695r.

Fan, Q; Cheng, K; Yang, Z; Zhang, R; Yang, M; Hu, X; Ma, X; Bu, L; Lu, X; Xiong, X; Huang, W; Zhao, H; Cheng, Z. (2015). Perylene-diimide-based nanoparticles as highly efficient photocatalysts for deep brain tumor imaging in living mice. Adv Mater. 27: 843-847. http://dx.doi.org/10.1002/adma.201402972.

Feng, X; An, Y; Yao, Z; Li, C; Shi, G. (2012). A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+-mediated perylene diimide aggregates. 4: 614-618. http://dx.doi.org/10.1021/am201616r.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Georgiev, NI; Bojinov, VB; Nikolov, PS. (2011). The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes and Pigments. 88: 350-357. http://dx.doi.org/10.1016/j.dyepig.2010.08.004.

Georgiev, NI; Dimitrova, MD; Todorova, YD; Bojinov, VB. (2016). Synthesis, chemosensing properties and logic behaviour of a novel ratiometric 1,8-naphthalimide probe based on ICT and PET. Dyes and Pigments. 131: 9-17. http://dx.doi.org/10.1016/j.dyepig.2016.03.051.

Gong, R; ui; Mu, H; Sun, Y; Fang, X; Xue, P; Fu, E. (2013). The first fluorescent sensor for medium-chain fatty acids in water: design, synthesis and sensing properties of an organic-inorganic hybrid material. 1: 2038-2047. http://dx.doi.org/10.1002/cctb.201300355h.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Gu, P, eY; Lu, C, aL; Hu, Z, hiun; Li, N, aLun; Zhao, TT; Xu, QF; Xu, QH, ua; Zhang, JD; Lu, JM, el. (2013). The AIEE effect and two-photon absorption (TPA) enhancement induced by polymerization: synthesis of a monomer with ICT and AIE effects and its homopolymer by ATRP and a study of their photophysical properties. 1: 2599-2606. http://dx.doi.org/10.1039/c3tc00738c.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Han, C; Huang, T; Liu, Q; i; Xu, H; Zhuang, Y; Li; Ju; Hu; Wang, A; Xu, K, ai. (2014). Design and synthesis of a highly sensitive "Turn-On" fluorescent organic nanoprobe for (iii) detection and imaging. 2: 9077-9082. http://dx.doi.org/10.1039/c4tc01759e.

He, Q; Li, T; Yan; C; Liu; Y; Wang; J; Wang, M; Lin; Y; Zhan, X. (2016). Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments. 128: 226-234. http://dx.doi.org/10.1016/j.dyepig.2016.01.034.

Hendsbee, AD; Mceafee, SM; Sun, J; onP; Mccormick, TM; Hill, I, anG; Welch, GC. (2015). Phthalimide-based pi-conjugated small molecules with tailored electrochemical energy levels for use as acceptors in organic solar cells. 3: 8904-8915. http://dx.doi.org/10.1039/c5tc01877c.

Horowitz, G; Kouki, F; Spearman, P; Fichou, D; Nogues, C; Pan, X; Garnier, F. (1996). Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative. Adv Mater Deerfield. 8: 242-&.

Hou; J; Zhang; Q; Li; X; Tang; Y; Cao; MR; Bai; F; Shi; Q; Yang; CH; Kong, Dl; Bai, G. (2011). Synthesis of novel folate conjugated fluorescent nanoparticles for J Biomed Mater Res A. 99: 684-689. http://dx.doi.org/10.1002/jbm.a.33187.

Hou, R; an; Feng; S; Gong; X; ue; Liu; Y; Zhang; J; Li; C; Bo, Z. (2016). Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synthetic Metals. 220: 578-584. http://dx.doi.org/10.1016/j.synthmet.2016.07.015.

Hsu, Y; uYi; Yeh; SC; Lin; SH; Chen, CT; i; Tung, SH; Jeng, R; ul. (2016). Dendrons with urea/malonamide linkages for gate insulators of n-channel organic thin film transistors. React Funct Polym. 108: 86-93. http://dx.doi.org/10.1016/j.reactfunctpolym.2016.05.008.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Huang, C; Sartín, MM; Siegel, N; Cozzol, M; Zhang, Y; Hales, JM; Barlow, S; Perry, JW; Marder, SR. (2011). Photo-induced charge transfer and nonlinear absorption in dyads composed of a two-photon-absorbing donor and a perylene diimide acceptor. J Mater Chem. 21: 16119-16128. http://dx.doi.org/10.1039/c1jm12566d.

Huang, J; Wang, X; Zhang, X; Niu, Z; Lu, Z; Jiang, B; Sun, Y; Zhan, C; Yao, J. (2014). Additive-assisted control over phase-separated nanostructures by manipulating alkyldihexyl position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. 6: 3853-3862. http://dx.doi.org/10.1021/am406050j.

Im, P; Kang, D; Kim, D; Choi, Y; Yoon, W; Lee, MH; Lee, I; nh; Lee, CR; o; Jeong, KU, n. (2016). Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens. ACS Applied Materials & Interfaces. 8: 762-771. http://dx.doi.org/10.1021/acsami.5b06995.

Jang, J; Nam, S; Yun, W; onMIn; Yang, C; Hwang, J; An, T; aeKyu; Chung, D; aeS; Park, CE, on. (2011). High T-g cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. J Mater Chem. 21: 12542-12546. http://dx.doi.org/10.1039/c1jm11544h.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Jeong, YJ; Jang, J; Nam, S; Kim, K; Kim, LH; Park, S; An, TK; Park, CE. (2014). High-performance organic complementary inverters using monolayer graphene electrodes. 6: 6816-6824. http://dx.doi.org/10.1021/am500618g.

Jia, Y; Li, P; Song, W; Zhao, G; Zheng, D; Li, D; Wang, Y; Wang, J; Li, C; Han, K. (2016). Rational Design of a Profluorescent Substrate for S-adenosylhomocysteine Hydrolase and its Applications in Bioimaging and Inhibitor Screening. 8: 25818-25824. http://dx.doi.org/10.1021/acsami.6b09190.

Jiang, XZ; Liu, YQ; Tian, H; Qiu, WF; Song, XQ; Zhu, DB. (1997). An electroluminescence device made with a new fluorescent dye containing 1,3,4-oxadiazole. J Mater Chem. 7: 1395-1398.

Jin, Q; Feng, L; Wang, DD; Dai, ZR; Wang, P; Zou, LW; Liu, ZH; Wang, JY; Yu, Y; Ge, GB; Cui, JN; Yang, L. (2015). A Two-Photon Ratiometric Fluorescent Probe for Imaging Carboxylesterase 2 in Living Cells and Tissues. 7: 28474-28481. http://dx.doi.org/10.1021/acs.jchemeng.5b00957.

Kim, YY; Ree, BJ; Kido, M; Ko, YG, J; Ishige, R; Hirai, T; Wi, D; Kim, J; Kim, W, onJ; Takahara, A; Ree, M. (2015). High-Performance n-Type Electrical Memory and Morphology-Induced Memory-Mode Tuning of a Well-Defined Brush Polymer Bearing Perylene Diimide Moleies. 1. http://dx.doi.org/10.1002/aem.201500197.

Kinner, JT; Stracke, JJ; Gregg, BA; Finke, RG. (2014). Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonfunctionalized perylene diimide plus CoOx cocatalyst. 6: 13367-13377. http://dx.doi.org/10.1021/am405596w.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Li, C; Zhang, A; Feng, G; Yang, F; an; Jiang, X; Yu, Y; Xia, D; Li, W. (2016). A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor. Organic Electronics. 35: 112-117. http://dx.doi.org/10.1016/j.orgel.2015.05.011.

Li, DX; Zhang, JF; Jang, YH; Jang, Y; Kim, DH; Kim, JS. (2012). Plasmonic-coupling-based sensing by the assembly and disassembly of dipicolylamine-tagged gold nanoparticles induced by complexing with cations and anions. Small. 8: 1442-1448. http://dx.doi.org/10.1002/smll.201102335.

Li, S; Liu, W; Li, CZ, hi; Liu, F; Zhang, Y; Shi, M; Chen, H; Russell, TP. (2016). A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. 4: 10659-10665. http://dx.doi.org/10.1039/c6ta04232e.

Li, S; Zhang, H, ao; Zhao, W; Ye, L; Yao, H; Yang, B, ei; Zhang, S; Hou, J. (2016). Green-Solvent-Processed All-Polymer Solar Cells Containing a Perylene Diimide-Based Acceptor with an Efficiency over 6.5%. 6. http://dx.doi.org/10.1002/aenm.201501991.

Li, Y; Yang, Y; Bao, X; Qiu, M; Liu, Z; Wang, N; Zhang, G; Yang, R; Zhang, D. (2016). New pi-conjugated polymers as acceptors designed for all polymer solar cells based on imide/amide-derivatives. 4: 185-192. http://dx.doi.org/10.1039/c5tc02615f.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Lin, Y; Zhang, Z; hiGuo; Bai, H; Wang, J; Yao, Y; Li, Y; Zhu, D; Zhan, X. (2015). High-performance fullerene-free solar polymer cells with 6.31% efficiency. Energ Environ Sci. 8: 610-616. http://dx.doi.org/10.1039/c4ee03424d.

Liu, J; un; Cao, J; Shao, S; Xie, Z; Cheng, Y; Geng, Y; Wang, L; Jing, X; Wang, F. (2008). Blue electroluminescent polymers with dopant-host systems and molecular dispersion features: polyfluorene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. J Mater Chem. 18: 1659-1666. http://dx.doi.org/10.1039/b716234k.

Liu, J; Tu, GL; Zhou, QQ; Cheng, YK; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J Mater Chem. 16: 1431-1438. http://dx.doi.org/10.1039/b514359d.

Liu, J; Wang, Y; i; Lei, G; Peng, J; Huang, Y; an; Cao, Y; Xie, M; Pu, X; Lu, Z. (2009). A sextuple hydrogen bonding molecular duplex bearing 1,8-naphthalimide moieties and polymer light-emitting diode based on it. J Mater Chem. 19: 7753-7758. http://dx.doi.org/10.1039/b901045h.

Liu, J; Zhou, QQ; Cheng, YK; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). White electroluminescence from a single-polymer system with simultaneous two-color emission: Polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant on the main chain. Adv Funct Mater. 16: 957-965. http://dx.doi.org/10.1002/adfm.200500761.

Liu, X; Zhang, Y; Pang, X; E; Y; u; Zhang, Y; Yang, D; Tang, J; Li; J; Che, Y; Zhao, J. (2015). Nanocoiled Assembly of Asymmetric Perylene Diimides: Formulation of Structural Factors. J Phys Chem C. 119: 6446-6452. http://dx.doi.org/10.1021/acs.jpcc.5b00720.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Ma, Z; Zhang, P; Yu, X; Lan, H; Li, Y; Xie, D; Li, J; Yi, T; ao. (2015). Sugar based nanotube assembly for the construction of sonication triggered hydrogel: an application of the entrapment of tetracycline hydrochloride. 3: 7366-7371. http://dx.doi.org/10.1039/c5tb01191d.

May, B; Poteau, X; Yuan, DW; Brown, RG. (1999). A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butyllumino-1,8-naphthalimide. Dyes and Pigments. 42: 79-84.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Min, J; ie; Bronnbauer, C; Zhang, Z; hiGou; Ci; C; Luponosov, YN; A; A; Schweizer, P; Przybilla, T; Guo, F, ei; Ameri, T; Forberich, K; Speicker, E; Lii; Y; Brabec, CJ. (2016). Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Adv Funct Mater. 26: 4543-4550. http://dx.doi.org/10.1002/adfm.201505411.

Min, J; ie; Zhang, Z; hiGou; Hou, Y; i; Quiroz, COR; Przybilla, T; Bronnbauer, C; Guo, F; ei; Forberich, K; Azimi, H; Ameri, T; Speicker, E; Li; Y; Brabec, CJ. (2015). Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene-Diimide Heterojunctions toward High Performance. Chem Mater. 27: 227-234. http://dx.doi.org/10.1021/cm5037919.

http://pubs.rsc.org/en/Content/ArticleLanding/2011/JM/C0JM02673E.

Mondal, S; Lin, W; eiH; Chen, Y; uCh; Huang, SH; an; Yang, R; Chen, B; oh; Yang, T; eF; Mao, SW; ei; Kuo, MY; u. (2015). Solution-processed single-crystal perylene diimide transistors with high electron mobility. Organic Electronics. 23: 64-69. http://dx.doi.org/10.1016/j.orgel.2015.04.011.

Moniz, T; Queiros, C; Ferreira, R; Leite, A; Gameiro, P; Silva, A, naMG; Rangel, M. (2013). Design of a water soluble 1,8-naphthalimide/3-hydroxy-4-pyridinone conjugate: Investigation of its spectroscopic properties at variable pH and in the presence of Fe3+, Cu2+ and Zn2+. Dyes and Pigments. 98: 201-211. http://dx.doi.org/10.1016/j.dyepig.2013.02.020.

Morgado, J; Gruner, J; Walcott, SP; Yong, TM; Cervini, R; Moratti, SC; Holmes, AB; Friend, RH. (1998). 4-AcNi - a new polymer for light-emitting diodes. Synthetic Metals. 95: 113-117.

Moscatello, JP; Castaneda, CV; Zaidi, A; Cao, M; Usluer, O; Biesen, SC; Adalid, KE. (2017). Time-resolved kelvin probe force microscopy to study population and depopulation of traps in electron or hole majority organic semiconductors. Organic Electronics. 41: 26-32. http://dx.doi.org/10.1016/j.orgel.2016.11.001.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Naab, BD; Gu, X; Kurusawa, T; To, JWF; Salleo, A; Bao, Z. (2016). Role of Polymer Structure on the Conductivity of N-Doped Polymers. 2. http://dx.doi.org/10.1002/aeml.201600004.

Nakaya, K; Funabiki, K; Muramatsu, H; Shibata, K; Matsui, M. (1999). N-aryl-1,8-naphthalimidnes as highly sensitive fluorescent labeling reagents for cannabin. Dyes and Pigments. 43: 235-239.

Nam, S; Hahn, S; uGyu; Han, H; Seo, J; Kim, C; Kim, H; Marider, SR; Ree, M; Kim, Y. (2016). All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple Bond-Conjugated Perylene Diimide Polymer. 4: 767-774. http://dx.doi.org/10.1021/accuschemeng.5b00732.

Pang, X; Yu, X; Lan, H; Ge, X; Li, Y; Zhen, X; Yi, T. ao. (2015). Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel. ACS Applied Materials & Interfaces. 7: 13569-13577. http://dx.doi.org/10.1021/acsami.5b03000.

Park, G; eUn; Choi, S; Lee, D; aHHee; Godumala, M; Uddin, MA; Woo, H; anY; Cho, M; inLu; Choi, DH. (2017). Perylene diimide isomers containing a simple sp3(c)-core for non-fullerene polymer solar cells. 5: 663-671. http://dx.doi.org/10.1039/c6ta09394a.

Park, HJ; So, MC; Gosztola, D; Wiederrecht, GP; Emery, JD; Martinson, AB; Er, S; Wilmer, CE; Vermeulen, NA; Aspuru-Guzik, A; Stoddart, JF; Farha, OK; Hupp, JT. (2016). Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. 8: 24983-24988. http://dx.doi.org/10.1021/acsami.6b03307.

Off Topic

Qian, XH; Zhang, YT; Chen, KC; Tao, ZF; Shen, YG. (1996). A study on the relationship between Stoke's shift and low frequency half-value component of fluorescent compounds. Dyes and Pigments. 32: 229-235.

Qiu, B; Yuan, J; un; Xiao, X; He, D; Liu, Q; Zou, Y; Zhang, Z; Li, Y. (2015). Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b']dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces. 7: 25237-25246. http://dx.doi.org/10.1021/acsami.5b07066.

Qu, J; Gao, B; Tian, H; Zhang, X; Wang, Y; an; Xie, Z; Wang, H; Geng, Y; Wang, F. (2014). Donor-spacer-acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. 2: 3632-3640. http://dx.doi.org/10.1039/c3ta14701k.

Qu, Z; Li, P; Zhang, X; Han, K. (2016). A turn-on fluorescent chemodosimeter based on detellurization for detecting ferrous iron (Fe2+ in living cells. 4: 887-892. http://dx.doi.org/10.1039/c5tb02090e.

Reger, DL; Siranni, E; Horger, JI; Smith, MD; Semeniuc, RF. (2010). Supramolecular Architectures of Metal Complexes Controlled by a Strong pi center dot center dot center dot center dot pi Stacking, 1,8-Naphthalimide Functionalized Third Generation Tris[pyrazolyl)methane Ligand. Cryst Growth Des. 10: 386-393. http://dx.doi.org/10.1021/cg901000d.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Rungta, P; Bandera, YP; Tsalkovskyy, V; Foulger, SH. (2010). Designing fluoroprobes through Forster resonance energy transfer: surface modification of nanoparticles through “click” chemistry. Soft Matter. 6: 6083-6095. http://dx.doi.org/10.1039/c0sm00470g

http://pubs.rsc.org/en/Content/ArticleLanding/2010/SM/c0sm00470g.

Russ, B; Robb, MJ; Brunetti, FG; Miller, PL; Perry, EE; Patel, SN; Ho, V; Chang, WB; Urban, JJ; Chabinyc, ML; Hawker, CJ; Segalman, RA. (2014). Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv Mater Deerfield. 26: 3473-3477. http://dx.doi.org/10.1002/adma.201306116.

Savage, RC; Orgiu, E; Mativetsky, JM; Pisula, W; Schnitzler, T; Everslo, CL; Li, C; Müller, K; Samori, P. (2012). Charge transport in fibre-based perylene diimide transistors: effect of the alkyl substitution and processing technique. Nanoscale. 4: 2387-2393. http://dx.doi.org/10.1039/c2nr20008e.

Shoae, S; Clarke, TM; Eng, MP; Huang, C; Barlow, S; Espildora, E; va; Luis Delgado; Campo, B; Mader, SR; Heeney, M; Mcculloch, I; Martin, N; Vanderzande, D; Durrant, JR. (2012). Charge photogeneration in donor/acceptor organic solar cells. 2. http://dx.doi.org/10.1111/j.1365-2379.2012.02100.x.

Shu, W; ei; Wang, Y; Wu, L; iu; Wang, Z; Duan, Q; Gao, Y; Liu, C; Zhu, B; Yan, L. (2016). Novel Carbonothioate-Based Colorimetric and Fluorescent Probe for Selective Detection of Mercury Ions. Ind Eng Chem Res. 55: 8713-8718. http://dx.doi.org/10.1021/acs.iecr.6b02158.

Singh, R; Giussani, E; Mroz, MM; Di Fonzo, F; Fazzi, D; Cabanillas-Gonzalez, J; Oldridge, L; Vaenas, N; Kontos, AG; Falaras, P; Grimsdale, AC; Jacob, J; Muellen, K; Keivanidis, PE. (2014). On the role of aggregation effects in the performance of perylene-diimide based solid cells. Organic Electronics. 15: 1347-1361. http://dx.doi.org/10.1016/j.orgel.2014.03.044.

Sinks, LE; Rybtchinski, B; limura, M; Jones, BA; Goshe, Al; Zuo, XB; Tiede, DM; Li, YY; Wasielewski, MR. (2005). Self-assembly of photofunctional cylindrical nanostructures based on perylene-3,4 : 9,10-bis(dicarboximide). Chem Mater. 17: 6295-6303. http://dx.doi.org/10.1021/cm051461s.

Off Topic

Tang, J; Yang, H; ui; Liu, J; Wang, Y; ao; Yin, X; Wang, R; ui; Huang, H; Huang, Z. (2010). Ln(3+) enhanced blue fluorescence from novel excimer of 1,8-naphthalimide-conjugated PAMAM. Optical Materials. 32: 1417-1422. http://dx.doi.org/10.1016/j.optmat.2010.05.008.

Tao, ZF; Qian, XH. (1999). Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis. Dyes and Pigments. 43: 139-145.

Tao, ZF; Qian, XH; Wei, DZ. (1996). 1,8-naphthalimide hydroperoxides as novel intercalating DNA cleavers. Dyes and Pigments. 31: 245-251.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Engineering/Occupational Exposure Literature Search Results

Off Topic

http://pubs.acs.org/doi/abs/10.1021/jp909242n.

Veldkamp, BS; Han, W, onSilk; Dym, SR; Eaton, SW; Ratner, MA; Wasielewski, MR. (2013). Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer-cobaloxime assembly. Energ Environ Sci. 6: 1917-1928. http://dx.doi.org/10.1039/c3ee40378e.

http://pubs.acs.org/doi/abs/10.1021/la104911r.

Wang, H; Guo, L; inE; Li, X; uMei; Zhang, L; iMei; Xu, Q; iuLin; Wu, G; aoFen; Zhou, Y; Zhang, J; unF. (2015). Coumarin-based turn-on fluorescence probes for highly selective detection of Pi in cell culture and Caenorhabditis elegans. Dyes and Pigments. 120: 293-298. http://dx.doi.org/10.1016/j.dyepig.2015.04.031.

Wang, J; Yao, Y; Dai, S; Zhang, X; Wang, W; ei; He, Q; Han, L; ei; Lin, Y; Zhan, X. (2015). Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. 3: 13000-13010. http://dx.doi.org/10.1039/c5ta02589c.

Wang, KG; Huang, W; Xia, P; Gao, C; Yan, DY. (2002). Fluorescent polymer made from chemical modification of poly(styrene-co-maleic anhydride). React Funct Polym. 52: 143-148.

Wang, X; Lv, L; ei; Li, L; Chen, Y; Zhang, K; ai; Chen, H; Dong, H; Huang, J; Shen, G; Yang, Z; Huang, H; ui. (2016). High-Performance All-Polymer Photosresponsive Devices Based on Acceptor-Acceptor Conjugated Polymers. Adv Funct Mater. 26: 6306-6315. http://dx.doi.org/10.1002/adfm.201601745.

Wang, Y; i; Zhang, X; Han, B; Peng, J; Hou, S; Huang, Y; an; Sun, H; Xie, M; Lu, Z. (2010). The synthesis and photoluminescence characteristics of novel blue light-emitting naphthalimide derivatives. Dyes and Pigments. 86: 190-196. http://dx.doi.org/10.1016/j.dyepig.2010.01.003.

Wang, Y; i; Zhou, J; ie; Wang, X; u; Zheng, X; Lu, Z; Zhang, W; ei; Chen, Y; Huang, Y; an; Pu, X; Yu, J. (2014). An efficient guest/host fluorescent energy transfer pair based on the naphthalimide skeleton, and its application in heavily-doped red organic light-emitting diodes. Dyes and Pigments. 100: 87-96. http://dx.doi.org/10.1016/j.dyepig.2013.08.021.

Wen, Y; Liu, Y; Di, C; an; Wang, Y; Sun, X; Guo, Y; Zheng; J; Wu, W; Ye, S; Yu, G; ui. (2009). Improvements in Stability and Performance of N,N'‐ Diallyl Perylene Diimide-Based n-Type Thin-Film Transistors. Adv Mater Deerfield. 21: 1631+.

Wu, CH; ao; Chueh, C; huC; Xi, Y; uYin; Zhong, HL; Gao, GP; Wang, ZH; ui; Pozzo, LD; Wen, T; enC; Jen, AKY. (2015). Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk Heterojunction Morphology Toward High-Performance Nonfullerene Polymer Solar Cells. Adv Funct Mater. 25: 5326-5332. http://dx.doi.org/10.1002/adfm.201501971.

Wu, N; a; Wang, C; Slattum, PM; Zhang, Y; Yang; Z; Xang, L. (2016). Persistent Photoconductivity in Perylene Diimide Nanofiber Materials. 1: 906-912. http://dx.doi.org/10.1021/acsenergylett.6b00422.

Wu, W; eB; Wang, Mt; Sun, Y; uEm; Huang, W; ei; Cui, Y; iP; Xu, CX. (2008). Color-tuned FRET polystyrene microspheres by single wavelength excitation. Optical Materials. 30: 1803-1809. http://dx.doi.org/10.1016/j.optmat.2007.11.031.
Engineering/Occupational Exposure Literature Search Results

Off Topic

Wu, W; Wu, W; Ji, S; Guo, H; Song, P; Han, K; Chi, L; Shao, J; Zhao, J. (2010). Tuning the emission properties of cyclometalated platinum(II) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing. J Mater Chem. 20: 9775-9786. http://dx.doi.org/10.1039/c0jm01794a.

Wu, YQ; Yang, TS; He; Li, X; unC; Wu, J, unC; Yi, T, ao; Li, F; uYou; Huang, CH; ui; Fan, XL, in. (2011). Novel derivatives of niclosamide synthesis Its bioactivity and interaction with Schistosoma japonicum cercariae. Dyes and Pigments. 88: 326-332. http://dx.doi.org/10.1016/j.dyepig.2010.08.002.

Xia, T; Wang, L; Qu, Y; i; Rui, Y; Cao, J; Hu, Y; ue; Yang, J; i; Wu, J; Xu, J. (2016). A thermoresponsive fluorescent rotor based on a hindered naphthalimide for a viscometer and a viscosity-related thermometer. 4: 5696-5701. http://dx.doi.org/10.1039/c6tc01241h.

Xu, L, iQu; Zhang, B; in; Sun, M; Hong, L; Neoh, KG, ee; Kang, E, nt; Fu, G, uOd. (2013). CO2-triggered fluorescence "turn-on" response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). 1: 1207-1212. http://dx.doi.org/10.1039/c2ta00482h.

Yang, DH, ui; Yao, Q; Wu, D; Zhang, YH, ui; Zhou, Z; Bu, XH, e. (2016). Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. 4: 18621-18627. http://dx.doi.org/10.1039/c6ta07606h.

Yao, Q; Zheng, Y; Cheng, W; Chen, M; Shen, J, ie; Yin, M. (2016). Diffusional fluorescent HSA modified CoFe2O4 magnetic nanoparticles for cell imaging. 4: 6344-6349. http://dx.doi.org/10.1039/c6tb01787h.
Engineering/Occupational Exposure Literature Search Results

Off Topic

Ye, G, aolie; Zhao, TT; Jin,ZN; Cu, P, e;iY; Mao, J; YaY; Yu, QH, ua; Yu, QF; Lu, JM, ei; Li, N, aJun; Song, Y, inL. (2012). The synthesis and NLO properties of 1,8-naphthalimide derivatives for both femtosecond and nanosecond laser pulses. Dyes and Pigments. 94: 271-277. http://dx.doi.org/10.1016/j.dyepig.2012.01.001.

Ye, T; Singh, R; Butt, HI; Floudas, G; Keivanidis, PE. (2013). Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. 5: 11844-11857. http://dx.doi.org/10.1016/am4035416.

Yoon, KS; Lee, JY; Kim, T, aHeo; Yu, D, ukMan; Seo, DW, an; Hong, SK; Hong, YT. (2014). Synthesis and properties of densely sulfonated polycarbonates (sPKs) with rigid backbone structure for PEm fuel cell application. J Ind Eng Chem. 20: 2310-2316. http://dx.doi.org/10.1016/j.jiec.2013.10.006.

Yu, X; Ge, X; Lan, H; Li, Y; Geng, L; Zhen, X; Yi, T. (2015). Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monolayer Thin Film Systems. 7: 24312-24321. http://dx.doi.org/10.1021/acsami.5b08402.

Zhan, X; Tan, Z; Zhou, E; Li, Y; Misra, R; Grant, A; Domercq, B; Zhang, KH; An, Z; Zhang, X; Barlow, S; Kippelen, B; Marder, SR. (2009). Copolymers of perylene diimide with diithienoethylene and diethenopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem. 19: 5794-5803. http://dx.doi.org/10.1039/b007163f.

Zhang, H; ua; Xue, L; Han, J; Fu, YQ; Shen, Y; an; Zhang, Z; Li, Y; Wang, M. (2016). New generation perovskite solar cells with solution-processed amino-substituted perylene diimide as electron-transport Layer. 4: 8724-8733. http://dx.doi.org/10.1039/c6ta03119f.

Engineering/Occupational Exposure Literature Search Results

Off Topic

Zhang, Y.; Wan; Q.; Guo; X.; Ia; Li; W.; Guo; B.; Zhang; M.; Li; Y. (2015). Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzothiophene with thiophene conjugated side chains. 3: 18442-18449. http://dx.doi.org/10.1039/c5ta00501d.

Zhang, Y.; Wang; H.; Xiao; Y.; Wang; L.; Shi; D.; Cheng, C. (2013). Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices. 5: 11093-11100. http://dx.doi.org/10.1021/am4033185.

Zhang, Z.; Zhang; X.; in; Zhan; C.; Lu; Z.; Ding; X.; He; S.; Yao; J. (2013). The leverage effect of the relative strength of molecular solvophobicity vs. solvophilicity on fine-tuning nanomorphologies of perylene diimide balaophamines. Soft Matter. 9: 3089-3097. http://dx.doi.org/10.1039/c3sm27674g.

Zhao; D; Wu; Q; CAI; Z.; Zheng; T.; Chen; W.; ei; Lu; J; Yu; L. (2016). Electron Acceptors Based on alpha-Substituted Perylene Diimide (PDI) for Organic Solar Cells. Chem Mater. 28: 1139-1146. http://dx.doi.org/10.1021/acs.chemmater.5b04570.

Zhao; H.; Zhang; YY; Xu; H.; He; EF; Zhang; ZL; Peng; QM; Zhang; RJ; Zhang; HQ. (2015). Perylene diimide dye/layered carbide charge transfer composite: Design, synthesis, and photophysical properties. Mater Lett. 161: 208-211. http://dx.doi.org/10.1016/j.matlet.2015.08.076.

Zhao; J.; Li; Y.; Zhang; J.; Zhang; L.; uAI; JY; ukLi; Jiang; K.; uI; Mu; C.; Li; Z.; Chan; CL; amC; Hunt; A.; Mukherjee; S.; Ade; H.; Huang; X.; Yan; H.; e. (2015). The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. 3: 20108-20112. http://dx.doi.org/10.1039/c5ta00533k.

Zhao; T; Liu; R; uI; Shi; H.; Shu; M.; Hu; J.; Li; H.; Zhu; H. (2016). Synthesis, tunable photophysics and nonlinear absorption of terpyridyl Pt(III) complexes bearing different acylidene ligands. Dyes and Pigments. 126: 165-172. http://dx.doi.org/10.1016/j.dyepig.2015.11.021.

Zheng, X; Peng, Q; Lin, J; ie; Wang, Y; i; Zhou, J; ie; Jiao, Y; an; Bai, Y; Huang, Y; an; Li, F; Liu, X; Pu, X; Lu, Z. (2015). Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation. 3: 6970-6978. http://dx.doi.org/10.1039/c5tc00779h.

Zheng, Y; Jradi, FM; Parker, TC; Barlow, S; Marder, SR; Saavedra, SS. (2016). Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface. 8: 34089-34097. http://dx.doi.org/10.1021/acsami.6b10731.

Zhong, Y; Sun, X; Wang, S; Peng, F; Bao, F; Su, Y; Li, Y; Lee, ST; He, Y. (2015). Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging. ACS Nano. 9: 5958-5967. http://dx.doi.org/10.1021/acs.nano.5b00683.

Zhu, M; Aryal, GH; Zhang, N; an; Zhang, H; Su, X; Schmehl, R; Liu, X; ie; Hu, J; in; Wei; J; Jayawickramarajah, J. (2015). Host-Guest Interactions Derived Multilayer Perylene Diimide Thin Film Constructed on a Scaffolding Porphyrin Monolayer. Langmuir. 31: 578-586. http://dx.doi.org/10.1021/la504297w.

Zhu, YY; Gu, SX; i. (2014). Reduction of the 3,4,9,10-perylenediimides and the formation of eletrodeposited films based on their radical anions. 1. http://dx.doi.org/10.1088/0026-9299/53/1/035102.

Zhuang, H; Zhou, Q; Li; Y; Zhang, Q; Li; H; Xu, Q; Li; N; Lu, J; Wang, L. (2014). Adjustment of ON-state retention ability based on new donor-acceptor imides through structural tailoring for volatile device applications. 6: 94-100. http://dx.doi.org/10.1021/am405000c.

Exposure Literature Search Results

On Topic

No on topic exposure references

Exposure Literature Search Results

Off Topic

Alcala, MA; Shade, CM; Uh, H; Kwan, SY; Bischof, M; Thompson, ZP; Gogick, KA; Meier, AR; Strein, TG; Bartlett, DL; Modzelewski, RA; Lee, YJ; Petoud, S; Brown, CK. (2011). Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials. 32: 9343-9352. http://dx.doi.org/10.1016/j.biomaterials.2011.07.076.

Aluicio-Sarduy, E; Singh, R; Kan, Z; Ye, T; Baidak, A; Calloni, A; Berti, G; Duo, L; Isisifidis, A; Beaupre, S; Leclerc, M; Butt, HJ; Floudas, G; Keivanidis, PE. (2015). Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces. 7: 8687-8698. http://dx.doi.org/10.1021/acsami.5b08027.

An, ZS; Yu, JS; Jones, SC; Barlow, S; Yoo, S; Domerq, B; Prins, P; Siebbeles, LDA; Kippen, B; Marder, SR. (2005). High electron mobility in room-temperature discotic-liquid-crystalline perylenediidime. Adv Mater. 17: 2580+-.

http://dx.doi.org/10.1002/adma.200500027.

Banal, JL; Soleimaninejad, H; Jrad, FM; Liu, M; White, JM; Blakers, AW; Cooper, MW; Jones, DJ; Ghiorgio, KP; Marder, SR; Smith, TA; Wong, WWH. (2016). Energy Migration in Organic Solar Concentrators with a Moleurally Insulated Perylene Diimide. J Phys Chem C. 120: 12952-12958. http://dx.doi.org/10.1021/acs.jpcc.6b04479.

http://dx.doi.org/10.1016/j.dyepig.2013.04.004.

Exposure Literature Search Results

Off Topic

Bonetti, S; Prosa, M; Pistone, A; Favaretto, L; Sagnella, A; Grisin, I; Zambianchi, M; Karges, S; Lorenzon, A; Posati, T; Zamboni, R; Camaioni, N; Mercuri, F; Muccini, M; Melucci, M; Benfenati, V. (2016). A self-assembled lysinated perylene diimide film as a multifunctional material for neural interfacing. 4: 2921-2932. http://dx.doi.org/10.1039/c5tb02299a.

Brochsttain, S; Politi, MJ. (1999). Solubilization of 1,4,5,8-naphthalenediimides and 1,8-naphthalimides through the formation of novel host-guest complexes with alpha-cyclodextrin. Langmuir. 15: 4486-4494.

Exposure Literature Search Results

Topic

Cai, Y; Gao, Y; a; Luo, Q; Li, M; Zhang, J; Tian, H; e; Zhu, W, eIH. (2016). Ferrocene-Grafted Photochromic Triads Based on a Sterically Hindered Ethene Bridge: Redox-Switchable Fluorescence and Gated Photochromism. 4: 1410-1416. http://dx.doi.org/10.1002/adom.201600229.

Canning, J; Ast, S; Hossain, M; da; Chan, H; Rutledge, PJ; Jamalipour, A. (2015). Bend and twist intramolecular charge transfer and emission for selective metal ion sensing. 5: 2675-2681. http://dx.doi.org/10.1021/acs.joumsynthet.05.07.239.

Cao, X; Meng, L; Li, Z; Mao, Y; Lan, H; Chen, L; Fan, Y; Yi, T, ao. (2014). Large Red-Shifted Fluorescent Emission via Intermolecular pi-pi Stacking in 4-Ethynyl-1,8-naphthalimide-Based Supramolecular Assemblies. Langmuir. 30: 11753-11760. http://dx.doi.org/10.1021/la503299j.

Chan, CY; iu; Wong, Y; ic; Wong, H; okLai; Chan, M; eyEe; Yam, VWW, ah. (2014). A new class of three-dimensional, p-type, spirobifluorenone-modified perylene diimide derivatives for small molecule-based bulk heterojunction organic photovoltaic devices. 2: 7656-7665. http://dx.doi.org/10.1039/c4tc01001a.

Exposure Literature Search Results

Off Topic

Chen, Z; hilun; Wang, L; iMin; Zou, G; Zhang, L; Zhang, Gl; un; Cai, XF; ei; Teng, MS. (2012). Colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on perylene diimide derivatives. Dyes and Pigments. 94: 410-415. http://dx.doi.org/10.1016/j.dypig.2012.01.024.

Chiu, TL; Chuang, K; aiH; Lin, C; hiF; Ho, Y; uH; Lee, JH; aw; Chao, CC; Leung, M; anKit; Wan, D; eHui; Li, CY; u; Chen, HL. i. (2009). Low reflection and photo-sensitive organic light-emitting device with perylene diimide and double-metal structure. Thin Solid Films. 517: 3712-3716. http://dx.doi.org/10.1016/j.tsf.2008.12.037.

Chou, W; eiyF; Lin, Y; iS; Kuo, LL; Liu, SJ; Cheng, HL; Tang, F; uC. (2014). Light sensing in photosensitive, flexible n-type organic thin-film transistors. 2: 626-632. http://dx.doi.org/10.1021/jc3031966k.

Exposure Literature Search Results

Off Topic

Davis, NJL; K; Macqueen, RW; Roberts, DA; Danos, A; Dehn, S; Perrier, S; Schmidt, TW. (2016). Energy transfer in pendant perylene diimide copolymers. 4: 8270-8275. http://dx.doi.org/10.1002/cctc.201502555b.

De Los Cobos, O; Foursert, B; Lejeune, M; Rossignol, D; Dutreilh-Colas, M; Carrion, C; Boissiere, C; Ribot, F; Sanchez, C; Cattoen, X; Man, MWC; hi, Durand, JO. (2012). Tunable Multifunctional Mesoporous Silica Microdots Arrays by Combination of Inkjet Printing, EISA, and Click Chemistry. Chem Mater. 24: 4337-4342. http://dx.doi.org/10.1021/cm3022769.

Diez-Pérez, I; Li, Z; Guo, S; Madden, C; Huang, H; Che, Y; Yang, X; Zang, L; Tao, N. (2012). Ambipolar transport in an electrochemically grafted single-molecule field-effect transistor. ACS Nano. 6: 7044-7052. http://dx.doi.org/10.1021/nn30290t.

Distanov, VB; Berdanova, VF; Gurkalenko, YA; Prezhdo, VV. (2001). An alternative approach to the production of fluorescent colored fibres. Dyes and Pigments. 48: 159-163.

Dutta, AK; Vanoppen, P; Jeuris, K; Grim, PCM; Pevenage, D; Salesse, C; De Schryver, FC. (1999). Spectroscopic, AFM, and NSOM studies of 3D crystallites in mixed Langmuir-Blodgett films of N,N 'bis(2,6-dimethylphenyl) 3,4,9,10-perylenetetracarboxylic diimide and stearic acid. Langmuir. 15: 607-612.

62
Exposure Literature Search Results

Off

Fan, Q; Cheng, K; Yang, Z; Zhang, R; Yang, M; Hu, X; Ma, X; Bu, L; Lu, X; Xiong, X; Huang, W; Zhao, H; Cheng, Z. (2015). Perylene-diamide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater. 27: 843-847. http://dx.doi.org/10.1002/adma.201402972.

Feng, X; An, Y; Yao, Z; Li, C; Shi, G. (2012). A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+-mediated perylene diimide aggregates. 4: 614-618. http://dx.doi.org/10.1021/am201616r.

Fleming, CL; Naider, T; imD; Doeven, EH; Barrow, CJ; Pfeffer, FM; Ashton, TD. (2016). Synthesis of N-substituted 4-hydroxynaphthalimides using palladium-catalysed hydroxylation. Dyes and Pigments. 126: 118-120. http://dx.doi.org/10.1016/j.dyespi.2015.11.007.

Fu, Y; Zhang, J; Wang, H; Chen, J; Li; Zhao, P; Chen, G; uor; He, XP. (2016). Intracellular pH sensing and targeted imaging of lysosome by a galactosylated naphthalimide-piperazine probe. Dyes and Pigments. 133: 372-379. http://dx.doi.org/10.1016/j.dyespi.2016.06.022.

Exposure Literature Search Results

Off Topic

Georgiev, NI; Bojinov, VB; Nikolov, PS. (2011). The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes and Pigments. 88: 350-357. http://dx.doi.org/10.1016/j.dyepig.2010.08.004.

Georgiev, NI; Dimitrova, MD; Todorova, YD; Bojinov, VB. (2016). Synthesis, chemosensing properties and logic behaviour of a novel ratiometric 1,8-naphthalimide probe based on ICT and PET. Dyes and Pigments. 131: 9-17. http://dx.doi.org/10.1016/j.dyepig.2016.03.051.

Gong, R; ui; Mu, H; Sun, Y; Fang, X; Xue, P; Fu, E. (2013). The first fluorescent sensor for medium-chain fatty acids in water: design, synthesis and sensing properties of an organic-inorganic hybrid material. 1: 2038-2047. http://dx.doi.org/10.1039/c3tb00355h.

Exposure Literature Search Results

Off Topic

Greiner, R; Schlueter, T; Zgela, D; Langhals, H. (2016). Fluorescent aryl naphthalene dicarboximides with large Stokes shifts and strong solvatocumulation controlled by dynamics and molecular geometry. 4: 11244-11252. http://dx.doi.org/10.1039/c6tc04453k.

Gu, P, eY; Lu, C, aii; Hu, Z, hiJn; Li, N, alun; Zhao, TT; Xu, QF; Xu, QH, ua; Zhang, JD; Lu, JM, ei. (2013). The AIEE effect and two-photon absorption (TPA) enhancement in polymerization: synthesis of a monomer with ICT and AIE effects and its homopolymer by ATRP and a study of their photophysical properties. 1: 2599-2606. http://dx.doi.org/10.1039/c3tc00738c.

Exposure

He, Q; Li, T; Yan, C; Liu, Y; Wang, J; Wang, M; Lin, Y; Zhan, X. (2016). Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments. 128: 223-234. http://dx.doi.org/10.1016/j.dyepig.2016.01.034.

Hendsbee, AD; Mcafee, SM; Sun, J, onP; Mccormick, TM; Hill, I, onG; Welch, GC. (2015). Phthalimide-based pi-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells. 3: 8904-8915. http://dx.doi.org/10.1039/c5tc01877c.

Exposure Literature Search Results

Off Topic

Huang, C; Sartin, MM; Siegel, N; Cozzuol, M; Zhang, Y; Hales, JM; Barlow, S; Perry, JW; Marder, SR. (2011). Photo-induced charge transfer and nonlinear absorption in dyads composed of a two-photon-absorbing donor and a perylene diimide acceptor. J Mater Chem. 21: 16119-16128. http://dx.doi.org/10.1039/c1jm12566d.

Huang, J; Wang, X; Zhang, X; Niu, Z; Lu, Z; Jiang, B; Sun, Y; Zhan, C; Yao, J. (2014). Additive-assisted control over phase-separated nanostructures by manipulating alkylithiyl enol position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. 6: 3853-3862. http://dx.doi.org/10.1021/am406050j.

Im, P; Kang, D; Kim, D; Choi, Y; Yoon, W; Lee, MH; Lee, I; nh; Lee, CR; o; Jeong, Ku, n. (2016). Flexible and Patterned Thin Film Polarizer: Photopolymerization of Peryl-ene-based Lyotropic Chromonic Reactive Mesogens. ACS Applied Materials & Interfaces. 8: 762-771. http://dx.doi.org/10.1021/acsami.5b09995.

Jang, J; Nam, S; Yun, W; onMin; Yang, C; Huang, J; An, T; AeKyu; Chung, D; aeS; Park, CE, on. (2011). High T-g olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. J Mater Chem. 21: 12542-12546. http://dx.doi.org/10.1039/c1jm11544h.

Jeong, YI; Jang, J; Nam, S; Kim, K; Kim, LH; Park, S; An, TK; Park, CE. (2014). High-performance organic complementary inverter using monolayer graphene electrodes. 6: 6816-6824. http://dx.doi.org/10.1021/ami500618g.

Kim, YY; Ree, BJ; Kido, M; Ko, YG, j; Ishige, R; Hirai, T; Wi, D; Kim, J; Kim, W, onJ; Takahara, A; Ree, M. (2015). High-Performance n-Type Electrical Memory and Morphology-Induced Memory-Mode Tuning of a Well-Defined Brush Polymer Bearing Perylene Diamide Mieties. 1. http://dx.doi.org/10.1002/aeml.201500197.

Exposure Literature Search Results

Off Topic

Li, DX; Zhang, JF; Jiang, YH; Jang, YJ; Kim, DH; Kim, JS. (2012). Plasmonic-coupling-based sensing by the assembly and disassembly of dipicolylamine-tagged gold nanoparticles induced by complexing with cations and anions. Small. 8: 1442-1448. http://dx.doi.org/10.1002/smll.201102335.

Li, H; ua; Li, N; Sun, R; u; Gu, H; Ge, J; Lu, J; Xu, Q; Xia, X; Wang, L. (2011). Dynamic Random Access Memory Devices Based on Functionalized Copolymers with Pendant Hydrazine Naphthalimide Group. J Phys Chem C. 115: 8288-8294. http://dx.doi.org/10.1021/jp1111668.

Li, S; Liu, W; Li, CZ; hi; Liu, F; Zhang, Y; Shi, M; Chen, H; Russell, TP. (2016). A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. 4: 10659-10665. http://dx.doi.org/10.1039/c6ta04232e.

Li, S; Zhang, H; ao; Zhao, W; Ye, L; Yao, H; Yang, B; ei; Zhang, S; Hou, J. (2016). Green-Solvent-Processed All-Polymer Solar Cells Containing a Perylene Diimide-Based Acceptor with Efficiency over 6.5%. 6. http://dx.doi.org/10.1021/jp0201991.

Li, Y; Yang, Y; Bao, X; Qiu, M; Liu, Z; Wang, N; Zhang, G; Yang, R; Zhang, D. (2016). New pi-conjugated polymers as acceptors designed for all polymer solar cells based on imide/amide-derivatives. 4: 185-192. http://dx.doi.org/10.1039/c5tc02615f.

Liang, N; Sun, K; ai; Zheng, Z; Yao, H; Gao, G; Meng, X; Wang, Z; Ma, W; ei; Hou, J. (2016). Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with Efficiency over 7%. 6. http://dx.doi.org/10.1002/aenm.201600060.

Off Topic

Liu, J; un; Cao, J; Shao, S; Xie, Z; Cheng, Y; Geng, Y; Wang, L; Jing, X; Wang, F. (2008). Blue electroluminescent polymers with dopant-host systems and molecular dispersion features: polypylene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. J Mater Chem. 18: 1659-1666. http://dx.doi.org/10.1039/b716234k.

Liu, J; Tu, GL; Zhou, QQ; Cheng, YX; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). Highly efficient green light emitting polypylene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J Mater Chem. 16: 1431-1438. http://dx.doi.org/10.1039/b514359d.

Liu, J; Zhou, QQ; Cheng, YX; Geng, YH; Wang, LX; Ma, DG; Jing, XB; Wang, FS. (2006). White electroluminesence from a single-polymer system with simultaneous two-color emission: Polypylene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant on the main chain. Adv Funct Mater. 16: 957-965. http://dx.doi.org/10.1002/adfm.200500761.

Liu, X; Zhang, Y; Pang, X; E, Y, u; Zhan, Y; Yang, D; Tang, J; Li, J; Che, Y; Zhao, J. (2015). Nanocoiled Assembly of Asymmetric Perylene Diimides: Formulation of Structural Factors. J Phys Chem C. 119: 6446-6452. http://dx.doi.org/10.1021/acs.jpcc.5b00720.

Exposure Literature Search Results

Off Topic

Liu, Y; Zhang, Z; Xia, Z; Zhang, J; ie; Liu, Y; Liang, F; Li, Y; Song, T, ao; Yu, X; Lee, ST; Sun, B. (2016). High Performance Nanostructured Silicon-Organic Quasi p-n Junction Solar Cells via Low-Temperature Deposition Hole and Electron Selective Layer. ACS Nano. 10: 704-712. http://dx.doi.org/10.1021/acsnano.5b05732.

Locklin, J; Li, DW; Mannsfeld, SCB; Borkent, EJ; Meng, H; Advincula, R; Bao, Z. (2005). Organic thin film transistors based on cyclohexyl-substituted organic semiconductors. Chem Mater. 17: 3366-3374. http://dx.doi.org/10.1021/cm047851g.

Ma, Z; Zhang, P; Yu, X; Lan, H; Li, Y; Xie, D; Li, Y; T, ao. (2015). Sugar based nanotube assembly for the construction of sonication triggered hydrogel: an application of the entrapment of tetracycline hydrochloride. 3: 7366-7371. http://dx.doi.org/10.1039/c5tb01191d.

May, B; Poteau, X; Yuan, DW; Brown, RG. (1999). A study of a highly efficient resonance energy transfer between 7-N,N-diethylamino-4-methylcoumarin and 9-butyl-4-butyaminol-1,8-naphthalimide. Dyes and Pigments. 42: 79-84.

Exposure Literature Search Results

Off Topic

Min, J; je; Bronnbauer, C; Zhang, Z; hiGuo; Cui, C; Luponosov, YN; Ata, I; Schweizer, P; Przybilla, T; Guo, F; ei; Ameri, T; Forberich, K; Spiecker, E; Baeuerlein, P; Pomostenko, SA; Li, Y; Brabec, CI. (2016). Full-Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Adv Funct Mater. 26: 4543-4550. http://dx.doi.org/10.1002/adfm.201505411.

Min, J; je; Zhang, Z; hiGuo; Hou, Y; qi; Quiriz, COR; Przybilla, T; Bronnbauer, C; Guo, F; ei; Forberich, K; Azimi, H; Ameri, T; Spiecker, E; Li, Y; Brabec, CI. (2015). Full-Solution-Processed Perovskite Hybrid Solar Cells with Solution-Processed Perylene-Diimide Heterojunctions toward High Performance. Chem Mater. 27: 227-234. http://dx.doi.org/10.1021/acs.chemmater.5b01312.

Mondal, S; Lin, W; ei; Chen, Y; uchi; Huang, SH; an; Yang, R; Chen, B; o; Yang, T; ei; Mao, SW; ei; Kuo, MY. (2015). Solution-processed single-crystal perylene diimide transistors with high electron mobility. Organic Electronics. 23: 64-69. http://dx.doi.org/10.1016/j.orgel.2015.04.011.

Moniz, T; Queiros, C; Ferreira, R; Leite, A; Gameiro, P; Silva, A; naMG; Rangel, M. (2013). Design of a water soluble 1,8-naphthalimide/3-hydroxy-4-pyridonone conjugate: Investigation of its spectroscopic properties at variable pH and in the presence of Fe3+, Cu2+ and Zn2+. Dyes and Pigments. 98: 201-211. http://dx.doi.org/10.1016/j.dyepig.2013.02.020.

Morgado, J; Gruner, J; Walcott, SP; Yong, TM; Cervini, R; Moratti, SC; Holmes, AB; Friend, RH. (1998). 4-AcNi - a new polymer for light-emitting diodes. Synthetic Metals. 95: 113-117.

Moscatello, JP; Castaneda, CV; Zaidi, A; Cao, M; Usluer, O; Briseno, AL; Aidala, KE. (2017). Time-resolved kelvin probe force microscopy to study population and depopulation of traps in electron or hole majority organic semiconductors. Organic Electronics. 41: 26-32. http://dx.doi.org/10.1016/j.orgel.2016.11.001.

Naab, BD; Gu, X; Kurowsawa, T; To, JWF; Salleo, A; Bao, Z. (2016). Role of Polymer Structure on the Conductivity of N-Doped Polymers. 2. http://dx.doi.org/10.1002/aelm.201600004.

Exposure Literature Search Results

Off Topic

Nakaya, K; Funabiki, K; Muramatsu, H; Shibata, K; Matsu, M. (1999). N-aryl-1,8-naphthalimides as highly sensitive fluorescent labeling reagents for cornstane. Dyes and Pigments. 43: 235-239.

Nam, S; Hahn, S; uGcGu; Han, H; Seo, J; Kim, C; Kim, H; Marder, SR; Ree, M; Kim, Y. (2016). All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Acceptor Trifunction Bond-Conjugated Perylene Diimide Polymer. 4: 767-774. http://dx.doi.org/10.1021/acs.suschemg.5b00732.

Pang, X; Yu, X; Lan, H; Ge, X; Li, Y; Zhen, X; Yi, T. ao. (2015). Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel. ACS Applied Materials & Interfaces. 7: 13569-13577. http://dx.doi.org/10.1021/acsami.5b03000.

Park, G; iEun; Choi, S; Lee, D; aEHee; Godumala, M; Uddin, MA; Woo, H; anY; Cho, M; inJu; Choi, DH. (2017). Perylene diimide isomers containing a simple sp(3)-core for non-fullerene-based polymer solar cells. 5: 663-671. http://dx.doi.org/10.1002/cita.09394a.

Park, HJ; SO, MC; Gostolta, D; Wiederrecht, GP; Emery, JD; Martinson, AB; ER, S; Wilmer, CE; Vermeulen, NA; Aspuru-Guzik, A; Stoddart, JF; Farha, OK; Hupp, JT. (2016). Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. 8: 24983-24988. http://dx.doi.org/10.1021/acsami.6b03307.

Off Topic

Qian, XH; Zhang, YL; Chen, KC; Tao, ZF; Shen, YG. (1996). A study on the relationship between Stoke’s shift and low frequency half-value component of fluorescent compounds. Dyes and Pigments. 32: 229-235.

Qiu, B; Yuan, J; un; Xiao, X; He, D; Qiu, L; Zou, Y; Zhang, Z; Li, Y. (2015). Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b’]dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces. 7: 25237-25246. http://dx.doi.org/10.1021/acsami.5b07066.

Qu, J; Gao, B; Tian, H; Zhang, X; Wang, Y; an; Xie, Z; Wang, H; Geng, Y; Wang, F. (2014). Donor-spacer-acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. 2: 3632-3640. http://dx.doi.org/10.1039/c3ta14701k.

Qu, Z; Li, P; Zhang, X; Han, K. (2016). A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells. 4: 887-892. http://dx.doi.org/10.1039/c5tb02090e.

Exposure Literature Search Results

Russ, B; Robb, MJ; Brunetti, FG; Miller, PL; Perry, EE; Patel, SN; Ho, V; Chang, WB; Urban, JI; Chabinsky, MC; Hawker, CJ; Segalman, RA. (2014). Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv Mater Deerfield. 26: 3473-3477. http://dx.doi.org/10.1002/adma.201306116.

Sahoo, D; Tian, Y; Sforazzini, G; Anderson, HL; Scheiblykin, IG. (2014). Photo-induced fluorescence quenching in conjugated polymers dispersed in solid matrices at low concentration. 2. 6601-6608. http://dx.doi.org/10.1039/c4tc00831f.

Savage, RC; Orgiu, E; Mativetksy, JM; Pisula, W; Schnitzler, T; Everslo, CL; Li, C; Muller, K; Samori, P. (2012). Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique. Nanoscale. 4: 2387-2393. http://dx.doi.org/10.1039/c2nr03088e.

76

Shoae, S; Clarke, TM; Eng, MP; Huang, C; Barlow, S; Espildora, E; va; Luis Delgado, J; Campo, B; Marder, SR; Heeney, M; Mcculloch, I; Martin, N; Vanderzande, D; Durrant, JR. (2012). Charge photogeneration in donor/acceptor organic solar cells. 2. http://dx.doi.org/10.1039/c2jp40416b.

Shu, W, ei; Wang, Y; Wu, L; iu; Wang, Z; Duan, Q; Gao, Y; Liu, C; Zhu, B; Yan, L. (2016). Novel Carbonothioate-Based Colorimetric and Fluorescent Probe for Selective Detection of Mercury Ions. Ind Eng Chem Res. 55: 8713-8718. http://dx.doi.org/10.1021/ie601892f.

Singh, R; Giussani, E; Mroz, MM; Di Fonzo, F; Fazzi, D; Cabanillas-Gonzalez, J; Oldridge, L; Vaenas, N; Kontos, AG; Falbaras, P; Grimsdale, AC; Jacob, J; Muellen, K; Keivanidis, PE. (2014). On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic Electronics. 15: 1347-1361. http://dx.doi.org/10.1016/j.orgel.2014.03.044.

Exposure Literature Search Results

Off Topic

Tang, J; Yang, H; ui; Liu, J; Wang, Y; ao; Yin, X; Wang, R; ui; Huang, L; Huang, Z. (2010). Ln(3+)-enhanced blue fluorescence from novel excimer of 1,8-naphthalimide-conjugated PAMAM. Optical Materials. 32: 1417-1422. http://dx.doi.org/10.1016/j.optmat.2010.05.008.

Tao, ZF; Qian, XH. (1999). Naphthalimide hydroperoxides as photoneucleases: substituent effects and structural basis. Dyes and Pigments. 43: 139-145.

Tao, ZF; Qian, XH; Wei, DZ. (1996). 1,8-naphthalimide hydroperoxides as novel intercalating DNA cleavers. Dyes and Pigments. 31: 245-251.

Exposure Literature Search Results

Off Topic

Exposure Literature Search Results

Off Topic

Wang, H; Guo, L; InE; Li, X; XueMei; Zhang, L; iMei; Xu, Q; iuLin; Wu, G; aoFei; Zhou, Y; Zhang, J; unF. (2015). Coumarin-based turn-on fluorescence probes for highly selective detection of Pi in cell culture and Caenorhabditis elegans. Dyes and Pigments. 120: 293-298. http://dx.doi.org/10.1016/j.dyepig.2015.04.031.

Wang, H; Ha, u; Liang, Y; an; Xie, H; Lu, H; Zhao, S; Feng, S. (2016). Unexpected SiMe3 effect on color-tunable and fluorescent probes of dendritic polypentyl naphthalimides with aggregation-induced emission enhancement. 4: 745-750. http://dx.doi.org/10.1002/chem.20130344f.

Wang, J; Yao, D; Dai, S; Zhang, X; Wang, W; ei; He, Q; Han, L; ei; Lin, Y; Zhan, X. (2015). Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. 3: 13000-13010. http://dx.doi.org/10.1002/csta.20589c.

Exposure Literature Search Results

Off Topic

Wang, X; Lv, L; ei; Li, L; Chen, Y; Zhang, K; ai; Chen, H; Dong, H; Huang, J; Shen, G; Yang, Z; Huang, H. (2016). High-Performance All-Polymer Photorespons Devices Based on Acceptor-Acceptor Conjugated Polymers. Adv Funct Mater. 26: 6306-6315. http://dx.doi.org/10.1002/adfm.201601745.

Wang, Y; Zhou, J; ie; Wang, X; u; Zheng, X; Lu; Zhang, W; ei; Chen, Y; Huang, Y; an; Pu; X; Yu, J. (2014). An efficient guest/host fluorescent energy transfer pair based on the naphthalimide skeleton, and its application in heavily-doped red organic light-emitting diodes. Dyes and Pigments. 100: 87-96. http://dx.doi.org/10.1016/j.dyepig.2013.08.021.

Wen, Y; Liu, Y; Di, C; an; Wang, Y; Sun, X; Guo, Y; Zheng, J; Wu, W; Ye, S; Yu, G. ui. (2009). Improvements in Performance and Stability of N,N-Dialkyl Perylene Dimide-Based n-Type Thin-Film Transistors. Adv Mater Deerfield. 21: 1631-+.

http://dx.doi.org/10.1002/adma.200802934.

http://dx.doi.org/10.3906/kim-0811-33.

Woodhouse, M; Perkins, CL; Rawls, MT; Cormier, RA; Liang, Z; Nardes, AM; Gregg, BA. (2010). Non-Conjugated Polymers for Organic Photovoltaics: Physical and Optoelectronic Properties of Poly(perylene diimide). J Phys Chem C. 114: 6784-6790.

http://dx.doi.org/10.1021/jp910738a.

Wu, CH; ao; Chueh, C; huc; Xi, Y; uYin; Zhong, HL; Gao, GP; Wang, ZH; ui; Pozzo, LD; Wen, T; enC; Jen, AKY. (2015). Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk Heterojunction Morphology Toward High-Performance Nonfullerene Polymer Solar Cells. Adv Funct Mater. 25: 5326-5332. http://dx.doi.org/10.1002/adfm.201501971.

Wu, W; Wu, W; ji; S; Guo, H; Song, P; Han, K; Chi, L; Shao, J; Zhao, J. (2010). Tuning the emission properties of cyclometalated platinum(II) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing. J Mater Chem. 20: 9775-9786. http://dx.doi.org/10.1039/c0jm01794a.

Wu, YQ; Yang, TS; he; Li, X; un; Wu, J; unC; Yi, T; ao; Li, F; uYou; Huang, CH; ui; Fan, X; in. (2011). Novel derivatives of niclosamide synthesis Its bioactivity and interaction with Schistosoma japonicum cercariae. Dyes and Pigments. 88: 326-332.

http://dx.doi.org/10.1016/j.dyepig.2010.08.002.

Xia, T; Wang, L; Qu, Y; i; Rui, Y; Cao, J; Hu, Y; uee; Yang, J; i; Wu, J; Xu, J. (2016). A thermoresponsive fluorescent rotor based on a hinged naphthalimide for a viscometer and a viscosity-related thermometer. 4: 5696-5701. http://dx.doi.org/10.1039/c6tc01241h.

Exposure Literature Search Results

Off Topic

Xu, L; Qin; Zhang, B; Liu; Sun, M; Hong, L; Neoh, KG; ee; Kang, E; nT; Fu, G, uO. (2013). CO2-triggered fluorescence "turn-on" response of perylene diimide-containing poly[N,N-dimethylaminoethyl methacrylate]. 1: 1207-1212. http://dx.doi.org/10.1039/c2ta00482h.

Yang, DH; ui; Yao, ZQ; Wu, D; Zhang, YH; ui; Zhou, Z; Bu, XH, e. (2016). Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. 4: 18621-18627. http://dx.doi.org/10.1039/c6ta07606h.

Yang, L; ei; Chen, Y; Chen, S; Dong, T; ao; Deng, W; ei; Lv, L; ei; Yang, S; Yan, H; e; Huang, H, ui. (2016). Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. J Power Sources. 324: 538-546. http://dx.doi.org/10.1016/j.jpowsour.2016.05.119.

Yao, Q; Zheng, Y; Cheng, W; Chen, M; Shen, J; ie; Yin, M. (2016). Difunctional fluorescent HSA modified CoFe2O4 magnetic nanoparticles for cell imaging. 4: 6344-6349. http://dx.doi.org/10.1039/c6tb01787h.

Ye, G; aol; Zhao, TT; Jin, ZN; Cu, P; eiY; Mao, J; jay; Xu, QH; ua; Xu, QF; Lu, JM; ei; Li, N; alun; Song, Y; inL. (2012). The synthesis and NLO properties of 1,8-naphthalimide derivatives for both femtosecond and nanosecond laser pulses. Dyes and Pigments. 94: 271-277. http://dx.doi.org/10.1016/j.dyepig.2012.01.001.

Ye, T; Singh, R; Butt, HJ; Floudas, G; Kevanidis, PE. (2013). Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. 5: 11844-11857. http://dx.doi.org/10.1021/amt4035416.

Exposure Literature Search Results

Off Topic

Yoon, KS; Lee, JY; Kim, T; aeHo; Yu, D; ukMan; Seo, DW; an; Hong, SK; Hong, YT. (2014). Synthesis and properties of densely sulfonated polyketones (sPKs) with rigid backbone structure for PEM fuel cell application. J Ind Eng Chem. 20: 2310-2316. http://dx.doi.org/10.1016/j.jiec.2013.10.006.

Yu, J; Xi, Y; Chueh, C; huC; Zhao, D; Lin, F; Pozzo, LD; Tang, W; Jen, AKY. (2016). A Room-Temperature Processable PDI-Based Electron-Transporting Layer for Enhanced Performance in PDI-Based Non-Fullerene Solar Cells. 3. http://dx.doi.org/10.1002/admi.201600476.

Yu, L; ei; Hua, X; iuNi; Jiang, X; iu; Qin, L; an; Yan, XZ; hi; Luo, L; aiHui; Han, L; ei. (2015). Histidine-Controlled Homochiral and Ferroelectric Metal-Organic Frameworks. Cryst Growth Des. 15: 687-694. http://dx.doi.org/10.1021/cg5013796.

Yu, X; Ge, X; Lan, H; Li, Y; Geng, L; Zhen, X; Yi, T. (2015). Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monocomponent Systems. 7: 24312-24321. http://dx.doi.org/10.1021/acsami.5b08402.

Yun, W; onMin; Jang, J; Nam, S; Park, CE; on; Kim, S; eH; Chung, D; aeS. (2014). Organic Light-Emitting Diodes with Low Turn-On Voltages and Improved Stability Featuring a PTCDI-C13:CuPc Mixed Hole Injection Layer. 6: 1676-1680. http://dx.doi.org/10.1166/sam.2014.1940.

Zhan, X; Tan, Z; Zhou, E; Li, Y; Misra, R; Grant, A; Domercq, B; Zhang, XH; An, Z; Zhang, X; Barlows, S; Kippelens, B; Marder, SR. (2009). Copolymers of perylene diimide with dithienophosphate and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem. 19: 5794-5803. http://dx.doi.org/10.1039/b007163f.

Zhang, H; ua; Xue, L; Han, JF; Fu, YQ; Shen, Y; an; Zhang, Z; Li, Y; Wang, M. (2016). New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport Layer. 4: 8724-8733. http://dx.doi.org/10.1039/c6ta03119f.

Zhang, J; Riskin, M; Tel-Vered, R; Tian, H; Williner, I. (2011). Optically activated uptake and release of Cu2+ or Ag+ ions by or from a photosomerizable monolayer-modified electrode. Langmuir. 27: 1380-1386. http://dx.doi.org/10.1021/la1040807.

Zhang, J; Xiao, H; Zhang, X; Wu, Y; Li, G; Li, C; Chen, X; Ma, W; ei; Bo, Z. (2016). 1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. 56: 5665-5663. http://dx.doi.org/10.1039/c6tc01438k.

Zhang, J; Zhang, X; Xiao, H; Li, G; Liu, Y; Li, C; Huang, H; Chen, X; Bo, Z. (2016). 1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. 8: 5475-5483. http://dx.doi.org/10.1021/acsami.5b10211.

Exposure Literature Search Results

Off Topic

Zhang, X; Lu, Z; Ye, L; Zhan, C; Hou, J; Zhang, S; Jiang, B; Zhao, Y; Huang, J; Zhang, S; Liu, Y; Shi, Q; Liu, Y; Yao, J. (2013). A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv Mater Defferield. 25: 5791-5797. http://dx.doi.org/10.1002/adma.201300897.

Zhang, X; Zhang, J; Lu, H; Wu, J; Li, G; Li, C; Li, S; Bo, Z. (2015). A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. 3: 6979-6985. http://dx.doi.org/10.1021/c801148e.

Zhang, XF; an; Zhang, T; ao; Shen, S; hLi; Miao, J; unY; Zhao, B; aoX. (2015). A ratiometric lysosomal pH probe based on the naphthalimide-rhodamine system. 3: 3260-3266. http://dx.doi.org/10.1021/c4tb02082k.

Zhang, Y; Peng, C; Cui, B; Wang, Z; Pang, X; Ma, R; Liu, F; Che, Y; Zhao, J. (2016). Direction-Controlled Light-Driven Movement of Microribbons. Adv Mater Defferield. 28: 8538-8545. http://dx.doi.org/10.1002/adma.2016020411.

Zhang, Y; Wan, Q; un; Guo, X; ia; Li, W; Guo, B; Zhang, M; Li, Y. (2015). Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzothiophene with thiophene conjugated side chains. 3: 18442-18449. http://dx.doi.org/10.1021/c3ta05014f.

Zhang, Y; Wang, H; Xiao, Y; Wang, L; Shi, D; Cheng, C. (2013). Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices. 5: 11393-11100. http://dx.doi.org/10.1021/am4033185.

Zhang, Y; uMo; Xie, F; Li, W; en; Wang, Y; Zhang, W; Wang, X; Li, M; Zhang, SKA, n. (2016). A methyl ketone bridged molecule as a multi-stimuli-responsive color switch for electrophotonic devices. 4: 4662-4667. http://dx.doi.org/10.1021/c504236d.

Zhang, Z; Zhang, X; in; Zhan, C; Lu, Z; Ding, X; He, S; Yao, J. (2013). The leverage effect of the relative strength of molecular solvophobicity vs. solvophilicity on fine-tuning nanomorphologies of perylene diimide bolaamphiphiles. Soft Matter. 9: 3089-3097. http://dx.doi.org/10.1039/c2sm27674g.

Zhao, D; Wu, Q; Cai, Z; Zheng, T; Chen, W; ei; Lu, J; Yu, L. (2016). Electron Acceptors Based on alpha-Substituted Perylene Diimide (PDI) for Organic Solar Cells. Chem Mater. 28: 1139-1146. http://dx.doi.org/10.1021/acs.chemmater.5b04570.

Zhao, J; Li, Y; Zhang, J; Zhang, L; u; Lai, JY, uklin; Jiang, K; ui; Mu, C; Li, Z; Chan, CL, amC; Hunt, A; Mukherjee, S; Ade, H; Huang, X; Yan, H. e. (2015). The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. 3: 20108-20112. http://dx.doi.org/10.1021/c5ta05339k.

Zhao, L; Ma, T; Bai, H; Lu, G; Li, C; Shi, G. (2008). Layer-by-layer deposited multilayer films of oligo(pyrenebutyric acid) and a perylene diimide derivative: structure and photovoltaic properties. Langmuir. 24: 4380-4387. http://dx.doi.org/10.1021/la703884d.

Zhao, M; eiXia; Zeng, E; rZao; Li, Y; Wang, CJ. ie. (2014). A study on effects of naphthalimide derivative-capped quantum dots on the cellular internalization, proliferation, and apoptosis ability. 2: 7351-7359. http://dx.doi.org/10.1021/c4tb01048e.

Zheng, X; Peng, Q; Lin, J; ie; Wang, Y; i; Zhou, J; ie; Jiao, Y; an; Bai, Y; Huang, Y; an; Li, F; Liu, X; Pu, X; Lu, Z. (2015). Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation. 3: 6970-6978. http://dx.doi.org/10.1021/c500779h.

Zheng, Y; Jradi, FM; Parker, TC; Barlow, S; Marder, SR; Saavedra, SS. (2016). Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface. 8: 34089-34097. http://dx.doi.org/10.1021/acsami.6b10731.
Exposure Literature Search Results

Off Topic

Zhu, M; Aryal, GH; Zhang, N, an; Zhang, H; Su, X; Schmehl, R; Liu, X; He, J, in; Wei, J; Jayawickramarajah, J. (2015). Host-Guest Interactions Derived Multilayer Perylene Diimide Thin Film Constructed on a Scaffolding Porphyrin Monolayer. Langmuir. 31: 578-586. http://dx.doi.org/10.1021/la504297w.

Zhu, YY; Gu, SX, i. (2014). Reduction of the 3,4,9,10-perylenediimides and the formation of eletrodeposited films based on their radical anions. 1. http://dx.doi.org/10.1088/0022-3727/51/1/0235102.

Zhuang, H; Zhou, Q; Li, Y; Zhang, Q; Li, H; Xue, Q; Li, N; Li, J; Wang, L. (2014). Adjustment of ON-state retention ability based on new donor-acceptor imides through structural tailoring for volatile device applications. 6: 94-100. http://dx.doi.org/10.1021/am405000c.

Environmental Hazard Literature Search Results

On Topic

No on topic environmenttal hazard references

Environmental Hazard Literature Search Results

Off Topic

Environmental Hazard Literature Search Results

Off Topic

Environmental Hazard Literature Search Results

Off Topic

Ng, AM, anC; Djurisic, AB; Tam, K, aiH; Cheng, K, aiW; Chan, W, aiKin; Tam, H, oImam; Cheah, K, okWal; Lu, AW; Chan, J; Rakic, AD. (2008). 3,4,9,10-Perylenetetraacarboxylicdiimide as an interlayer for ultraviolet organic light emitting diodes. Optic Comm. 281: 2498-2503. http://dx.doi.org/10.1016/j.optcom.2007.12.089.

Environmental Hazard Literature Search Results

Off Topic

Human Health Hazard Literature Search Results

On Topic

No on topic human health references

Off Topic

Alucio-Sarduy, E; Singh, R; Kan, Z; Ye, T; Baidak, A; Calloni, A; Bertl, G; Duo, L; Isosiadis, A; Beaufre, S; Leclerc, M; Butt, HJ; Floudas, G; Keivanidis, PE. (2015). Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces. 7: 8687-8698. http://dx.doi.org/10.1021/acsami.5b02463.

Arramel; Yin, X; Wang, Q; Zheng, Y; Song, Z; Bin Hassan, MH; Qi, D; Wu, J; Rusydi, A; Wee, AT. (2017). Molecular Alignment and Electronic Structure of N,N'-Dibutyl-3,4,9,10-perylene-tetracarboxylic-diimide Molecules on MoS2 Surfaces. 9: 5566-5573. http://dx.doi.org/10.1021/acsami.6b14000.

Ball, M; Fowler, B; Li, P; Joyce, L; Li, F; Liu, T; Paley, D; Zhong, Y; u; Li, H; Xiao, S; Ng, F; ay; Steigerwald, ML; Nuckolls, C. (2015). Chiral Conjugated Corroles. J Am Chem Soc. 137: 9982-9987. http://dx.doi.org/10.1021/jacs.5b05698.

Bhosale, S; Sisson, AL; Talukdar, P; Fürstenberg, A; Banerji, N; Vauthey, E; Bollot, G; Mareda, J; Röger, C; Würthner, F; Sakai, N; Matile, S. (2006). Photoproduction of proton gradients with pi-stacked fluorophore scaffolds in lipid bilayers. Science. 313: 84-86. http://dx.doi.org/10.1126/science.1126524.

Human Health Hazard Literature Search Results

Off Topic

Chao, CC; Leung, MK; Su, YO; Chiu, KY; Lin, TH; Shieh, SJ; Lin, SC. (2005). Photophysical and electrochemical properties of 1,7-diarylated-substituted perylene diimides. J Org Chem. 70: 4323-4331. http://dx.doi.org/10.1021/jo05001f.

Díez-Pérez, I; Li, Z; Guo, S; Madden, C; Huang, H; Che, Y; Yang, X; Zang, L; Tao, N. (2012). Ambipolar transport in an electrochemically gated perylene diimide field-effect transistor. ACS Nano. 6: 7044-7052. http://dx.doi.org/10.1021/nn302909t.

Dubey, RK; Niemi, M; Kaunisto, K; Efimov, A; Tkachenko, NV; Lemmetyinen, H. (2013). Direct evidence of significantly different chemical behavior and excited-state dynamics of 1,7- and 1,6-regiosomers of pyrrolidinyl-substituted perylene diimide. Chemistry. 19: 6791-6806. http://dx.doi.org/10.1002/chem.201203387.

Human Health Hazard Literature Search Results

Off Topic

Fan, Q; Cheng, K; Yang, Z; Zhang, R; Yang, M; Hu, X; Ma, X; Bu, L; Lu, X; Xiong, X; Huang, W; Zhao, H; Cheng, Z. (2015). Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater Deerfield. 27: 843-847. http://dx.doi.org/10.1002/adma.201402972.

Feng, X; An, Y; Yao, Z; Li, C; Shi, G. (2012). A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+-mediated perylene diimide aggregates. 4: 614-618. http://dx.doi.org/10.1021/am201616r.

Han, H; Bennett, RJ; Hurley, LH. (2000). Inhibition of unwinding of G-quadruplex structures by Sgs1 helicase in the presence of N,N'-bis-[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracarboxylic diimide, a G-quadruplex-interactive ligand. Biochemistry. 39: 9311-9316.

Herrmann, A; Weil, T; Singersky, V; Wiesler, UM; Vosch, T; Hofkens, J; De Schryver, FC; Müllen, K. (2001). Polyphenylene dendrimers with perylene diimide as a luminescent core. Chemistry. 7: 4844-4853.

Houghton, PJ; Cheshire, P; Hallman, JC; Gross, JL; Mcriley, RJ; Sun, JH; Behrens, CH; Dexter, DL; Houghton, JA. (1994). EVALUATION OF A NOVEL BIS-NAPHTHALIMIDE ANTICANCER AGENT, DMP-840, AGAINST HUMAN XENOGRAFTS DERIVED FROM ADULT, JUVENILE, AND PEDIATRIC CANCERS. Cancer Chemother Pharmacol. 33: 265-272.
Human Health Hazard Literature Search Results

Off Topic

Hu, R; Zhang, X; Xu, Q; Lu, DQ; Yang, YH; Xu, QQ; Ruan, Q; Mo, LT; Zhang, XB. (2017). A universal aptameric biosensor: Multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher. 92: 40-46. http://dx.doi.org/10.1016/j.bios.2017.01.051.

Huang, J; Wang, X; Zhang, X; Niu, Z; Lu, Z; Jiang, B; Sun, Y; Zhan, C; Yao, J. (2014). Additive-assisted control over phase-separated nanostructures by manipulating alkylthienyl position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. 6: 3853-3862. http://dx.doi.org/10.1021/ami40650j.

Im, P; Kang, D; Kim, D; Choi, Y; Yoon, W; Lee, MH; Lee, I; Lee, CR; o; Jeong, KU, n. (2016). Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-ene-based Lyotropic Chromonic Reactive Mesogens. ACS Applied Materials & Interfaces. 8: 762-771. http://dx.doi.org/10.1021/acsami.5b09995.

Jalilov, AS; Nilewski, IG; Berkia, V; Zhang, C; Yakoovenko, AA; Wu, G; Kent, TA; Tsai, AL; Tour, JM. (2017). Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic. ACS Nano. http://dx.doi.org/10.1021/acsnano.6b08211.

Jeong, YJ; Jang, J; Nam, S; Kim, K; Kim, LH; Park, S; An, TK; Park, CE. (2014). High-performance organic complementary inverters using monolayer graphene electrodes. 6: 6816-6824. http://dx.doi.org/10.1021/ami500618g.

Kirshenbaum, MR; Chen, SF; Behrens, CH; Papp, LM; Stafford, MM; Sun, JH; Behrens, DL; Fredericks, J. R.; Polkus, ST; Sipple, P; Patten, AD; Dexter, D; Seitz, SP; Gross, JL. (1994). (8R,2-2',1,2-ETHANEDILLYLBIS[IMINO[1-METHYL-2,1-ETHANEDILY][BIS[5-NITRO-1H- BENZ[DEJISOQUINOLINE-1,3-(2H)-DIONE] DIMETHANESULFONATE (DMP-840), A NOVEL BIS-NAPHTHALIMIDE WITH POTENT NONSELECTIVE TUMORICIDAL ACTIVITY IN-VITRO. Cancer Res. 54: 2199-2206.

Human Health Hazard Literature Search Results

Off Topic

Liu, Y; Zhang, Z; Xia, Z; Zhang, J; Ie; Liu, Y; Liang, F; Li, Y; Song, T; ao; Yu, X; Lee, ST; Sun, B. (2016). High Performance Nanostructured Silicon-Organic Quasi p-n Junction Solar Cells via Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano. 10: 704-712. http://dx.doi.org/10.1021/acs.nano.5b05732.

Human Health Hazard Literature Search Results

Off Topic

Llewellyn, BA; Slater, AG; Goretzki, G; Easun, TL; Sun, XZ; Davies, ES; Argent, SP; Lewis, W; Beeby, A; George, MW; Champness, NR. (2014). Photophysics and electrochemistry of a platinum-acetylde substituted perylenediimide. Dalton Transactions (Online). 43: 85-94. http://dx.doi.org/10.1039/c3dt50874a.

Meng, L; Shang, Y; Li, Q; Li, Y; Zhan, X; Shuai, Z; Kimber, RG; Walker, AB. (2010). Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. J Phys Chem B. 114: 36-41. http://dx.doi.org/10.1021/jp907167u.

Nayak, KC; Kumar, S; Gupta, B, aK; Kumar, S; Gupta, A; Prakash, P; Koehar, DK. (2014). Clinical and histopathological profile of acute renal failure caused by falciparum and vivax monoinfection : An observational study from Biknari, northwest zone of Rajasthan, India. J Vector Borne Dis. 51: 40-46.

Human Health Hazard Literature Search Results

Off Topic

Park, HJ; So, MC; Gosztola, D; Wiederrecht, GP; Emery, JD; Martinson, AB; Er, S; Wilmer, CE; Vermeulen, NA; Aspuru-Guzik, A; Stoddart, JF; Farha, OK; Hupp, JT. (2016). Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. 8: 24983-24988. http://dx.doi.org/10.1021/acsami.6b03307.

Randi, ML; Meneghini, C; Zerbinati, P; Sbarai, A; Rampini, E; Pasini, R; Zanin, L; Girolami, A; Cella, G. (1999). Soluble plasma thrombomodulin levels in patients with chronic myeloproliferative disorders. Clin Appl Thromb Hemost. 5: 43-47.

Rossetti, L; D’Isa, G; Mauriello, C; Varra, M; De Santis, P; Mayol, L; Savino, M. (2007). A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER. Biophys Chem. 129: 70-81. http://dx.doi.org/10.1016/j.bpc.2007.05.009.

Savage, RC; Orgiu, E; Mativetsky, JM; Pisula, W; Schnitzler, T; Everslooh, CL; Li, C; Müllen, K; Samori, P. (2012). Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique. Nanoscale. 4: 2387-2393. http://dx.doi.org/10.1039/c2nr30088e.

Savaraj, N; Liang, J; Lu, K; Loo, TL; Hsu, TC. (1986). GENOTOXICITY OF 1H-BENZ DE ISOQUINOLINE-1,3(2H)-DIONE,5 AMINO-2-(DIMETHYAMINO) ETHYL (BIDA) IN HUMAN-LYMPHOCYTES. Proc Am Assoc Cancer Res. 27: 283-283.

Human Health Hazard Literature Search Results

Off Topic

Tran, H; Gopinadhan, M; Majewski, PW; Shade, R; Steffes, V; Osuji, CO; Campos, LM. (2013). Monoliths of semiconducting block copolymers by magnetic alignment. ACS Nano. 7: 5514-5521. http://dx.doi.org/10.1021/nn401725a.

Vagnini, MT; Smeigh, AL; Blakemore, JD; Eaton, SW; Schley, ND; D'Souza, F; Crabtree, RH; Brudvig, GW; Co, DT; Wasilewski, MR. (2012). Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. Proc Natl Acad Sci USA. 109: 15651-15656. http://dx.doi.org/10.1073/pnas.1202075109.

Voormolen, MJH; van Rooij, WJ; Van Der Graat, Y; Lohle, PNM; Lampmann, LEH; Juttmann, JR; Sluzewski, M. (2006). Bone marrow edema in osteoporotic vertebral compression fractures after percutaneous vertebroplasty and relation with clinical outcome. AJNR Am J Neuroradiol. 27: 983-988.

Wang, Z; Liang, X; Cheng, Z; Xu, Y; Yin, P; Zhu, H; Li, Q; Qian, X; Liu, J. (2013). Induction of apoptosis and suppression of ERCC1 expression by the potent amonafide analogue 8-c in human colorectal carcinoma cells. Anticancer Drugs. 24: 355-365. http://dx.doi.org/10.1097/CAD.0b013e32835df8b5.

Human Health Hazard Literature Search Results

Off Topic

Zhang, X; Lu, Z; Ye, L; Zhan, C; Hou, J; Zhang, S; Jiang, B; Zhao, Y; Huang, J; Zhang, S; Liu, Y; Shi, Q; Liu, Y; Yao, J. (2013). A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv Mater Deerfield. 25: 5791-5797. http://dx.doi.org/10.1002/adma.201300897.

Zhang, Y; Peng, C; Cui, B; Wang, Z; Pang, X; Ma, R; Liu, F; Che, Y; Zhao, J. (2016). Direction-Controlled Light-Driven Movement of Microribbons. Adv Mater Deerfield. 28: 8538-8545. http://dx.doi.org/10.1002/chem.201602411.

Zhang, Y; Wang, H; Xiao, Y; Wang, L; Shi, D; Cheng, C. (2013). Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices. 5: 11093-11100. http://dx.doi.org/10.1002/adt.201403185.

Zhang, Y; Zheng, Y; Xiong, W; Peng, C; Zhang, Y; Duan, R; Che, Y; Zhao, J. (2016). Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism. Sci Rep. 6: 27335. http://dx.doi.org/10.1038/srep27335.

Zhao, L; Ma, T; Bai, H; Lu, G; Li, C; Shi, G. (2008). Layer-by-layer deposited multilayer films of oligo(pyrenebutyric acid) and a perylene diimide derivative: structure and photovoltaic properties. Langmuir. 24: 4380-4387. http://dx.doi.org/10.1021/la703884d.

Zhao, Y; Li, K; He, Z; Zhang, Y; Zhao, Y; Zhang, H; Miao, Z. (2016). Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide. Molecules. 21. http://dx.doi.org/10.3390/molecules21121642.

Human Health Hazard Literature Search Results

Off Topic
Zhong, Y; Trinh, MT; Chen, R; Wang, W; Khlyabich, PP; Kumar, B; Xu, Q; Nam, CY; Sfeir, MY; Black, C; Steigerwald, ML; Loo, YL; Xiao, S; Ng, F; Zhu, XY; Nuckolls, C. (2014). Efficient organic solar cells with helical perylene diimide electron acceptors. J Am Chem Soc. 136: 15215-15221. http://dx.doi.org/10.1021/ja5092613.

OPPT RISK ASSESSMENT, PROBLEM FORMULATION OR SCOPE DOCUMENT

All documents cited in previous OPPT risk assessments, problem formulations and scope documents are included in the following section and listed as on topic without further categorization. The references may have also been captured in the search strategy and therefore presented in the peer reviewed literature search results section as either on topic or off topic for a given topic area in the sections above.

OPPT Risk Assessment, Problem Formulation or Scope Document

On Topic

OPPT Risk Assessment, Problem Formulation or Scope Document

On Topic

Hamburger, B; Haberling, H; Hitz, HR. (1977). COMPARATIVE TESTS ON TOXICITY TO FISH USING MINNOWS, TROUT AND GOLDEN ORFE. 28: 45-55.

On Topic

OPPT Risk Assessment, Problem Formulation or Scope Document

On Topic

http://www.epa.gov/chemrtk/hpvis/hazchar/Category_SN401%20C%20I%20Pigment%20Red%2048%20and%2052_POST.pdf

Gray Literature Search Results

Gray literature is defined as the broad category of studies not found in standard, peer-reviewed literature databases (e.g., PubMed). Gray literature includes studies that are difficult to find in conventional bibliographic databases and includes references such as white papers, conference proceedings, technical reports, reference books, dissertations and information on various stakeholder websites.

The gray literature search results are currently contained in this document and in Excel spreadsheets. EPA is considering whether to manually develop EndNote citations for on topic gray literature results. This section lists abbreviated information for each citation, including a link to the reference. Full gray literature search results are presented in the Gray Literature Excel Spreadsheet: Pigment Violet 29.

Note: Gray Lit Results provided as a second PDF.

Legend for Gray Literature Bibliography Columns

<table>
<thead>
<tr>
<th>Source</th>
<th>A brief description of the gray literature source that was searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>The web address of the search result URL</td>
</tr>
<tr>
<td>Annotation</td>
<td>An brief description of the search result</td>
</tr>
<tr>
<td>Engineering</td>
<td>On topic</td>
</tr>
<tr>
<td></td>
<td>Off topic</td>
</tr>
<tr>
<td>Fate</td>
<td>On topic</td>
</tr>
<tr>
<td></td>
<td>Off topic</td>
</tr>
<tr>
<td>Exposure</td>
<td>On topic</td>
</tr>
<tr>
<td></td>
<td>Off topic</td>
</tr>
<tr>
<td>Human Health</td>
<td>On topic</td>
</tr>
<tr>
<td></td>
<td>Off topic</td>
</tr>
<tr>
<td>Notes</td>
<td>Any notes about the search result, including a note about search results that were not tagged to individual topic areas but are considered "on topic" overall</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Air Quality Planning and Standards (OAQPS)</td>
<td>www.epa.gov/airquality/</td>
</tr>
<tr>
<td>Office of Air: Ambient Water Quality Criteria documents</td>
<td>www.epa.gov/wqc</td>
</tr>
<tr>
<td>Office of Air: HAPS</td>
<td>www.epa.gov/ttn/chief/ap42/ch06/final/06s04.pdf</td>
</tr>
<tr>
<td>Office of Air: NESHAP</td>
<td>www.epa.gov/technical-air-pollution-resources</td>
</tr>
<tr>
<td>Office of Air: TRI</td>
<td>www.epa.gov/tri</td>
</tr>
<tr>
<td>OPPT: TSCA Analog Identification Methodology (AIM)</td>
<td>http://www.epa.gov/tsca-screening-tools/analog-identification-methodology-aim-tool</td>
</tr>
<tr>
<td>Significant New Alternatives Policy (SNAP)</td>
<td>www.epa.gov/snap</td>
</tr>
<tr>
<td>Safer Choice</td>
<td>www.epa.gov/saferchoice/</td>
</tr>
<tr>
<td>Pollution Prevention</td>
<td>www.epa.gov/p2/</td>
</tr>
<tr>
<td>Pesticide Ingredients</td>
<td>www.epa.gov/ingredients-used-pesticide-products</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>www.epa.gov/hw/</td>
</tr>
<tr>
<td>Superfund Enterprise Management System (SEMS)</td>
<td>cumulis.epa.gov/supercpad/cursites</td>
</tr>
<tr>
<td>CPCat</td>
<td>https://actor.epa.gov/cpcat/faces/search.xhtml</td>
</tr>
<tr>
<td>CPCat</td>
<td>https://actor.epa.gov/cpcat/faces/search.xhtml</td>
</tr>
<tr>
<td>NCEA IRIS</td>
<td>www.epa.gov/iris</td>
</tr>
<tr>
<td>ChemView (CDR/IUR)</td>
<td>http://java.epa.gov/chemview</td>
</tr>
</tbody>
</table>

103
<table>
<thead>
<tr>
<th>Source</th>
<th>General Information about Result</th>
<th>Subject-Matter Tags</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering</td>
<td>Fate</td>
<td>Exposure</td>
</tr>
<tr>
<td>Stationary Sources Air Pollution</td>
<td>www.epa.gov/stationary-sources-air-pollution/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>Asbestos</td>
<td>www.epa.gov/asbestos/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>Economic and cost assessment</td>
<td>www.epa.gov/economic-and-cost-analysis-air-pollution-regulations</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>List of Pesticide Product Inert</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>of Hydraulic Fracturing for Oil and Gas</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>List of Pesticide Product Inert Ingredients</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Workshop on the Fate, Transport and Transformation of Mercury in Aquatic</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Agency), Emergency Planning and Community Right-To-Know Act</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>On-Site Waste Ink Recycling Technology Evaluation Report</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Technologies Substitutes Assessment, Volume 1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Technologies Substitutes Assessment, Volume 2 Appendices</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Prioritized Chemical List, Draft</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Toxics Release Inventory Public Data Release, 1994</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>from Sources of Chlorobenzenes, Revised</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Computer Display Industry and Technology Profile</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Epidemiologic and Environmental Assessment of Recreational Water</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Prioritized Chemical List June 1997 Draft</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Related Photochemical Oxidants (Second External Review Draft)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>URL</td>
<td>Annotation</td>
<td>Engineering</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/9101O1QS.PDF?Dockey=9101O1QS.PDF</td>
<td>EPCRA Section 313 Data Quality Inspection Manual</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/200013ZA.PDF?Dockey=200013ZA.PDF</td>
<td>Superfund Record of Decision: Cosden Chemical Coatings, NJ</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/91022DIC.PDF?Dockey=91022DIC.PDF</td>
<td>Technologies Substitutes Assessment, Volume 1</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100BL4U.PDF?Dockey=P100BL4U.PDF</td>
<td>State Implementation Plan - Tennessee</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100HK43.PDF?Dockey=P100HK43.PDF</td>
<td>Evaluation of Flexographic Inks on Wide-Web Film Summary Booklet</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/20001H7V.PDF?Dockey=20001H7V.PDF</td>
<td>1993 Toxics Release Inventory: Public Data Release</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/30006ELS.PDF?Dockey=30006ELS.PDF</td>
<td>Discharges Subject to Effluent Limitations and Standards for the</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/000035VX.PDF?Dockey=000035VX.PDF</td>
<td>From Sources of Lead and Lead Compounds</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P1009O71.PDF?Dockey=P1009O71.PDF</td>
<td>Offset Lithographic Printing and Letterpress Printing</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P1000AM4.PDF?Dockey=P1000AM4.PDF</td>
<td>Related Photochemical Oxidants (First External Review Draft) Volume</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QSBM.PDF?Dockey=P100QSBM.PDF</td>
<td>Toxics Release Inventory Public Data Release, 1992</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EJPX.PDF?Dockey=P100EJPX.PDF</td>
<td>Toxics Release Inventory: Public Data Release, 1991</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100H46L.PDF?Dockey=P100H46L.PDF</td>
<td>Listed Under Section 313 Of The Emergency Planning And Community</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P1001G4F.PDF?Dockey=P1001G4F.PDF</td>
<td>UV Exposure of Coral Assemblages in the Florida Keys</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P1009J4N.PDF?Dockey=P1009J4N.PDF</td>
<td>Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>https://nepis.epa.gov/Exe/ZyPDF.cgi/P100B2YF.PDF?Dockey=P100B2YF.PDF</td>
<td>Engineering and Modeling Support (STREAMS) Final Report State of the</td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL (RBLC) Clean Air Technology Center Annual Report for 2006</td>
<td>Engineering</td>
<td>On-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Hydraulic Fracturing on Drinking Water Resources Progress Report</td>
<td>Fate</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Final Contaminant Candidate List 3 Chemicals Identifying the Universe</td>
<td>Human Health</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Scientific Literature to Determine Important Environmental Variables</td>
<td>Engineering</td>
<td>On-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Preliminary 2010 Effluent Guidelines Program Plan</td>
<td>Fate</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Document Surface Coating Of Automotive-transportation and</td>
<td>Exposure</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Locating and Estimating Air From Sources of Toluene</td>
<td>Human Health</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Geographic Index of Environmental Articles, 1991</td>
<td>Engineering</td>
<td>On-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)</td>
<td>Fate</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Wastewater Treatment Pond Systems for Plant Operators, Engineers, and</td>
<td>Exposure</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Related Photochemical Oxidants External Review Draft 1995 Volume II</td>
<td>Human Health</td>
<td>Off-Off-Off-Off</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>URL Environmental Releases of Dioxin-Like Compounds in the United States: Prevention Experiences in 3 Flexographic Printing Facilities,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>URL</td>
<td>Annotation</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Mercury Compounds from the United States for Conversion to</td>
<td>On-Topic</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td></td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>Annotation</td>
<td>On-Topic</td>
<td>Off-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On-Topic</td>
<td>Topic</td>
</tr>
<tr>
<td></td>
<td>Conference on Low- and No-VOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coating Technologies, May 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guide to Cleaner Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Coating Replacements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous Air Pollutants For Source Categories Aerospace Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determination of Test Methods for Interior Architectural Coatings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Quality Criteria for Oxides of Nitrogen: Volume 2 of 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNEP: Environmental Effects of Ozone Depletion, 1994 Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geographic Index of Environmental Articles 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing and Quality Assurance Symposium, July 11-15, 1994, Hyatt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desktop Computer Displays: Life Cycle Assessment, Volume 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goals of and Criteria for Design of a Biological Monitoring System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EXAMSS) User Manual And System Documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPA Air Pollution Control Cost Manual (Sixth Edition)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technologies Substitutes Assessment, Volume 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factors Fourth Edition Volume I Stationary Point and Area Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene (CASRN 79-01-6) In Support of Summary Information on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Indoor Air Assessment: Indoor Biological Pollutants</td>
<td>Engineering: On-Topic, Off-Topic, Fate: Off-Topic, Exposure: On-Topic, Human Health: Off-Topic</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Techniques Advisory Committee: Minutes of Meeting, November 19-21, 1993</td>
<td>Engineering: On-Topic, Off-Topic, Fate: Off-Topic, Exposure: On-Topic, Human Health: Off-Topic</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Indoor Air Reference Bibliography</td>
<td>Engineering: On-Topic, Off-Topic, Fate: Off-Topic, Exposure: On-Topic, Human Health: Off-Topic</td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>URL</td>
<td>Annotation</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Deplete the Ozone Layer: 1994 Report of the Solvents, Coatings and</td>
<td>URL</td>
<td>x</td>
</tr>
<tr>
<td>NSCEP documents (has NEPIS)</td>
<td>Challenge Awards Program : Summary of 2000 Award Entries and</td>
<td>URL</td>
<td>x</td>
</tr>
<tr>
<td>Regulatory Development and Retrospective Review Tracker</td>
<td>yosemite.epa.gov/opei/rulegate.nsf/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>EPA Generic Scenarios</td>
<td>Book</td>
<td>Agency), Generic Scenario on the Use of Additives in the Thermoplastics</td>
<td>x</td>
</tr>
<tr>
<td>EPA Generic Scenarios</td>
<td>Document in preparation</td>
<td>Agency), Generic Scenario on Coating Application Via Spray Painting in the</td>
<td>x</td>
</tr>
<tr>
<td>HPV challenge submissions</td>
<td>cfpub.epa.gov/hpv-s/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>Posting Memo</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Christine Ernst, Earthjustice</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Timothy J. Lafond, P.E., Chair, Environmental Committee,</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Eve Gartner, Staff Attorney, Earthjustice et al.</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by the Environmental Defense Fund (EDF)</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Stephanie Fox-Rawlings, National Center for Health Research</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Susan Inglis, Executive Director, Sustainable Furnishings</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Juleen Lam, PhD, Associate Researcher, University of</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Christina Franz, Senior Director, Regulatory & Technical</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Elizabeth Hitchcock, Government Affairs Director and</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Eve Gartner, Staff Attorney, Earthjustice on behalf of</td>
<td>TSCA public comments are not tagged to specific discipline</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Adhesive and Sealant Council et al.</td>
<td>Engineering: On-Topic, Fate: On-Topic, Exposure: On-Topic, Human Health: On-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Stacy Tatman, MS, JD, Director, Environmental Affairs,</td>
<td>Engineering: On-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Stephanie Fox-Rawlings, National Center for Health Research</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Susan Inglis, Executive Director, Sustainable Furnishings</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Juleen Lam, PhD, Associate Researcher, University of</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Anthony Schatz, Ph.D, Director Occupational Health and</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Elizabeth Hitchcock, Government Affairs Director, Safer</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Kim Cox, Environmental Policy Manager, City of Portland</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>Campaign sponsored by Earthjustice (web)</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by David J. Waver, Executive Director, Color Pigments</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Raleigh Davis, Assistant Director, Environmental Health and</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Barbara S. Losey, Director, Alkylphenols & Ethoxylates</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Timothy A. Brown, Regulatory Counsel and Steven</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Eve Gartner, Staff Attorney, Earthjustice, Elizabeth</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Chris Trahan Cain, Director of Safety and Health, North</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Lindsay McCormick, Chemicals and Health Project</td>
<td>Engineering: Off-Topic, Fate: Off-Topic, Exposure: Off-Topic, Human Health: Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>submitted by Laurie Holmes, Senior Director, Environmental Policy, Motor</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>TSCA Use Dossiers and Public Comments</td>
<td>Campaign sponsored by Earthjustice (web) (Revised)</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td>TSCA public comments are not tagged to specific discipline</td>
</tr>
<tr>
<td>National Institutes of Health (NIH) ChemIDplus</td>
<td>searches, gov regulatory documents, consumer product databases, etc.</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>CDC NIOSH</td>
<td></td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>CDC NIOSH Health Hazard Evaluations</td>
<td>No results</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>FDA Food and Drug Administration</td>
<td>Federal Register</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>FDA Databases</td>
<td>Links to docs already captured</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>FDA Databases</td>
<td>Found in manual search</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>FDA Cumulative Estimated Daily Intake</td>
<td>PV29, regulatory numbers in title 21 appearing</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>FDA List of Indirect Additives Used in Food Contact Substances</td>
<td>Code of Federal Regulations Title 21-21CFR178.3297</td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>OSHA Occupational Safety and Health Administration</td>
<td></td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>NIST</td>
<td></td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>Department of Energy</td>
<td></td>
<td>Engineering Off-Topic Fate Off-Topic Exposure Off-Topic Human Health Off-Topic</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Engineering</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>URL</td>
<td>Annotation</td>
<td>On-Topic</td>
</tr>
<tr>
<td>PNNL Pacific Northwest National Laboratory</td>
<td>www.pnnl.gov/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>US Geological Survey publications</td>
<td>https://pubs.er.usgs.gov/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>ECHA Documents</td>
<td>https://echa.europa.eu/brief-profile/-/briefprofile/100.001.223</td>
<td>brief profile of chemical</td>
<td>x</td>
</tr>
<tr>
<td>ECHA Documents</td>
<td>links in excel file</td>
<td>Links to registration dossiers</td>
<td>x</td>
</tr>
<tr>
<td>OECD Emission Scenario Documents</td>
<td>www.oecd.org/chemistry/stone-emissionscenariodocuments.htm</td>
<td>operation and Development), Emission Scenario Document on Use</td>
<td>x</td>
</tr>
<tr>
<td>OECD Emission Scenario Documents</td>
<td>www.oecd.org/chemistry/stone-emissionscenariodocuments.htm</td>
<td>Agency), Emission Scenario Document on the Use of Additives in</td>
<td>x</td>
</tr>
<tr>
<td>WHO Institutional Repository for Information Sharing (IRIS)</td>
<td>apps.who.int/iris/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>World Health Organization- Regional Office for Europe</td>
<td>www.euro.who.int/en/home</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>of Health, National Industrial Chemicals; NICNAS</td>
<td>www.nicnas.gov.au</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>CAREX Canada</td>
<td>www.carexcanada.ca/en/</td>
<td>no results</td>
<td>x</td>
</tr>
<tr>
<td>Government of Japan: Ministry of the Environment</td>
<td>www.env.go.jp/en/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>Substances in Preparations in Nordic Countries (SPIN) Database</td>
<td>http://www.spin2000.net/spinmyphp/</td>
<td>Summary by chemical</td>
<td>x</td>
</tr>
<tr>
<td>Lowell Center for Sustainable Production</td>
<td>sustainableproduction.org</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>eChemPortal</td>
<td>http://www.echemportal.org</td>
<td>Results from Canadian Domestic Substance List</td>
<td>x</td>
</tr>
<tr>
<td>eChemPortal</td>
<td>http://www.echemportal.org</td>
<td>EU Commission DB</td>
<td>x</td>
</tr>
<tr>
<td>Pollution Prevention Infohouse</td>
<td>infohouse.p2ric.org/</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>Kirk Othemer Encyclopedia</td>
<td>Book</td>
<td>uses, process</td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>URL</td>
<td>Annotation</td>
<td>Engineering</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Kirk Othemer Encyclopedia</td>
<td>Book</td>
<td>Othmer Encyclopedia of Chemical Technology. 2004, John Wiley &</td>
<td>x</td>
</tr>
<tr>
<td>Ashford's Dictionary of Industrial Chemicals, 2001</td>
<td>Book</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ATSDR</td>
<td>www.atdr.cdc.gov/hac/pha/</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>State sites</td>
<td>Google State Custom Search Engine</td>
<td>N/A</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>acmanet.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>aia-aerospace.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>americanchemistry.com</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>asphaltroofing.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>canadianchemistry.ca</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>cefic-efra.com</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>csipa.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>ebfrip.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>ipma.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>nam.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>pinfa.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>plasticpipe.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>sips.org</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Engineering</td>
<td>Fate</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>socma.com</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.acmanet.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.afma.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.afsinc.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.aga.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ahrinet.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.aluminum.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ame.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.americanchemistry.com</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ansi.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.api.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ascouncil.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.awc.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.bifma.org</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.cancentral.com</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.chlorinated-solvents.eu</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.cibo.org</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

115
<table>
<thead>
<tr>
<th>Source</th>
<th>URL</th>
<th>Annotation</th>
<th>General Information about Result</th>
<th>Subject-Matter Tags</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Associations</td>
<td>www.cleaninginstitute.org</td>
<td>x</td>
<td>On-Topic</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.copper.org</td>
<td>x</td>
<td>On-Topic</td>
<td>Fate</td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.flexpack.org</td>
<td>x</td>
<td>Off-Topic</td>
<td>Exposure</td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.gasketfab.com</td>
<td>x</td>
<td>Off-Topic</td>
<td>Human Health</td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.globalautomakers.org</td>
<td>x</td>
<td>Off-Topic</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.gmaonline.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.hsia.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ieima.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.inda.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ipc.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.isri.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.issa.com</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.jpma.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.mema.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.nasf.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.nema.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.ngsa.org</td>
<td>x</td>
<td>On-Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source URL</td>
<td>Annotation</td>
<td>Engineering On-Topic</td>
<td>Engineering Off-Topic</td>
<td>Fate On-Topic</td>
<td>Fate Off-Topic</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.nmpgroup.com</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.pei.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.personalcarecouncil.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.pmpa.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.powertoolinstitute.com</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.printing.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.pstc.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.roofcoatings.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.sema.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.sme.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.socma.com</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.steel.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.tcata.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.trsa.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.vinylsiding.org</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trade Associations</td>
<td>www.xpsa.com</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OPPT Hazard Characterizations</td>
<td>OPPT Hazard Characterizations</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Source</td>
<td>General Information about Result</td>
<td>Subject-Matter Tags</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHPV Program Submissions - Supporting Information</td>
<td>EHPV Program Submissions - Supporting Information</td>
<td>Engineering: On-Topic, Off-Topic; Fate: On-Topic, Off-Topic; Exposure: On-Topic, Off-Topic; Human Health: Off-Topic</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPPT Risk-Based Prioritizations</td>
<td>OPPT Risk-Based Prioritizations</td>
<td>Engineering: Off-Topic; Fate: Off-Topic; Exposure: Off-Topic; Human Health: Off-Topic</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH LACTMED</td>
<td>NIH LACTMED</td>
<td>Engineering: On-Topic, Off-Topic; Fate: Off-Topic; Exposure: Off-Topic; Human Health: Off-Topic</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>