

Directed Inspection and Maintenance and Infrared Leak Detection

Lessons Learned from the Natural Gas STAR Program

Anadarko Petroleum Corporation and the Domestic Petroleum Council

Producers Technology Transfer Workshop College Station, Texas May 17, 2007

epa.gov/gasstar

Directed Inspection and Maintenance and Infrared Leak Detection Outline

- Methane Losses
 - What are the Sources of Emissions?
 - Much Methane is Emitted?
- Methane Recovery
 - Directed Inspection and Maintenance (DI&M)
 - Olam by Infrared Leak Detection
- Is Recovery Profitable?
- Partner Experience
- Discussion

Methane Losses

Estimated 395,000 producing gas wells nationally

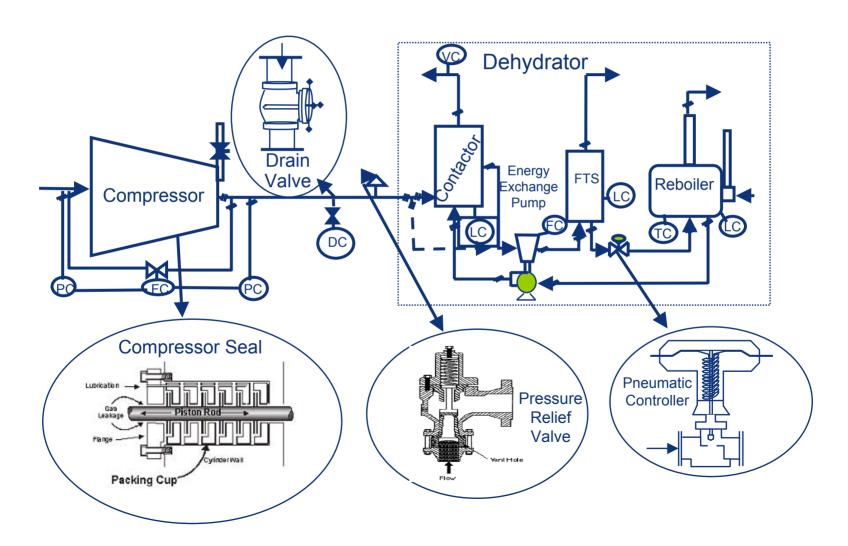
Fugitive emissions from gas production and gathering/boosting facilities are estimated to be 25 billion

cubic feet per year (Bcf/year)

Setimated 60 thousand cubic feet (Mcf) per well-year methane emissions

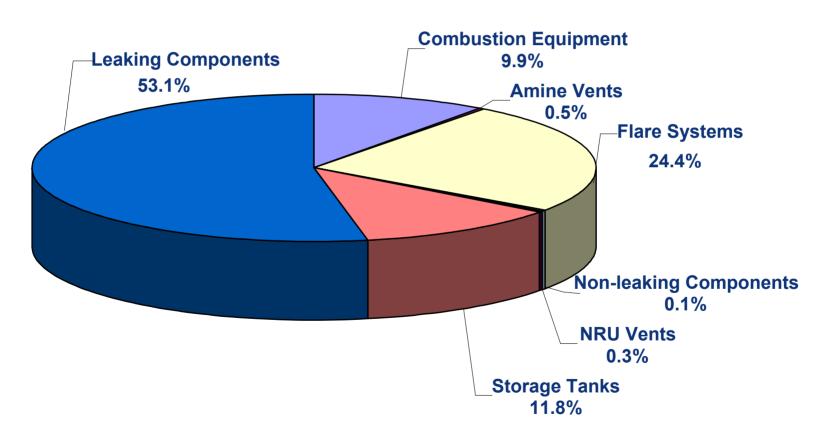
Worth \$420/well-year

Source: Newfield

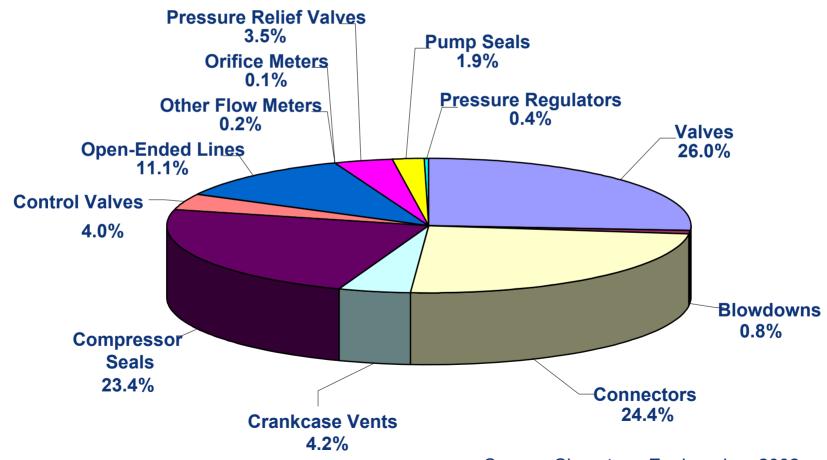


What is the Problem?

- Gas leaks are invisible, unregulated, and go unnoticed
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane emission sources
 - In 2005, 2.5 Bcf of methane was emitted as fugitives by reciprocating compressor related components
 - Production fugitive methane emissions depend on operating practices, equipment age, and maintenance



What are the Sources of Emissions?


Distribution of Losses by Source Category

Source: Clearstone Engineering, 2002

Distribution of Losses from Equipment Leaks by Type of Component

Source: Clearstone Engineering, 2002

How Much Methane is Emitted?

Methane Emissions from Leaking Components at Gas Processing Plants

Component Type	% of Total Methane Emissions	% Leak Sources	Estimated Average Methane Emissions per Leaking Component (Mcf/year)
Valves (Block & Control)	26.0%	7.4%	66
Connectors	24.4%	1.2%	80
Compressor Seals	23.4%	81.1%	372
Open-ended Lines	11.1%	10.0%	186
Pressure Relief Valves	3.5%	2.9%	844

Source: Clearstone Engineering, 2002, Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants. Report of results from field study of four gas processing plants in Wyoming and Texas to evaluate opportunities to economically reduce methane emissions.

How Much Methane is Emitted?

Summary of Natural Gas Losses from the Top Ten Leak Sources ¹				
		Contribution By Top 10 Leak Sources (%)	Contribution By Total Leak Sources (%)	
43.8	122.5	35.7	1.78	
133.4	206.5	64.6	2.32	
224.1	352.5	63.6	1.66	
76.5	211.3	36.2	1.75	
477.8	892.8	53.5	1.85	
	Gas Losses From Top 10 Leak Sources (Mcf/day) 43.8 133.4 224.1 76.5	Gas Losses From Top 10 Leak Sources (Mcf/day) Gas Losses From All Leak Sources (Mcf/day) 43.8 122.5 133.4 206.5 224.1 352.5 76.5 211.3	Gas Losses From Top 10 Leak Sources (Mcf/day) Gas Losses From All Leak Sources (Mcf/day) Contribution By Top 10 Leak Sources (%) 43.8 122.5 35.7 133.4 206.5 64.6 224.1 352.5 63.6 76.5 211.3 36.2	

^{1 –} Excluding leakage into flare system

Methane Recovery

Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program

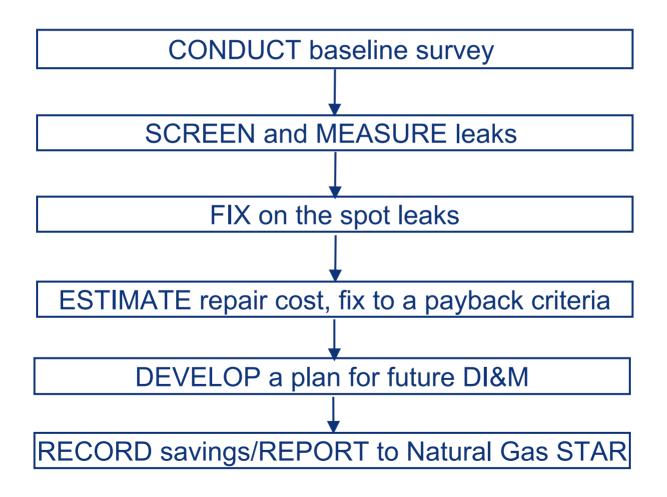
Voluntary program to identify and fix leaks that are cost-

effective to repair

Survey cost will pay out in the first year

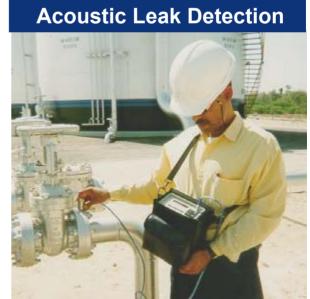
Provides valuable data on leak sources with information of where to look

Source: Targa Resources


What is Directed Inspection and Maintenance?

- Directed Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company's needs
- Ol&M is NOT the regulated volatile organic compound leak detection and repair (VOC LDAR) program

Source: Targa Resources



- Screening find the leaks
 - Soap bubble screening
 - Electronic screening ("sniffer")
 - Toxic vapor analyzer (TVA)
 - Organic vapor analyzer (OVA)
 - Ultrasound leak detection
 - Acoustic leak detection
 - Infrared leak detection

- Evaluate the leaks detected measure results
 - High volume sampler
 - Toxic vapor analyzer (correlation factors)
 - 6 Rotameters

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution ★★		\$		
Electronic Gas Detector	*	\$\$		
Acoustic Detector/ Ultrasound Detector	**	\$\$\$		
TVA (Flame Ionization Detector)	*	\$\$\$		
Bagging	*	\$\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Infrared Leak Detection	***	\$\$\$		
Source: EPA's Lessons Learned				

^{* -} Least effective at screening/measurement

^{*** -} Most effective at screening/measurement

^{\$ -} Smallest capital cost

^{\$\$\$ -} Largest capital cost

Estimating Comprehensive Survey Cost

- Cost of complete screening using high volume sampler
 - Ranges \$15,000 to \$20,000 per medium size plant
 - Nule of Thumb: \$1 per component for an average plant
- 4 25 to 40% cost reduction for follow-up survey

DI&M by Infrared Leak Detection

- Neal-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them

Infrared Methane Leak Detection

Video recording of fugitive leaks detected by various infrared devices

Is Recovery Profitable?

Repair the Cost-Effective Components					
Component	Value of Lost gas ¹ (\$)	Estimated Repair cost (\$)	Payback (Months)		
Plug Valve: Valve Body	29,498	200	0.1		
Union: Fuel Gas Line	28,364	100	0.1		
Threaded Connection	24,374	10	0.0		
Distance Piece: Rod Packing	17,850	2,000	1.4		
Open-Ended Line	16,240	60	0.1		
Compressor Seals	13,496	2,000	1.8		
Gate Valve	11,032	60	0.1		
Source: Hydrocarbon Processing, May 2002 1 – Based on \$7/Mcf gas price					

18

Economic Analysis of DI&M of OELs

Economics Analysis of DI&M of Open-Ended Lines at Large and Small Gas Plants ¹				
	Small	Large		
Inspection of Plants OELs (Man-day/year)	1	1		
Inspection of Booster OELs (Man-day/year)	2	3		
Inspection Prep and Record (Man-day/year)	NA	3		
Repairs & Maintenance (Man-days)	1	2		
Labor Cost (\$/day)	500	500		
Total Labor Cost (\$/year)	2,000	4,500		
Methane Savings (Mcf/year)	3,319	4,526		
Gas Savings (Mcf/year) ²	3,688	5,029		
Gas Saving Value (\$/year)	25,816	35,203		
Payback (year)	<1	<1		

- 1 Assumes two inspections per year
- 2 Gas values based on \$7/Mcf

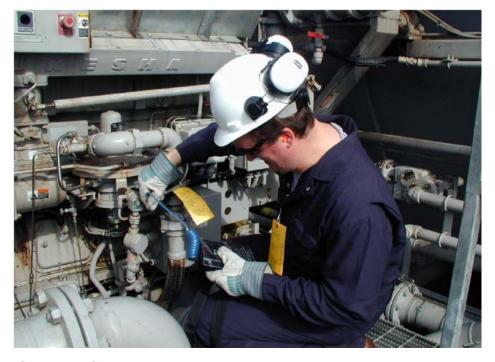
DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines, compressor seals, blowdowns, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new technology

Source: Chevron

Partner Experience - Targa Resources (formerly Dynegy)

- Surveyed components in two processing plants: 23,169 components
- Identified leaking components: 857 about 3.6%
- Repaired components: 80 to 90% of the identified leaking components
- Annual methane emissions reductions: 198,000 Mcf/year
- Annual savings: \$1,386,000/year (at \$7/Mcf)



Source: Targa Resources

Partner Experience - Chevron

- Chunchula, Alabama gas processing plant
 - Plant processes 37.5 MMcf/day
 - Survey conducted April 4 to 9, 2005
- Screening equipment
 - Soaping solution, sniffers, infrared camera
- Quantification
 - Migh volume sampler
- 17,000 components screened
 - 224 components (1.3%) were found to be leaking

Source: Chevron

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits