Control of Vapor Losses from Production Tanks

Methane to Markets Partnership Workshop
October 4, 2010, Moscow, Russia
David Picar
Background

- Emissions from production storage tanks are often a significant source:
 - CH4 and other hydrocarbon emissions.
 - Odours.
 - Air Toxics (e.g., benzene).
 - Lost revenue.
CH4 Losses from Storage Tanks

Storage tanks are responsible for 6% of methane emissions in natural gas and oil production sector in the U.S.

96% of tank losses occur from tanks without vapor recovery

Storage Tanks:

- **Causes of Emissions:**
 - Working and breathing losses.
 - Flashing losses.
 - Unaccounted for contributions:
 - Unintentional Gas carry-through:
 - Leaking drain and dump valves.
 - Vortex formation at inlet to drain lines.
 - Malfunctioning level controllers.
 - Inefficient upstream gas/liquid separation.
 - Piping changes resulting in storage of unstablized product.
 - Non-routine storage of unstablized product in atmospheric tanks.
 - Malfunctioning vapor recovery systems:
 - Faulty blanket gas regulators or pressure controllers.
 - Fouled vapor collection lines.
 - Leaking roof fittings and seals.
Storage Tank Emissions

- Field measurement results for 9 gas plants.

<table>
<thead>
<tr>
<th>Facility</th>
<th>THC Emissions $(10^3 \text{m}^3/\text{y})$</th>
<th>CH4 Emissions $(10^3 \text{m}^3/\text{y})$</th>
<th>Value of Lost Product $($/\text{y})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant 3</td>
<td>1,663</td>
<td>57</td>
<td>441,370</td>
</tr>
<tr>
<td>Plant 5</td>
<td>95</td>
<td>93</td>
<td>24,559</td>
</tr>
<tr>
<td>Plant 8</td>
<td>4,469</td>
<td>2,651</td>
<td>1,880,267</td>
</tr>
<tr>
<td>Total</td>
<td>6,227</td>
<td>2,801</td>
<td>2,346,197</td>
</tr>
</tbody>
</table>

Benefits of VRUs

- Capture up to 95% of hydrocarbon vapors that accumulate in tanks.
- Recovered vapors have much higher heating value than pipeline quality natural gas.
- Recovered vapors can be more valuable than methane alone and have multiple uses:
 - Conserve by compressing into a natural gas gathering system.
 - Re-inject into a crude oil pipeline for delivery to a downstream facility with gas conservation.
 - Use as onsite fuel or process needs or production or marketable electricity.
 - Process for recovery of NGLs.
Quantifying Volume of Losses

- Estimate losses from chart based on oil characteristics, pressure and temperature at each location (50%).
- Estimate emissions using the E&P Tank Model (20%).
- Measure losses using recording manometer and well tester or ultrasonic meter over several cycles (5%):
 - This is the best approach for facility design.
Standard Vapor Recovery Unit

- Vent Line
- Crude Oil Stock Tank(s)
- Control Pilot
- Suction Line
- Suction Scrubber
- Electric Control Panel
- Bypass Valve
- Gas Sales Meter Run
- Electric Driven Rotary Compressor
- Check Valve
- Condensate Return
- Liquid Transfer Pump
- Sales

Source: Evans & Nelson (1968)
Venturi Jet Ejector*

- High-Pressure Motive Gas (~850 psig)
- Flow Safety Valve
- Pressure Indicator
- Temp Indicator
- Discharge Gas (~40 psia)
- Low-Pressure Vent Gas from Tanks (0.10 to 0.30 psig)
- EVRUTM Suction Pressure (-0.05 to 0 psig)

*Patented by COMM Engineering
Vapor Recovery with Ejector

5,000 Mcf/d Gas
5,000 Bbl/d Oil

Oil & Gas
Well

LP
Separator

Oil

Ejector

300 Mcf/d Gas

(19 Mcf/d Incr. fuel)

40 psig

6,200 Mcf/d

Compressor

Gas to Sales
@ 1000 psig

281 Mcf/d
Net Recovery

900 Mcf/d

Crude Oil Stock
Tank

Oil to Sales

Ratio Motive / Vent = 3
= 900/300

5,000 Mcf/d Gas

900 Mcf/d
Vapor Jet System*

Utilizes produced water in closed loop system to effect gas gathering from tanks. Small centrifugal pump forces water into Venturi jet, creating vacuum effect. Limited to gas volumes of 77 Mcfd and discharge pressure of 40 psig.

Patented by Hy-Bon Engineering
Vapor Recovery Towers

Source: Hy-Bon Engineering
Lessons Learned

- VRU technology can be highly cost-effective in most general applications
- Venturi jet models work well in certain niche applications, with reduced O&M costs. Rotary vane or screw type compressors recommended for VRUs where Venturi ejector jet designs are not applicable
- EVRU™ recommended where there is gas compressor with excess capacity
- Vapor Jet recommended where less than 75 Mcfd and discharge pressures below 40 psig
Thank you!