

Smart Automation of Plunger Lift Systems: Topics * Introduction

- ★ Liquid Loading and Plunger Lift
- ★ Conventional Controls and Methane Losses
- ★ Plunger Lift Optimization
- ★ Field Experience
- ★ Discussion

Liquid Loading

- ★ Build-up of hydrocarbons (condensate) and water in well bore which reduces and may halt production.
- ★ Multi-phase flow has three distinct forms:
 - ★ Bubble
 - \star Slug
 - \star Annular Mist
- Deliquification methods can vary based on well characteristics and preferences.

Plunger Lift

- Intermittent artificial lift method that uses the energy of the reservoir to bring the liquids to the surface.
- ★ Cyclic process with the well alternately flowing and shut-in. Each cycle removes built-up liquids from the formation.
- ★ Due to a wide variety of formation characteristics and well bore irregularities, each well will have distinct behaviors and "personality".

Conventional Plunger Control

- * Manual adjustments to cycle parameters (shut-in time, flow time, etc.) are problematic:
 - ★ Adjustments are not performed regularly
 - ★ Do not account for changing down-hole (liquid production, pressure) or collection conditions (line pressure, separation equipment)
- ★ Fixed cycle times may not match well performance:
 - ★ Cycle too frequently
 - ★ High plunger velocity
 - ★ Excessive plunger wear
 - \star Not frequently enough
 - ★ Liquid loading becomes excessive
 - ★ Plunger unable to reach surface

Plunger Lift Optimization

- Using well-known algorithms and real-time monitoring of well conditions, cycle performance can be evaluated each cycle:
 - ★ Plunger velocity
 - * Liquid loading (casing/tubing pressure)
- ★ Adjustments to cycle parameters can be made based on evaluated performance:
 - ★ After flow duration
 - ★ Shut-in time duration

Evaluating Performance

★ Plunger velocity:

- ★ Each plunger type will have specific operating velocity for which it was designed to perform best.
- ★ The optimization routine will calculate velocity based on arrival time and tubing length.
- ★ An arrival will be designated as Fast, Normal, Slow etc. based on configurable time "windows".
- ★ Liquid loading and load ratio:
 - ★ Liquid loading of the well is determined by the difference of the casing pressure and the tubing pressure.
 - ★ Well energy is estimated by taking the difference of the casing pressure and the line pressure.
 - ★ The ratio of the well's liquid load and the energy is the load ratio.

Parameter Adjustment

- ★ Shut-in duration:
 - ★ The load ratio (LR) is calculated from well conditions.
 - ★ After enough time is elapsed for the plunger to reach the bottom, the cycle compares the load ratio to a setpoint.
 - ★ When the LR has dropped below the setpoint, the well is brought online.
- ★ After flow duration:
 - ★ The well's critical rate (rate at which liquid can remain entrained) is calculated from well conditions.
 - ★ The "drop rate" is calculated as a percentage of the critical rate.
 - ★ The percentage is adjusted each cycle based on whether the previous arrival was Fast or Slow.

Optimization Advantages

- ★ Plunger cycles adapt to changing conditions:
 - ★ Line pressure swings
 - ★ Liquid surges from within the formation
 - ★ Plunger mechanical wear
- ★ Greatly reduced venting
- ★ Increased uplift volumes:
 - ★ Cycles adapt toward optimum frequency
 - ★ Well life is extended from consistent deliquification
- ★ Plunger wear reduced
- ★ Manpower requirements reduced

- ★ Plunger optimization installed on ~2,200 wells
- ★ Most sites required installation of logic controllers or RTU's (Remote Terminal Unit)
- ★ Central hosting system also installed to collect and monitor field data from RTU
- ★ Venting was reduced by 50% from 2000 2004

Discussion

- ★ Limitations of optimization
- ★ Other applications
 - ★ Different plunger types
 - ★ Intermitters
- ★ Expertise requirements and learning curve