Natural Gas Dehydtration

Lessons Learned from the Natural Gas STAR Program

ConocoPhillips
The Colorado Oil and Gas Association, and
The Independent Petroleum Association of Mountain States

Producers Technology Transfer Workshop
Durango, Colorado
September 13, 2007

epa.gov/gasstar
Natural Gas Dehydration: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion
Methane Losses from Dehydrators

Dehydrators and pumps account for:

- 17 Billion cubic feet (Bcf) of methane emissions in the production, gathering, and boosting sectors

- Offshore Operations: 34 Bcf
- Well Venting and Flaring: 9 Bcf
- Compressor Fugitives, Venting, and Engine Exhaust: 14 Bcf
- Storage Tank Venting: 6 Bcf
- Other Sources: 10 Bcf
- Meters and Pipeline Leaks: 9 Bcf
- Pneumatic Devices: 57 Bcf*

*Bcf = billion cubic feet

Natural Gas STAR reductions data shown as published in the inventory.
What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - 36,000 dehydration units in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com
Basic Glycol Dehydrator System
Process Diagram

- Inlet Wet Gas
- Motive Gas Bypass
- Dry Sales Gas
- Fuel Gas
- Water/Methane/VOCs/HAPs To Atmosphere
- Lean TEG
- Rich TEG
- Glycol Reboiler/Regenerator
- Glycol Contactor
- Glycol Energy Exchange Pump
- Pump
- Driver
Methane Recovery

- Optimize glycol circulation rates
- Flash tank separator (FTS) installation
- Electric pump installation
- Zero emission dehydrator
- Replace glycol unit with desiccant dehydrator
- Other opportunities
Optimizing Glycol Circulation Rate

- Gas pressure and flow at wellhead dehydrators generally declines over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates
Installing Flash Tank Separator (FTS)

- Methane that flashes from rich glycol in an energy-exchange pump can be captured using an FTS
- Many units are not using an FTS

![Bar chart showing MMcf/day processed with and without FTS.]

Percent

MMcf/day processed

MMcf = Million cubic feet

Source: API
Methane Recovery

- Recovers about 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel
 - Compressor suction
 - Vapor recovery unit
Flash Tank Costs

Lessons Learned study provides guidelines for scoping costs, savings and economics

Capital and installation costs:
- Capital costs range from $3,500 to $7,000 per flash tank
- Installation costs range from $1,684 to $3,031 per flash tank

Negligible Operational & Maintenance (O&M) costs
Electric Pump Eliminates Motive Gas

Glycol Contactor

Dry Sales Gas

Inlet Wet Gas

Gas Driver

Electric Motor Driven Pump

Rich TEG

Pump

Lean TEG

Glycol Reboiler/Regenerator

Water/Methane/VOCs/HAPs To Atmosphere

Fuel Gas
Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs (fuel gas, glycol make-up)
- Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump
Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

<table>
<thead>
<tr>
<th>Option</th>
<th>Capital Costs</th>
<th>Annual O&M Costs</th>
<th>Emissions Savings</th>
<th>Payback Period¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize Circulation Rate</td>
<td>Negligible</td>
<td>Negligible</td>
<td>394 to 39,420 Mcf/year</td>
<td>Immediate</td>
</tr>
<tr>
<td>Install Flash Tank</td>
<td>$6,500 to $18,800</td>
<td>Negligible</td>
<td>710 to 10,643 Mcf/year</td>
<td>4 to 11 months</td>
</tr>
<tr>
<td>Install Electric Pump</td>
<td>$1,400 to $13,000</td>
<td>$165 to $6,500</td>
<td>360 to 36,000 Mcf/year</td>
<td>< 1 month to several years</td>
</tr>
</tbody>
</table>

¹ – Gas price of $7/Mcf
Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
 - Vapors in the still gas coming off of the glycol reboiler are condensed in a heat exchanger
 - Non-condensible skimmer gas is routed back to the reboiler for fuel use
 - Electric driven glycol circulation pumps used instead of energy-exchange pumps
Overall Benefits: Zero Emissions Dehydrator

- Reboiler vent condenser removes heavier hydrocarbons and water from non-condensables (mainly methane)
- The condensed liquid can be further separated into water and valuable gas liquid hydrocarbons
- Non-condensables (mostly methane) can be recovered as fuel or product
- By collecting the reboiler vent gas, methane (and VOC/HAP) emissions are greatly reduced
Replace Glycol Unit with Desiccant Dehydrator

Desiccant Dehydrator
\[\checkmark\] Wet gasses pass through drying bed of desiccant tablets
\[\checkmark\] Tablets absorb moisture from gas and dissolve

Moisture removal depends on:
\[\checkmark\] Type of desiccant (salt)
\[\checkmark\] Gas temperature and pressure

<table>
<thead>
<tr>
<th>Hygroscopic Salts</th>
<th>Typical T and P for Pipeline Spec</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride</td>
<td><47°F @ 440 psig</td>
<td>Least expensive</td>
</tr>
<tr>
<td>Lithium chloride</td>
<td><60°F @ 250 psig</td>
<td>More expensive</td>
</tr>
</tbody>
</table>
Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (7 pounds water / MMcf)

Source: Air & Vacuum Process, Inc.
Desiccant Dehydrator Schematic
Estimate Capital Costs

- Determine amount of desiccant needed to remove water
- Determine diameter of vessel
- Costs for single vessel desiccant dehydrator
 - Capital cost varies between $3,500 and $22,000
 - Gas flow rates from 1 to 20 MMcf/day
 - Capital cost for 20-inch vessel with 1 MMcf/day gas flow is $8,100
 - Installation cost assumed to be 75% of capital cost
- Normally installed in pairs
 - One drying, one refilled for standby
How Much Desiccant Is Needed?

Example:
D = ?
F = 1 MMcf/day
I = 21 pounds/MMcf
O = 7 pounds/MMcf
B = 1/3

Calculate:
D = F * (I - O) * B
D = 1 * (21 - 7) * 1/3
D = 4.7 pounds desiccant/day

Where:
D = Amount of desiccant needed (pounds/day)
F = Gas flow rate (MMcf/day)
I = Inlet water content (pounds/MMcf)
O = Outlet water content (pounds/MMcf)
B = Desiccant/water ratio vendor rule of thumb

Source: Van Air
Calculate Vessel Diameter

Example:
ID = ?
D = 4.7 pounds/day
T = 7 days
B = 55 pounds/cf
H = 5 inch

Where:
ID = Internal diameter of the vessel (inch)
D = Amount of desiccant needed (pounds/day)
T = Assumed refilling frequency (days)
B = Desiccant density (pounds/cf)
H = Height between minimum and maximum bed level (inch)

Calculate:

\[ID = 12 \times \sqrt{\frac{4 \times D \times T \times 12}{H \times B \times \pi}} = 16.2 \text{ inch} \]

Standard ID available = 20 inch

Source: Van Air
Operating Costs

- **Operating costs**
 - Desiccant: $2,556/year for 1 MMcf/day example
 - $1.50/pound desiccant cost
 - Brine Disposal: Negligible
 - $1.40/bbl brine or $20/year
 - Labor: $2,080/year for 1 MMcf/day example
 - $40/hour

- **Total: about $4,656/year**
Savings

- Gas savings
 - Gas vented from glycol dehydrator
 - Gas vented from pneumatic controllers
 - Gas burned for fuel in glycol reboiler
 - Gas burned for fuel in gas heater

- Less gas vented from desiccant dehydrator

- Methane emission savings calculation
 - Glycol vent + Pneumatics vents – Desiccant vents

- Operation and maintenance savings
 - Glycol O&M + Glycol & Heater fuel – Desiccant O&M
Gas Vented from Glycol Dehydrator

Example:
GV = ?
F = 1 MMcf/day
W = 21-7 pounds H₂O/MMcf
R = 3 gallons/pound
OC = 150%
G = 3 cf/gallon

Calculate:
GV = (F * W * R * OC * G * 365 days/year) / 1,000 cf/Mcf

GV = 69 Mcf/year

Where:
GV = Gas vented annually (Mcf/year)
F = Gas flow rate (MMcf/day)
W = Inlet-outlet H₂O content (pounds/MMcf)
R = Glycol/water ratio (rule of thumb)
OC = Percent over-circulation
G = Methane entrainment (rule of thumb)
Gas Vented from Pneumatic Controllers

Example:
GE = ?
PD = 4
EF = 126 Mcf/device/year

Calculate:
GE = EF * PD
GE = 504 Mcf/year

Where:
GE = Annual gas emissions (Mcf/year)
PD = Number of pneumatic devices per dehydrator
EF = Emission factor (Mcf natural gas bleed/pneumatic devices per year)

Source: norriseal.com

Norriseal
Pneumatic Liquid Level Controller
Gas Burned as Fuel for Glycol Dehydrator

Gas fuel for glycol reboiler:
- 1 MMcf/day dehydrator
- Removing 14 lb water/MMcf
- Reboiler heat rate: 1,124 Btu/gal TEG
- Heat content of natural gas: 1,027 Btu/scf

Fuel requirement: 17 Mcf/year

Gas fuel for gas heater:
- 1 MMcf/day dehydrator
- Heat gas from 47ºF to 90ºF
- Specific heat of natural gas: 0.441 Btu/lb-ºF
- Density of natural gas: 0.0502 lb/cf
- Efficiency: 70%

Fuel requirement: 483 Mcf/year
Gas Lost from Desiccant Dehydrator

Example:
GLD = ?
ID = 20 inch (1.7 feet)
H = 76.75 inch (6.4 feet)
%G = 45%
P₁ = 15 Psia
P₂ = 450 Psig
T = 7 days

Where:
GLD = Desiccant dehydrator gas loss (Mcf/year)
ID = Internal Diameter (feet)
H = Vessel height by vendor specification (feet)
%G = Percentage of gas volume in the vessel
P₁ = Atmospheric pressure (Psia)
P₂ = Gas pressure (Psig)
T = Time between refilling (days)

Calculate:
GLD = \(\frac{H \times ID^2 \times \pi \times P_2 \times %G \times 365 \text{ days/year}}{4 \times P_1 \times T \times 1,000 \text{ cf/Mcf}} \)

GLD = \(\boxed{10 \text{ Mcf/year}} \)

Desiccant Dehydrator Unit
Source: usedcompressors.com
Natural Gas Savings

Gas vented from glycol dehydrator: 69 Mcf/year
Gas vented from pneumatic controls: +504 Mcf/year
Gas burned in glycol reboiler: + 17 Mcf/year
Gas burned in gas heater: +483 Mcf/year
Minus desiccant dehydrator vent: - 10 Mcf/year
Total savings: 1,063 Mcf/year

Value of gas savings (@ $7/Mcf): $7,441/year
Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Implementation Costs

<table>
<thead>
<tr>
<th>Type of Costs and Savings</th>
<th>Desiccant ($/yr)</th>
<th>Glycol ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>16,097</td>
<td>24,764</td>
</tr>
<tr>
<td>Desiccant (includes the initial fill)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other costs (installation and engineering)</td>
<td>12,073</td>
<td>18,573</td>
</tr>
<tr>
<td>Total Implementation Costs:</td>
<td>28,169</td>
<td>43,337</td>
</tr>
</tbody>
</table>

Annual Operating and Maintenance Costs

<table>
<thead>
<tr>
<th>Type of Costs and Savings</th>
<th>Desiccant ($/yr)</th>
<th>Glycol ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desiccant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of desiccant refill</td>
<td>2,556</td>
<td>206</td>
</tr>
<tr>
<td>($1.50/pound)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of brine disposal</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Labor cost</td>
<td>2,080</td>
<td></td>
</tr>
<tr>
<td>Glycol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of glycol refill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>($4.50/gallon)</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Material and labor cost</td>
<td>6,240</td>
<td></td>
</tr>
<tr>
<td>Total Annual Operation and Maintenance Costs:</td>
<td>4,656</td>
<td>6,446</td>
</tr>
</tbody>
</table>

Based on 1 MMcf per day natural gas operating at 450 psig and 47°F. Installation costs assumed at 75% of the equipment cost.
Desiccant Dehydrator Economics

NPV = $19,208 IRR = 51% Payback = 21 months

<table>
<thead>
<tr>
<th>Type of Costs and Savings</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs</td>
<td>-$28,169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided O&M costs</td>
<td>$6,446</td>
<td>$6,446</td>
<td>$6,446</td>
<td>$6,446</td>
<td>$6,446</td>
<td>$6,446</td>
</tr>
<tr>
<td>O&M costs - Desiccant</td>
<td>-$4,656</td>
<td>-$4,656</td>
<td>-$4,656</td>
<td>-$4,656</td>
<td>-$4,656</td>
<td>-$4,656</td>
</tr>
<tr>
<td>Value of gas saved(^1)</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
</tr>
<tr>
<td>Glycol dehy. salvage value(^2)</td>
<td>$12,382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Gas price = $7/Mcf, Based on 563 Mcf/year of gas venting savings and 500 Mcf/year of fuel gas savings
2 – Salvage value estimated as 50% of glycol dehydrator capital cost
Partner Experience

- One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- Texaco (now Chevron) has installed FTS
 - Recovered 98% of methane from the glycol
 - Reduced emissions from 1,232 - 1,706 Mcf/year to <47 Mcf/year
Other Partner Reported Opportunities

- Flare regenerator off-gas (no economics)
- With a vent condenser,
 - Route skimmer gas to firebox
 - Route skimmer gas to tank with VRU
- Instrument air for controllers and glycol pump
- Mechanical control valves
- Pipe gas pneumatic vents to tank with VRU (not reported yet)
Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by about 90 percent
 - Require a low pressure gas outlet
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Zero emission dehydrator can virtually eliminate emissions
 - Requires electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
- Miscellaneous other PROs can have big savings
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits