Cost-Effective Methane Emissions Reductions for Small and Midsize Natural Gas Producers

Agenda

- *** U.S. Natural Gas Production Sector**
- Cost-Effective Methane Emissions Reduction Options
- ***** Calculating Economics
- ***** Conclusions

U.S. Natural Gas Production Sector

- Independent producers drill 85% of new gas wells
- * 80% of these companies have fewer than 20 employees
- * Natural gas prices have hit record highs
- * Gas losses are becoming more attractive to recover considering potential benefits

* While most small and midsize producers are not Gas STAR Partners, they regularly attend workshops and report applying Best Management Practices (BMPs)

Reducing Emissions, Increasing Efficiency, Maximizing Profits

U.S. Production Sector Emissions

Emissions from production sector are ~150 Bcf/year.

EPA POLLUTION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Cost-Effective Methane Emissions Reduction Options

Technologies & Practices	Equipment Cost \$	O&M Cost \$/yr	Saleable Gas Savings Mcf/d	Operating requirements	Basis for Cost & Savings
Installing Vapor Recovery Unit on Crude Oil Storage Tanks	\$26,500	\$5,000	12	Electrical power supply for VRU compressor	Installing one 25 Mcfd VRU on crude oil or condensate storage tank(s)
Connect Casing to VRU	\$1,000	\$3,400	27	Pressure Regulators may be required	Connecting one casing to an existing stock tank with VRU, O&M cost is incremental electricity
Pipe Glycol Dehydrator Vapor to VRU	\$1,000	\$3,000	9	Existing VRU with excess capacity	Dehydrator throughput = 20 MMcfd Operating cost is incremental electricity
Aerial Optical Leak Imaging	N/A	\$450/hr travel plus \$65/mile	2,000	Operating location ≤5 hours helicopter travel time from service provider base	Surveillance of 500 miles of flowlines, identifying leaks totalling 2% of 100 Mcf/d production
Begin DI&M at remote facilities	N/A	\$1 per component screened	1	Soap solution and/or Gas Detector	Screening 200 components, repair leaks in one open-ended blowdown valve and one control valve stem seal

Excerpt from the Journal of Petroleum Technology, June 2005, page 38.

Reducing Emissions, Increasing Efficiency, Maximizing Profits

Cost-Effective Methane Emissions Reduction Options

- Options for small to midsize producers range from fixing fugitives to installation of new technologies
- With high gas prices, more options are becoming economically attractive for producers
- Two examples of technologies that have great potential to increase profits:
 - Vapor recovery units
 - Aerial optical leak imaging

Page 6

EXTERNEE Reducing Emissions, Increasing Efficiency, Maximizing Profits

Vapor Recovery Units (VRUs)

- Capture up to 95% of hydrocarbon vapors vented from oil storage tanks
- Recovered vapors have higher Btu content than pipeline quality natural gas
- Recovered vapors are more valuable than natural gas and have multiple uses:
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Send to processing plants for recovering NGLs

Page 7

TION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Characteristics of VRUs

* Conventional vapor recovery units

- Use rotary compressor to suck vapors out of atmospheric pressure storage tanks
- Require electrical power or engine
- Gas savings can range up to 12 Mcf/d for a 25 Mcf/d size unit
- Other methane reduction options can be implemented as a result of installing a VRU:
 - Connecting a casinghead vent to a VRU instead of venting to the atmosphere can further reduce emissions
 - Piping a glycol dehydrator regenerator vent stack and pneumatic devices to an oil tank equipped with a VRU can further reduce emissions

Page 8

EX PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Vapor Recovery Unit Calculation

- * Goal: Install 50 Mcf/d VRU unit on crude oil tanks
- ★ Basis for cost and savings:
 - Basis size: 25 Mcfd VRU
 - Equipment cost = \$26,500
 - O&M cost = \$5,000
 - Gas savings = 12.0 Mcf/d
- * Scaleable calculation:
 - Calculation 1
 - Equipment cost = square root (your size ÷ basis size) * basis cost
 - = $\sqrt{(50 \text{ Mcf/d} \div 25 \text{ Mcf/d})} * (\$26,500)$
 - ≈ \$37,100
 - Calculation 2

NaturalGas 💧

- Your O&M cost = (your size ÷ basis size) * basis O&M cost
- = (50 Mcf/d ÷ 25 Mcf/d) * (\$5,000)
- = \$10,000

POLLUTION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Page 9

Vapor Recovery Unit Calculation

* Scaleable calculation continued:

- ♦ Calculation 3
 - Your gas savings = (your size ÷ basis size) * basis gas savings
 - = (50 Mcf/d ÷ 25 Mcf/d) * 12.0 Mcf/d * 365 days
 - = 2 * 12 * 365
 - = 8,760 Mcf/yr
- Calculation 4
 - Payback = Equipment cost ÷ ((Annual gas savings * Price of gas) - 1 year O&M)
 - = \$37,100 ÷ ((8,760 Mcf/yr * \$5/Mcf) \$10,000)
 - ≈ 1.1 years (13 months)

Page 10

EPA POLLUTION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Aerial Optical Leak Imaging

* Real-time visual image of gas leaks

- Quicker identification & repair of leaks
- Screen hundreds of components an hour
- Screen inaccessible areas simply by viewing them
- ★ Gas savings can range up to 2,000 Mcf/d depending on the size of the area surveyed
- Other methane reduction practices can be used in conjunction with Aerial Optical Leak Imaging:
 - Directed Inspection & Maintenance (DI&M) at remote facilities
 - DI&M at compressor stations

Page 11

Aerial Optical Leak Imaging Calculation

- ★ Goal: Inspect ~200 miles of gas flowlines for leaks
- ★ Basis for cost and savings
 - Basis size: inspect 500 miles of flowlines
 - Equipment cost = N/A (leased service)
 - O&M cost = \$450/hr travel to/from helicopter base plus \$65/mile
 - Gas savings = 2,000 Mcf/d
- ★ Directly proportional calculation:
 - Calculation 1
 - Equipment cost = N/A
 - Calculation 2
 - Assume ~5 hours helicopter travel to/from pipeline and surveillance of ~200 miles of flowlines
 - Your O&M cost = (Helicopter cost * hours to/from base) + (Surveillance cost * miles traveled)
 - = (\$450/hr * 5 hr) + (\$65/mile * 200 miles)
 - = \$15,250

NaturalGas 💧

EPA

POLLUTION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Page 12

Aerial Optical Leak Imaging Calculation

- * Directly proportional calculation continued:
 - Calculation 3
 - Your gas savings = (your size ÷ basis size) *basis gas savings
 - = (200 miles ÷ 500 miles) * 2,000 Mcf/d * 365 days/year
 - = ~290,000 Mcf/yr
 - Calculation 4
 - Revenue = Your gas savings * cost of gas
 - = 290,000 Mcf/yr * \$5/Mcf
 - = \$1,450,000 per year
 - Revenue up to \$1,450,000 per year provides an ample payback of the \$15,250 cost to find leaks and cost to repair those leaks
 - Partners have reported finding flow line leaks over 10% of the product flow using aerial optical leak imaging

Page 13

POLLUTION PREVENTER Reducing Emissions, Increasing Efficiency, Maximizing Profits

Conclusions

- * Each volume of gas not vented or leaked to the atmosphere is a volume of gas sold
- With increasing natural gas demand and high prices, emissions reductions will result in increased sales and greater revenue
- * New technologies can also lower operating costs
- * VRUs and Aerial Optical Leak Imaging are only two of twenty-five technologies identified for small and midsize producers

Reducing Emissions, Increasing Efficiency, Maximizing Profits

Discussion Questions

- * To what extent are you implementing these technologies?
- How can the Gas STAR technical documents be improved upon or altered for use in your operation(s)?
- * What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this technology?

NEALER Reducing Emissions, Increasing Efficiency, Maximizing Profits