#### **Producers Best Management Practices and Opportunities**

Lessons Learned from the Natural Gas STAR Program

Anadarko Petroleum Corporation and the Domestic Petroleum Council

Producers Technology Transfer Workshop College Station, Texas May 17, 2007

epa.gov/gasstar



NaturalGas



# Agenda

#### Iunger Lifts and Smart Automation Well Venting

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Vapor Recovery Units
  - Methane Losses
  - Methane Recovery
  - Is Recovery Profitable?
  - Industry Experience
- Discussion



#### **Methane Losses**

- There are 395,000 natural gas and condensate wells (on and offshore) in the U.S.<sup>1</sup>
- Accumulation of liquid hydrocarbons or water in the well bores reduces, and can halt, production
- Common "blow down" practices to restore production can vent 80 to 1,600 thousand cubic feet per year (Mcf/year)<sup>2</sup> to the atmosphere per well
- Settimated 9 billion cubic feet per year (Bcf/year) methane emissions from U.S. onshore well venting<sup>1</sup>

<sup>1 –</sup> EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublications GHGEmissions.html

<sup>2 -</sup> Mobil. Big Piney Case Study 1997.



### Methane Recovery: Plunger Lifts

- Fluids can impede or halt gas production in mature wells
- In Plunger lifts remove liquids
  - Well is shut-in
  - Well pressure builds up under plunger
  - Pushes it to surface, collecting liquids
- Benefits include
  - Continuous production
  - Lower maintenance
  - Increased efficiency
  - Reduced methane emissions





### What is the Problem?

- Conventional plunger lift systems use gas pressure buildups to repeatedly lift columns of fluid out of well
- Fixed timer cycles may not match reservoir performance
  - Cycle too frequently (high plunger velocity)
    - Iunger not fully loaded
  - & Cycle too late (low plunger velocity)
    - Shut-in pressure can't lift fluid to top
    - May have to vent to atmosphere to lift plunger



Source: Weatherford



# **Conventional Plunger Lift Operations**

- Manual, on-site adjustments tune plunger cycle time to well's parameters
  - Not performed regularly
  - Do not account for gathering line pressure fluctuations, declining well performance, plunger wear
- Results in manual venting to atmosphere when plunger lift is overloaded



# Methane Recovery: Smart Automation Well Venting

- Automation can further enhance the performance of plunger lifts by monitoring wellhead parameters such as:
  - Tubing and casing pressure
  - In Flow rate
  - Iunger travel time
- Ising this information, the system optimizes plunger operations to:
  - Minimize well venting to atmosphere
  - A Recover more gas
  - In Further reduce methane emissions



#### Methane Recovery: How Smart Automation Reduces Methane Emissions

- Smart automation continuously varies plunger cycles to match key reservoir performance indicators
  - Well flow rate
    - Measuring pressure
  - Successful plunger cycle
    - Measuring plunger travel time
- In Plunger lift automation allows producer to vent well to atmosphere less frequently



#### **Automated Controllers**



Low-voltage; solar recharged battery power

- Monitor well parameters
- Adjust plunger cycling

Source: Weatherford



- Continuous data logging
- Remote data transmission
- A Receive remote instructions
- Monitor other equipment



Source: Weatherford



#### **Plunger Lift Cycle**





# **Methane Savings**

- Methane emissions savings a secondary benefit
  - Optimized plunger cycling to remove liquids increases well production by 10 to 20%<sup>1</sup>
  - Additional 10%<sup>1</sup> production increase from avoided venting
- 500 Mcf/year methane emissions savings for average U.S. well



# **Other Benefits**

- Reduced manpower cost per well
- Continuously optimized production conditions
- Remotely identify potential unsafe operating conditions
- Monitor and log other well site equipment
  - Glycol dehydrator
  - Compressor
  - Stock tank
  - Vapor recovery unit (VRU)



# **Is Recovery Profitable?**

- Smart automation controller installed cost: about \$11,000
  - Conventional plunger lift timer: about \$5,000
- A Personnel savings: double productivity
- Production increases: 10% to 20% increased production
- Savings =
  - (Mcf/year) x (10% increased production) x (gas price)
  - + (Mcf/year) x (1% emissions savings) x (gas price)
  - + (personnel hours/year) x (0.5) x (labor rate)
    - \$ savings per year



# **Economic Analysis**

Non-discounted savings for average U.S. well =

(50,000 Mcf/year) x (10% increased production) x (\$7/Mcf)

- + (50,000 Mcf/year) x (1% emissions savings) x (\$7/Mcf)
- + (500 personnel hours/year) x (0.5) x (\$40/hour)
- (\$11,000) cost

\$37,500 savings in first year

3 month simple payback



# **Industry Experience**

- BP reported installing plunger lifts with automated control systems on about 2,200 wells
  - 800 Mcf reported annual savings per well
  - \$12 million costs including equipment and labor
  - \$6 million total annual savings
- Another company shut in mountaintop wells inaccessible during winter
  - Installed automated controls allowed continuous production throughout the year<sup>1</sup>

<sup>1 –</sup> Morrow, Stan and Stan Lusk, Ferguson Beauregard, Inc. Plunger-Lift: Automated Control Via Telemetry. 2000.



#### Vapor Recovery Units Agenda

#### Vapor Recovery Units

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience





#### **Methane Losses**

- I Flashing losses
  - Occur when crude is transferred from a gas-oil separator at higher pressure to a storage tank at atmospheric pressure
- Working losses
  - Occur when crude levels change and when crude in tank is agitated
- Standing losses
  - Occur with daily and seasonal temperature and barometric pressure changes
- Combine for 6 Bcf/year emissions<sup>1</sup>

1 – EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html 16



#### Methane Recovery: Vapor Recovery

- Vapor recovery can capture up to 95% of hydrocarbon vapors from tanks
- Recovered vapors have higher heat content than pipeline quality natural gas
- A Recovered vapors are more valuable than natural gas and have multiple uses
  - Re-inject into sales pipeline
  - Vse as on-site fuel
  - Send to processing plants for recovering valuable natural gas liquids



### **Types of Vapor Recovery Units**

- Conventional vapor recovery units (VRUs)
  - Ise rotary compressor to suck vapors out of atmospheric pressure storage tanks
  - A Require electrical power or engine driver
- ♦ Venturi ejector vapor recovery units (EVRU<sup>TM</sup>) and Vapor Jet
  - Ise Venturi jet ejectors in place of rotary compressors
  - Contain no moving parts
  - ♦ EVRU<sup>TM</sup> requires source of high pressure gas and intermediate pressure system
  - Vapor Jet requires high pressure water motive



#### **Venturi Jet Ejector\***





#### Vapor Recovery with Ejector





#### Vapor Jet System\*



\*Patented by Hy-Bon Engineering



- Utilizes produced water in closed loop system to effect gas gathering from tanks
- Small centrifugal pump forces water into Venturi jet, creating vacuum effect
- Limited to gas volumes of 77 Mcf / day and discharge pressure of 40 psig



### **Criteria for Vapor Recovery Unit** Locations

- Steady source and sufficient quantity of losses
  - Crude oil stock tank
  - Is Flash tank, heater/treater, water skimmer vents
  - Gas pneumatic controllers and pumps
- Outlet for recovered gas
  - Access to low pressure gas pipeline, compressor suction, or on-site fuel system
- Tank batteries not already subject to air regulations



#### **Quantify Volume of Losses**

- Estimate losses from chart based on oil characteristics, pressure, and temperature at each location (± 50%)
- Estimate emissions using the E&P Tank Model (± 20%)
- Indication Engineering equations Vasquez-Beggs (± 20%)
- Measure losses using recording manometer and well tester or ultrasonic meter over several cycles (± 5%)
  - This is the best approach for facility design



#### **Estimated Volume of Tank Vapors**



<sup>o</sup> API = API gravity



### Vasquez-Beggs Calculation

Atmospheric tanks may emit large amounts of tank vapors at relatively low separator pressure

#### **Vasquez-Beggs Equation**

$$GOR = A \times (G_{flash gas}) \times (P_{sep} + 14.7)^{B} \times exp\left(\frac{C \times G_{oil}}{T_{sep} + 460}\right)$$

where,

| GOR                    | = | Ratio of flash gas production to standard stock tank barrels of oil |
|------------------------|---|---------------------------------------------------------------------|
|                        |   | produced, in scf/bbl oil (barrels of oil corrected to 60°F)         |
| G <sub>flash gas</sub> | = | Specific gravity of the tank flash gas, where air = 1. A suggested  |
| -                      |   | default value for Gflash gas is 1.22 (TNRCC; Vasquez, 1980)         |
| Goil                   | = | API gravity of stock tank oil at 60°F                               |
| $\mathbf{P}_{sep}$     | = | Pressure in separator, in psig                                      |
| Tsep                   | = | Temperature in separator, °F                                        |

<u>For  $G_{pil} \le 30^{\circ}API$ </u>: A = 0.0362; B = 1.0937; and C = 25.724

For Goil > 30°API: A = 0.0178; B = 1.187; and C = 23.931

#### **Example for WTI Crude**

- $G_{oil} 40^{\circ} \text{ API}$
- ♦ G<sub>flash gas</sub> 1.22

• GOR = **3.6 scf/bbl** 

psig – pounds per square inch, gauge scf – standard cubic feet bbl – barrels



#### **Is Recovery Profitable?**

|            | 5      | 6          |    | 7            | 8        | 9                    | 10                     | 11 |                |
|------------|--------|------------|----|--------------|----------|----------------------|------------------------|----|----------------|
|            | Btu/cf | MMBtu*/Mcf | 4  | 5/Mcf        | \$/MMBtu | Vapor<br>Composition | Mixture<br>(MMBtu/Mcf) |    | /alue<br>/Mcf) |
| Methane    | 1,012  | 1.01       | \$ | 7.22         | 7.15     | 82%                  | 0.83                   | \$ | 5.93           |
| Ethane     | 1,773  | 1.77       | \$ | 16.18        | 9.14     | 8%                   | 0.14                   | \$ | 1.28           |
| Propane    | 2,524  | 2.52       | \$ | 27.44        | 10.89    | 4%                   | 0.10                   | \$ | 1.09           |
| n Butane   | 3,271  | 3.27       | \$ | 43.16        | 13.20    | 3%                   | 0.10                   | \$ | 1.32           |
| iso Butane | 3,261  | 3.26       | \$ | 46.29        | 14.20    | 1%                   | 0.03                   | \$ | 0.43           |
| Pentanes+  | 4,380  | 4.38       | \$ | <b>59.70</b> | 13.63    | 2%                   | 0.09                   | \$ | 1.23           |
| Total      |        |            |    |              |          |                      | 1.289                  | \$ | 11.28          |

\*MMBtu = million British thermal units

| Financial Analysis for a conventional VRU Project |                            |                |             |                 |    |           |                   |            |  |  |  |
|---------------------------------------------------|----------------------------|----------------|-------------|-----------------|----|-----------|-------------------|------------|--|--|--|
| Peak Capacity                                     | Installation &             | O & M<br>Costs | Va          | alue of $Gas^2$ |    | Annual    | Simple<br>Payback | Return on  |  |  |  |
| (Mcf / day)                                       | Capital Costs <sup>1</sup> | (\$ / year)    | (\$ / year) |                 |    | Savings   | (months)          | Investment |  |  |  |
| 25                                                | 26,470                     | 5,250          | \$          | 51,465          | \$ | 46,215    | 7                 | 175%       |  |  |  |
| 50                                                | 34,125                     | 6,000          | \$          | 102,930         | \$ | 96,930    | 5                 | 284%       |  |  |  |
| 100                                               | 41,125                     | 7,200          | \$          | 205,860         | \$ | 198,660   | 3                 | 483%       |  |  |  |
| 200                                               | 55,125                     | 8,400          | \$          | 411,720         | \$ | 403,320   | 2                 | 732%       |  |  |  |
| 500                                               | 77,000                     | 12,000         | \$          | 1,029,300       | \$ | 1,017,300 | 1                 | 1321%      |  |  |  |

1 Unit Cost plus estimated installation at 75% of unit cost

2 \$11.28 x 1/2 capacity x 365, Assumed price includes Btu enriched gas (1.289 MMBtu/Mcf)



# Industry Experience: EVRU<sup>™</sup>

#### Facility Information

- Oil production:
- Gas production:
- Separator:
- Storage tanks:
- Measured tank vent:

#### EVRU<sup>™</sup> Installation Information

- Motive gas required:
- Gas sales:
- Reported gas value:
- Income increase:
- ♦ Reported EVRU<sup>TM</sup> cost:
- A Payout:

5,000 Barrels/day, 30° API 5,000 Mcf/day, 1060 Btu/cf 50 psig, 100° F Four 1500 barrel tanks @1.5 ounces relief 300 Mcf/day @ 1,850 Btu/cf

900 Mcf/day 5,638 MMBtu/day \$28,190/day @ \$5/MMBtu \$2,545/day = \$76,350/month \$75,000 <1 month



#### Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits