

Compressor Methane Emissions What is the problem?

Methane emissions from the ~46,700 compressors in the natural gas industry account for 121 Bcf/year or about 31% of all methane emissions from the natural gas industry

Natural Gas

Compressors: Agenda

- Reciprocating Compressors
 - Methane Losses
 - Methane Savings
 - Industry Experience
- Discussion

Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 11-12 cubic feet per hour (cf/hour)
 - Where packing rings are properly aligned and fitted
 - Worn packing has been reported to leak up to 900 cf/hour

Natural Gas Natural Gas

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Impediments to Proper Sealing

Ways packing case can leak

- Nose gasket (no crush)
- Packing to rod (surface finish)
- Packing to cup (lapped surface)
- Packing to packing (dirt/lube)
- Cup to cup (out of tolerance)

Source: Newfield

What makes packing leak?

- birt or foreign matter (trash)
- Worn rod (.0015"/per inch dia.)
- Insufficient/too much lubrication
- Packing cup out of tolerance (≤ 0.002")
- Improper break-in on startup
- Liquids (dilutes oil)
- Incorrect packing installed (backward or wrong type/style)

6

Methane Losses from Rod Packing

Emission from Running Compressor	99	cf/hour-packing
Emission from Idle/Pressurized Compressor	145	cf/hour-packing
Leakage from Idle Compressor Packing Cup	79	cf/hour-packing
Leakage from Idle Compressor Distance Piece	34	cf/hour-packing

Leakage from Rod Packing on Running Compressors				essors
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	63	150	24

Leakage from Rod Packing on Idle/Pressurized Compressors					
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon	
Leak Rate (cf/hour)	70	N/A	147	22	

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- 6 Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost

8

Cost of Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: \$325 to \$530 (with cups and case): \$1,010 to \$1,640
 - Nods:
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs

\$6,510

Source: CECO

\$1,200 to

Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

CR* DF*1,000 Economic Replacement Threshold (cf/hour) = (H*GP)Where:

CR = Cost of replacement (\$)

 $DF = \frac{i(1+i)^n}{(1+i)^n-1}$ Discount factor at interest i

Hours of compressor operation per year

Gas price (\$/thousand cubic feet)

10

Economic Replacement Threshold

Example: Payback calculations for new rings and rod replacement

CR = \$492 for rings + \$1,725 for rod

CR = \$2,217

H = 8,000 hours per year

GP = \$4/Mcf

DF @ i = 10% and n = 1 year

$$DF = \frac{0.1(1+0.1)^1}{(1+0.1)^1 - 1} = \frac{0.1(1.1)}{1.1 - 1} = \frac{0.11}{0.1} = 1.1$$

DF @ i = 10% and n = 2 years

$$DF = \frac{0.1(1+0.1)^2}{(1+0.1)^2 - 1} = \frac{0.1(1.21)}{1.21 - 1} = \frac{0.121}{0.21} = 0.576$$

One year payback

$$ER = \frac{\$2,217 \times 1.1 \times 1,000}{(8,000 \times \$4)}$$

= 76 scf per hour

Is Rod Packing Replacement Profitable?

- Replace packing when leak reduction expected will pay back cost
 - "leak reduction expected" is the difference between current leak rate and leak rate with new rings

 Rings Only
 Rod and Rings

 Rings:
 \$492 (6 cups)
 Rings:
 \$492 (6 cups)

 Rod:
 \$0
 Rod:
 \$1,725

Gas: \$4/Mcf Gas: \$4/Mcf
Operating: 8,000 hours/year Operating: 8,000 hours/year

Leak Reduction	
Expected	Payback
(scf/hour)	(months)
33	6
17	12
12	18
	0.4

Leak Reduction	
Expected	Payback
(scf/hour)	(months)
149	6
76	12
52	18
40	24

Based on 10% interest rate Mcf = thousand cubic feet

12

Industry Experience – Northern Natural Gas

- Monitored emission at two locations
 - Unit A leakage as high as 301 liters/min (640 cf/hour)
 - Unit B leakage as high as 105 liters/min (220 cf/hour)
- Installed Low Emission Packing (LEP)
 - Testing is still in progress
 - After 3 months, leak rate shows zero leakage increase

Northern Natural Gas Packing Leakage Economic Replacement Point

- Approximate packing replacement cost is \$3,000 per compressor rod (parts/labor)
- Assuming gas at \$7/Mcf:
 - 1 cubic foot/minute = 28.3 liters/minute

 - 1.8 x 60 minutes/hour= 108 scf/hr
 - 108 x 24/1000 = 2.6 Mcf/day
 - 4 2.6 x 365 days= 950 Mcf/year
 - 950 x \$7/Mcf = \$6,650 per year leakage
 - This replacement pays back in <6 months</p>

15

NaturalGas (

Low Emission Packing

- Low emission packing (LEP) overcomes low pressure to prevent leakage
- The side load eliminates clearance and maintains positive seal on cup face
- LEP is a static seal, not a dynamic seal. No pressure is required to activate the packing
- This design works in existing packing case with limited to no modifications required

Orientation in Cup

18

Reasons to Use LEP

- Upgrade is inexpensive
- Significant reduction of greenhouse gas are major benefit
- Refining, petrochemical and air separation plants have used this design for many years to minimize fugitive emissions
- With gas at \$7/Mcf, packing case leakage should be identified and fixed.

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits