Methane Savings from Compressors

Lessons Learned from Natural Gas STAR

Williams Production Company,
The Colorado Oil and Gas Association,
EnCana USA and The Independent Petroleum Association of Mountain States

Producers Technology Transfer Workshop
Glenwood Springs, Colorado
September 11, 2007

epa.gov/gasstar
Compressors: Agenda

- Methane Losses from Reciprocating Compressors
- Methane Savings through Economic Rod Packing Replacement
- Is Rod Packing Replacement Profitable?
- Industry Experience – Northern Natural Gas
- Low Emission Packing
- Discussion
Methane Emissions from Natural Gas Production Sector (2005)

- Offshore Operations: 34 Bcf
- Pneumatic Devices: 57 Bcf*
- Dehydrators and Pumps: 17 Bcf
- Compressor Fugitives, Venting, and Engine Exhaust: 14 Bcf
- Meters and Pipeline Leaks: 9 Bcf
- Well Venting and Flaring: 9 Bcf
- Storage Tank Venting: 6 Bcf
- Other Sources: 10 Bcf
- Storage Tank Venting: 6 Bcf

*Bcf = billion cubic feet

Natural Gas STAR reductions data shown as published in the inventory.
Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour)
 - Worn packing has been reported to leak up to 900 cf/hour
Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft
Impediments to Proper Sealing

Ways packing case can leak

- Nose gasket (no crush)
- Packing to rod (surface finish)
- Packing to cup (lapped surface)
- Packing to packing (dirt/lube)
- Cup to cup (out of tolerance)

What makes packing leak?

- Dirt or foreign matter (trash)
- Worn rod (.0015”/per inch dia.)
- Insufficient/too much lubrication
- Packing cup out of tolerance (≤ 0.002”)
- Improper break-in on startup
- Liquids (dilutes oil)
- Incorrect packing installed (backward or wrong type/style)
Methane Losses from Rod Packing

<table>
<thead>
<tr>
<th>Description</th>
<th>Rate (cf/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission from Running Compressor</td>
<td>99</td>
</tr>
<tr>
<td>Emission from Idle/Pressurized Compressor</td>
<td>145</td>
</tr>
<tr>
<td>Leakage from Idle Compressor Packing Cup</td>
<td>79</td>
</tr>
<tr>
<td>Leakage from Idle Compressor Distance Piece</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packing Type</th>
<th>Bronze</th>
<th>Bronze/Steel</th>
<th>Bronze/Teflon</th>
<th>Teflon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak Rate (cf/hour)</td>
<td>70</td>
<td>63</td>
<td>150</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packing Type</th>
<th>Bronze</th>
<th>Bronze/Steel</th>
<th>Bronze/Teflon</th>
<th>Teflon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak Rate (cf/hour)</td>
<td>70</td>
<td>N/A</td>
<td>147</td>
<td>22</td>
</tr>
</tbody>
</table>

PRCI/ GRI/ EPA. *Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations*
Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed – after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost
Cost of Rod Packing Replacement

Assess costs of replacements

- A set of rings: $675 to $1,100 (with cups and case) $2,100 to $3,400
- Rods: $2,500 to $13,500

Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs

Source: CECO
Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

Economic Replacement Threshold (cf/hour) = \[
\frac{CR \times DF \times 1,000}{(H \times GP)}
\]

Where:

- **CR** = Cost of replacement ($)
- **DF** = Discount factor at interest i
- **H** = Hours of compressor operation per year
- **GP** = Gas price ($/thousand cubic feet)

Discount factor at interest i:

\[
DF = \frac{i(1+i)^n}{(1+i)^n - 1}
\]
Economic Replacement Threshold

Example: Payback calculations for new rings and rod replacement

\[CR = \$1,620 \text{ for rings} + \$9,450 \text{ for rod} \]
\[= \$11,070 \]

\(H = 8,000 \text{ hours per year} \)

\(GP = \$7/\text{Mcf} \)

DF @ \(i = 10\% \) and \(n = 1 \text{ year} \)

\[DF = \frac{0.1(1 + 0.1)^1}{(1 + 0.1)^1 - 1} = \frac{0.1(1.1)}{1.1 - 1} = \frac{0.11}{0.1} = 1.1 \]

DF @ \(i = 10\% \) and \(n = 2 \text{ years} \)

\[DF = \frac{0.1(1 + 0.1)^2}{(1 + 0.1)^2 - 1} = \frac{0.1(1.21)}{1.21 - 1} = \frac{0.121}{0.21} = 0.576 \]

One year payback

\[ER = \frac{\$11,070 \times 1.1 \times 1,000}{8,000 \times \$7} = 217 \text{ scf per hour} \]
Is Rod Packing Replacement Profitable?

Replace packing when leak reduction expected will pay back cost.

“leak reduction expected” is the difference between current leak rate and leak rate with new rings.

<table>
<thead>
<tr>
<th>Rings Only</th>
<th>Rod and Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rings: $1,620</td>
<td>Rings: $1,620</td>
</tr>
<tr>
<td>Rod: $0</td>
<td>Rod: $9,450</td>
</tr>
<tr>
<td>Gas: $7/Mcf</td>
<td>Gas: $7/Mcf</td>
</tr>
<tr>
<td>Operating: 8,000 hours/year</td>
<td>Operating: 8,000 hours/year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leak Reduction Expected (cf/hour)</th>
<th>Payback (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leak Reduction Expected (cf/hour)</th>
<th>Payback (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td>1</td>
</tr>
<tr>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>4</td>
</tr>
</tbody>
</table>

Based on 10% interest rate
Mcf = thousand cubic feet
Industry Experience – Northern Natural Gas

Monitored emission at two locations

- Unit A leakage as high as 301 liters/min (640 cf/hour)
- Unit B leakage as high as 105 liters/min (220 cf/hour)

Installed Low Emission Packing (LEP)

- Testing is still in progress
- After 3 months, leak rate shows zero leakage increase
Northern Natural Gas - Leakage Rates

![Graph showing leakage rates for Unit A and Unit B from 1997 to 2005. The graph indicates a peak leakage of 640 cf/hour in 2001 for Unit A and 60 cf/hour for Unit B.](image)

- **Unit A** leakage rates:
 - 1997: 60 cf/hour
 - 2001: 640 cf/hour
 - 2005: 60 cf/hour

- **Unit B** leakage rates:
 - 1997: 60 cf/hour
 - 2001: 60 cf/hour
 - 2005: 60 cf/hour
Northern Natural Gas Packing Leakage Economic Replacement Point

- Approximate packing replacement cost is $3,000 per compressor rod (parts/labor)

- Assuming gas at $7/Mcf:
 1 cubic foot/minute = 28.3 liters/minute
 - 50 liters/minute/28.316 = 1.8 scf/minute
 - 1.8 x 1440 minutes/day = 2,600 scf/day
 - 2,600/1000 = 2.6 Mcf/day
 - 2.6 x 365 days = 950 Mcf/year
 - 950 x $7/Mcf = $6,650 per year leakage

- This replacement pays back in <6 months
Low Emission Packing

- Low emission packing (LEP) overcomes low pressure to prevent leakage
- The side load eliminates clearance and maintains positive seal on cup face
- LEP is a static seal, not a dynamic seal. No pressure is required to activate the packing
- This design works in existing packing case with limited to no modifications required
LEP Packing Configuration
Orientation in Cup

LEP: Low Emissions Packing
Orientation of P303 Rings
Reasons to Use LEP

- Upgrade is inexpensive
- Significant reduction of greenhouse gas are major benefit
- Refining, petrochemical and air separation plants have used this design for many years to minimize fugitive emissions
- With gas at $7/Mcf, packing case leakage should be identified and fixed.
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits
- Leased compressors
 - Control over rod packing type and maintenance?