Reducing Venting from Well Completions, Workovers, and Liquids Unloading

Seminar with Russian Independent Oil and Gas Producers on Methane Mitigation Technologies and Strategies
October 4, 2010, Moscow, Russia

Don Robinson, Vice President
ICF International
Agenda

- **U.S. Production Sector Methane Emissions**
 - Methane losses

- **Well Completions and Workovers**
 - Reduced Emissions Completions
 - Methane savings/benefits
 - Is recovery profitable?
 - Industry experience

- **Liquids Unloading**
 - Plunger lifts
 - Methane savings/benefits
 - Is recovery profitable?
 - Industry experience

Source: BP
2008 Production Sector Methane Emissions (103 Bcf)

- **Pneumatic Devices**: 37 Bcf
- **Offshore Operations**: 23 Bcf
- **Dehydrators and Pumps**: 11 Bcf
- **Well Venting and Flaring**: 6 Bcf
- **Meters and Pipeline Leaks**: 6 Bcf
- **Compressor Fugitives, Venting, and Engine Exhaust**: 10 Bcf
- **Storage Tank Venting**: 4 Bcf
- **Other Sources**: 6 Bcf
- **Well Venting and Flaring**: 6 Bcf
- **Meters and Pipeline Leaks**: 6 Bcf
- **Compressor Fugitives, Venting, and Engine Exhaust**: 10 Bcf
- **Storage Tank Venting**: 4 Bcf
- **Other Sources**: 6 Bcf

Bcf = billion cubic feet
Methane Losses – U.S. Production

- Over 695,000 producing gas wells\(^1\) in the U.S.

- Wellhead emissions from gas production facilities are estimated to be 4,700 million cubic meters per year\(^2\)
 - Estimated 6.8 thousand cubic meter emissions (Mcm) per well-year
 - Worth RUB 113,600 / well-year\(^3\)

\(^2\)EPA. *Background Technical Support Document* (docket # EPA-HQ-OAR-2009-0923) for Subpart W.

\(^3\)2008 Russian gas sales price for European Market at $370/Mcm (RUB 11,360/Mcm)
eia.doe.gov/cabs/Russia/NaturalGas.html
Agenda

- U.S. Production Sector Methane Emissions
 - Methane losses

- Well Completions and Workovers
 - Reduced Emissions Completions
 - Methane savings/benefits
 - Is recovery profitable
 - Industry experience

- Liquids Unloading
 - Plunger lifts
 - Methane savings/benefits
 - Is recovery profitable?
 - Industry experience

Source: Newfield
Methane Losses During Gas Well Completions

- Gas wells in tight formations and coal beds require hydraulic fracture
- It is necessary to clean out the well bore and formation
 - After new completion
 - After well re-fracturing workovers
- Operators produce to an open pit or tank to collect sand, cuttings, and fluids for disposal
- Vent or flare the natural gas produced
- 1,530 MMcm\(^1\) of methane is vented or flared from completions and workovers in the U.S.; 765 MMcm of methane is emitted\(^1\)

MMcm = million cubic meters

Methane Recovery by Reduced Emission Completions

- Recover natural gas and condensate produced during flow-back following hydraulic fracture
- Portable equipment separates sand and water, processes gas and condensate for sales
- Route recovered gas through dehydrator and meter to sales line, reducing venting and flaring

Portable REC Equipment

Source: Weatherford
Reduced Emission Completions: Preconditions

- Permanent equipment required on site before cleanup
 - Piping from well head to sales line
 - Dehydrator
 - Lease meter
 - Stock tanks for wells producing significant amounts of condensate

- Sales line gas can be used for compressor fuel and/or gas lift in low pressure wells
Reduced Emission Completions: Equipment

- Skid or trailer mounted portable equipment to capture produced gas during cleanup
 - Sand trap
 - Three-phase separator
- Use portable desiccant dehydrator for workovers requiring glycol dehydrator maintenance

Temporary, Mobile Surface Facilities,
Source: BP

Source: Williams
Reduced Emission Completions: Low Pressure Wells

- Partners and vendors are perfecting the use of portable compressors when pressure in reservoir is too low to enter sales line
 - Artificial gas lift to clear fluids
 - Boost gas to sales line
 - Manage slug flow
 - Adds cost to project

Source: Herald
Reduced Emission Completions: Benefits

- Reduced methane emissions during completions and workovers
- Sales revenue from recovered gas and condensate
- Improved relations with government agencies and public neighbors
- Reduced environmental impact
- Improved safety
- Reduced disposal costs
Reduced Emission Completions Partner Experience: British Petroleum

- Capital investment of about RUB 15,000,000 per skid on portable three-phase separators, sand traps, and tanks in the Rocky Mountain Region (USA)
- Used REC on 106 wells
- Total natural gas recovered about 9.9 million cubic meters per year (MMcm/year)
 - 93.4 Mcm per well average
 - Conservative net value of gas saved is RUB 700,000 per well
- 6,700 barrels/year condensate recovered
- 1.5 year payback based on BP’s prices for natural gas and condensate

1 Natural gas valued by company to be RUB 7,600/Mcm
Reduced Emission Completions
Partner Experience: BP

Through the end of 2005, BP reported:
- 116 MMcm of gas and
- 53,000 barrels of condensate recovered\(^1\)

\(^1\) Combination of activities in Montana and Wyoming, U.S.
Reduced Emission Completions
Partner Experience: Williams

Two rows of four wells closely spaced.

Source: Williams
Reduced Emission Completions
Partner Experience: Williams

- Williams Fork Formation (Piceance Basin) – low permeability, tight, lenticular sandstone (10% porosity, permeability range of 1 to 10 microdarcies).
- Wells drilled to depths of 2,000 to 2,750 meters
- Flow pressures range from 100 to 170 atm
- Fracture stimulation needed to make wells economical
- Frac about 5 to 6 stages per well
- BRECO flowback skids used to separate sand, water and gas during initial flowback
- BRECO flowback skid resides on typical 4 well pad for 32 days
Piceance Well Completions

- Flow back well, first 12 hours is water, afterwards routed to BRECO skid
- Set plug to isolate frac stage (avg. 5 to 6 stages/well)
- Plugs drilled out by workover rig
- Producing to flowback skid after frac’ing and before plugs drilled out
Reduced Emission Completions Partner Experience: Williams

BRECO Flowback Skids

Sand Vessel

Gas Vessel
Reduced Emission Completions Partner Experience: Williams

How BRECO Works?

- Sand vessel separates sand from backflow fluids
- Gas vessel separates gas from water used for hydraulic fracturing
 - Gas routed to sales line
- Sand is dumped to reserve pit manually
- Water dumps to holding tanks automatically
 - Water is filtered and reused for future frac jobs
- Flowback skid operates at 2 to 4 atm higher pressure than gas gathering line, which is about 19 to 23 atm in Piceance Basin
Flowback Skid – When Is It Used?

- Used after each zone is fracture stimulated (frac’d)
- Used when all zones are fractured and waiting for workover rig to drill out plugs for final completion (Up to 10 days)
- Production well must have flow lines to gathering system
- Wildcat and step-out wells are not completed with REC Technology
- One Month = time wells at typical 4-well pad are routed to flowback skid
Reduced Emission Completions Economics

<table>
<thead>
<tr>
<th>AVERAGE PER WELL FLOWBACK STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number of Days of Flowback =</td>
</tr>
<tr>
<td>Average Mcm Gas Recovered During Flowback =</td>
</tr>
<tr>
<td>Average Mcm Gas Flowback Recovered/Day =</td>
</tr>
<tr>
<td>Average Revenue Per Flowback ($) =</td>
</tr>
<tr>
<td>Average Cost Drill/Complete Well ($) =</td>
</tr>
<tr>
<td>Average Cost Per Flowback ($) =</td>
</tr>
<tr>
<td>Average Net Saving Per Flowback ($) =</td>
</tr>
<tr>
<td>CH$_4$ recovered in 2005 =</td>
</tr>
<tr>
<td>Estimated Mean Methane Concentration Gas:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Natural Gas STAR Partner-reported data (Williams)
Conclusions: Reduced Emission Completions

- Reduces methane emissions, a potent greenhouse gas (GHG)
- Well completion type determines viability of reduced emission completion technologies
- Produced water and stimulation fluids from reduced emission completions are recycled
- Eliminates emissions, noise and citizen complaints associated with flaring
- Increases economic value added
Agenda

- U.S. Production Sector Methane Emissions
 - Methane losses

- Well Completions and Workovers
 - Reduced Emissions Completions
 - Methane savings/benefits
 - Is recovery profitable?
 - Industry experience

- Liquids Unloading
 - Plunger lifts
 - Methane savings/benefits
 - Is recovery profitable?
 - Industry experience

Source: BP
Methane Losses – Natural Gas Well Liquid Unloading

- Blowdowns to unload fluids can vent 2 to 45 thousand cubic meters per year to the atmosphere per well\(^1\)
- Accumulation of liquid hydrocarbons or water in the well tubing reduces, and can halt, production
- Operators vent (i.e., blowdown) wells to atmosphere to expel liquids

Source: BP
Plunger Lift Liquid Unloading

- Conventional plunger lift systems use well shut-in pressure buildups to efficiently lift plunger and columns of fluid out of well without venting.
- U.S. gas wells have 175,000 plunger lifts\(^1\).
- Emission reductions using plunger lifts are 4,600 MMcm/year\(^2\).
- Gas production is estimated to be as much as 10 percent higher using plunger lifts.

\(^1\)Estimate from plunger lift vendors

\(^2\)Assumes 40% of plunger lift systems equipped with “smart” automation, 50% reduction from plunger lift and 75% reduction from plunger lift with “smart” automation.

Source: Weatherford
Conventional Plunger Lifts Have Significant Drawbacks

- Fixed timer cycles may not match reservoir performance
 - Cycle too frequently (high plunger velocity)
 - Plunger not fully loaded
 - Cycle too late (low plunger velocity)
 - Plunger over-loaded, stalls
 - Shut-in pressure can’t lift plunger and fluid to top
 - May have to vent to atmosphere to lift plunger

- Results in manual venting to atmosphere when plunger lift is overloaded
Smart Automation Well Venting

- Automation can enhance the performance of plunger lifts by monitoring wellhead parameters such as:
 - Tubing and casing pressure
 - Flow rate
 - Plunger travel time

- Using this information, the system is able to optimize plunger cycle time
 - To minimize well venting to atmosphere
 - Recover more gas
 - Further reduce methane emissions
Automated Controllers

- Low-voltage; solar recharged battery power
- Monitor well parameters
- Adjust plunger cycling

Remote well management
- Continuous data logging
- Remote data transmission
- Receive remote instructions
- Monitor other equipment

Source: Weatherford
Methane Savings

- Methane emissions savings a secondary benefit
 - Optimized plunger cycling to remove liquids increases well production by 10 to 20%\(^1\)
 - Additional 1%\(^1\) production increase from avoided venting

- 12 thousand cubic meters per year of methane emissions savings for average U.S. well requiring unloading

\(^1\) Reported by Weatherford, Natural Gas STAR Producers Technology Transfer Workshop, April 2008. epa.gov/gasstar/workshops/techtransfer/index.html

Source: BP
Increased Production is the Main Benefit of Plunger Lifts
Other Benefits

- Reduced manpower cost per well
- Continuously optimized production conditions
- Remotely identify potential unsafe operating conditions
- Monitor and log other well site equipment
 - Glycol dehydrator
 - Compressor
 - Stock tank
 - Vapor recovery unit
Is Recovery Profitable?

- Smart automation controller installed cost: ~RUB 323,000
 - Conventional plunger lift timer: ~RUB 162,000
- Personnel savings: double productivity
- Production increases: 10% to 20% increased production

\[
\text{(Mcm/year)} \times (10\% \ \text{increased \ production}) \times \text{gas \ price} \\
+ \text{(Mcm/year)} \times (1\% \ \text{emissions \ savings}) \times \text{gas \ price} \\
+ \text{(personnel \ hours/year)} \times (0.5) \times \text{labor \ rate}
\]

= RUB savings per year
Economic Analysis

- Non-discounted savings for an average well =

\[
(1,400 \text{ Mcm/year}) \times (10\% \text{ increased production}) \times (\text{RUB 11,360/Mcm}^1) \\
+ (1,400 \text{ Mcm/year}) \times (1\% \text{ emissions savings}) \times (\text{RUB 11,360/Mcm}) \\
+ (500 \text{ personnel hours/year}) \times (0.5) \times (\text{RUB 490/hr}) \\
- (\text{RUB 323,000}) \text{ cost}
\]

RUB 1,550,000 savings in first year

3 month simple payback
Industry Experience: British Petroleum (BP)

- BP’s first plunger lift project designed and funded in 2000
- Pilot installations and testing in 2000
 - Installed plunger lifts with automated control systems on ~2,200 wells
 - ~RUB 460,800 per well remote terminal unit (RTU) installment cost
 - RUB 1,536,000 – RUB 23,040,500 host system installment cost
- Achieved 50% reduction in venting between 2000 and 2004
- Installed Programmable Logic Controllers in 2006
- Achieved 90% reduction from 2000 venting by 2007
BP Well Venting Reduction Using Plunger Lifts and Smart Automation

Daily Vent Volumes

Vent Rate (Mscf/d)

2001 2002 2003 2004 2005 2006 2007
Contact Information and Further Information

- More detail is available on these practices and over 80 others online at: epa.gov/gasstar/tools/recommended.html

- For further assistance, direct questions to:

 Suzie Waltzer
 EPA Natural Gas STAR Program
 waltzer.suzanne@epa.gov
 (202) 343-9544

 Don Robinson
 ICF International
 drobinson@icfi.com
 (703) 218-2512