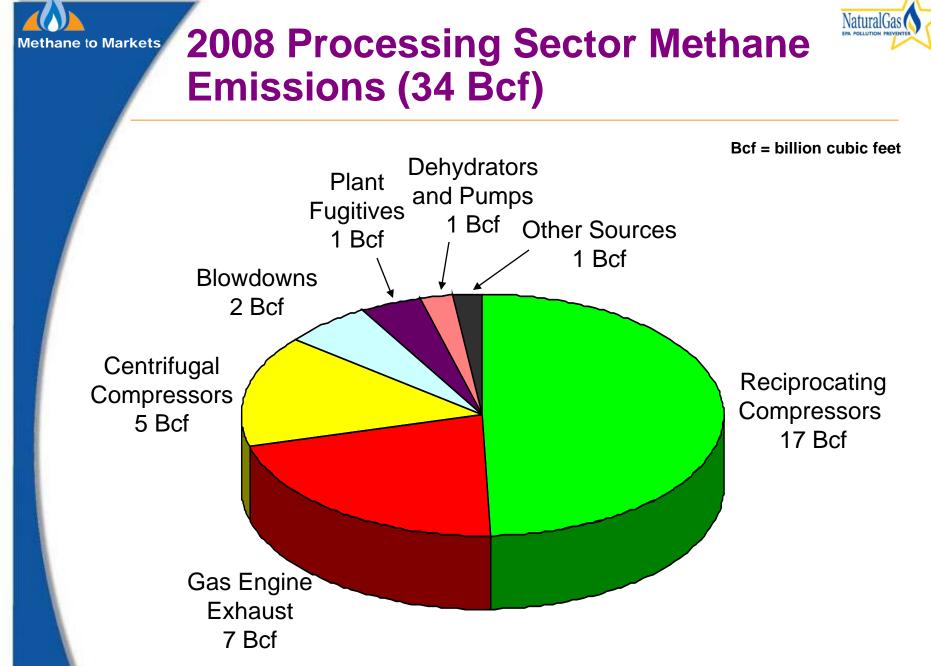


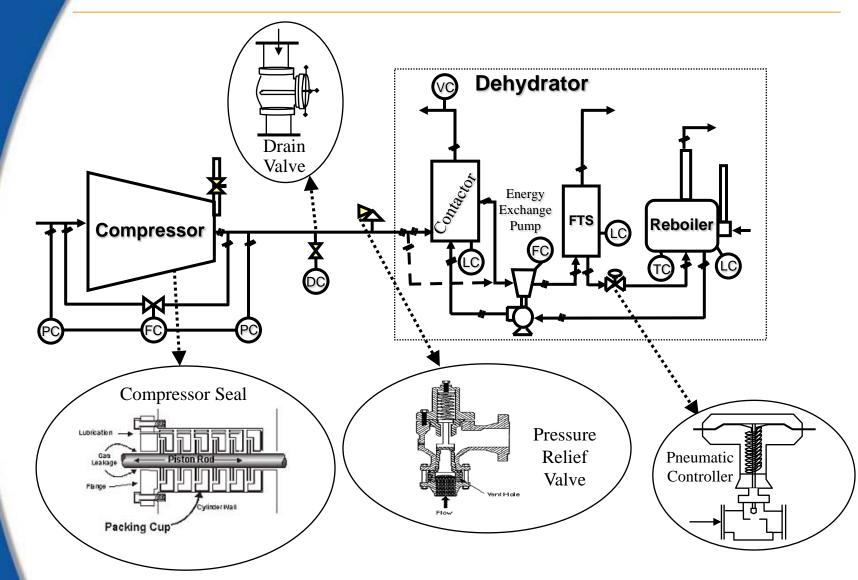
Gas Processing Technology Experience: Priorities

Seminar with Russian Independent Oil and Gas Producers on Methane Mitigation Technologies and Strategies October 4, 2010, Moscow, Russia

Don Robinson, Vice President ICF International



Agenda


- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification, and repair
 - Acid gas removal
- Contact Information and Further Information

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2008.* April, 2010. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html.

Overview of Technologies and Practices

- 29 technologies and practices that apply to the processing sector
 - 17 focused on operating practices
 - 12 focused on technologies
- Relevant processing technologies and practices:

Operating practices

- Begin leak detection, quantification and repair at processing plants
- Eliminate unnecessary equipment and/or systems
- Rerouting glycol skimmer gas
- Pipe glycol dehydrator to vapor recovery unit
- Inspect and repair compressor station blowdown valves

<u>Technologies</u>

- Convert gas-driven pneumatic devices to instrument air
- Install flash tank separators in glycol dehydrators
- Use of composite wrap repair
- Install pressurized storage of condensate
- Use ultrasound to identify leaks

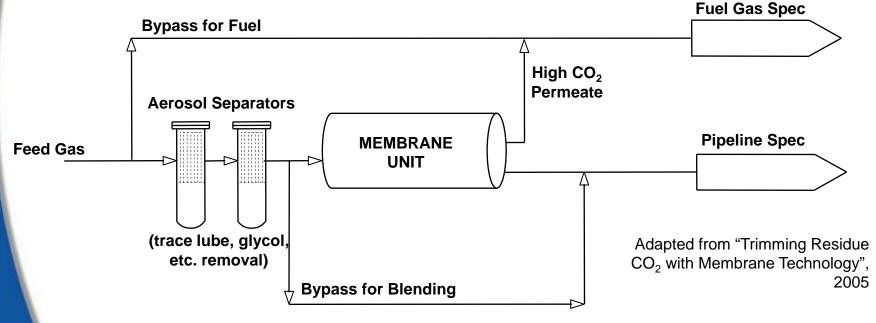
Compressor Seals

Methane to Markets

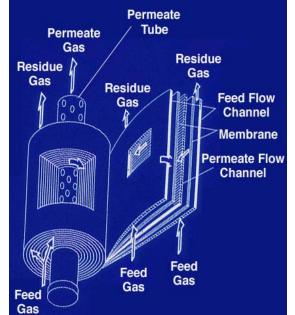
- Rod packing in reciprocating compressors leak gas by design
 - Anywhere between 0.33 to 25.5 m³/hour depending on age of packing
 - Replace rod packing to minimize leaks
- Seal oil degassing, from centrifugal compressors, can vent 1.1 to 5.7 m³/minute to the atmosphere
 - Use dry seals to avoid the use of seal oil
- More information on emission reductions from compressor seals can be found in the presentation "Reducing Methane Emissions from Centrifugal and Reciprocating Compressors"

Leak Detection, Quantification, and Repair by Leak Imaging

- Majority of fugitive methane emissions are from a a relatively small number of leaking components
 - Valves(30%) Connectors(24%) Compressors(23%)
 - Open-ended lines, crankcase vents, pressure relief devices and pump seals (23%)
- IR leak imaging
 - Real-time visual image, quicker identification, & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing
- Hi Flow® Sampler
 - Total leak capture & measures leak rate directly
 - Can measure 30 components per hour
 - 1.42 to 226 liters per minute (LPM) or 0.05 to 10.5 standard cubic feet per minute (scfm)
- More information can be found in the presentation "Directed Inspection and Maintenance Program"



Methane to Markets Acid Gas Removal (AGR) Alternatives to Amine Absorbers


- Membrane separation of CO₂ from feed gas
- High CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO₂ product exiting the membrane exceeds pipeline spec and is blended with feed gas

NaturalGas

AGR- Membrane Economics: Is Recovery Profitable?

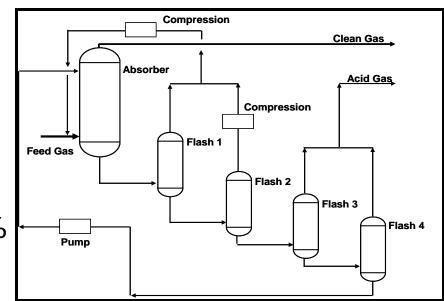
- Cost comparison
 - DEA AGR cost RUB 138.0 to RUB 154.1 million capital, RUB 15.4 million operation and maintenance (O&M) per year
 - Membrane process cost RUB 46.1 to RUB 52.3 million capital, RUB 0.65 to RUB 1.51 million O&M per year
- Optimization of permeate stream
 - Permeate mixed with fuel gas, RUB 11,360/Mcm fuel credit
 - Only install enough membranes to take feed from >3% to <2% CO₂
 - Expand with additional membranes

NaturalGas

Acid Gas Removal Alternatives to Amine Absorbers

- Molecular Gate[®] adsorbs acid gas (CO₂ and H₂S) in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Bed regenerated by depressuring
 - 10% of feed methane lost in depressuring
 - Route tail gas to fuel
- Applicable to lean gas sources

Methane to Markets AGR- Molecular Gate® Economics:


- Molecular Gate[®] costs are 20% less than amine process
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Eliminates venting from acid gas removal
- Other Benefits
 - Allows wells with high acid gas content to produce (alternative is shut-in)
 - Can dehydrate and remove acid gas to pipeline specs in one step
 - Less operator attention

AGR - Morphysorb[®] Process

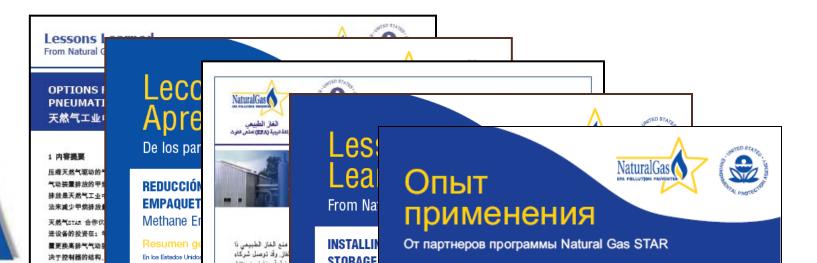
- Morphysorb[®] has a 30% to 40% operating cost advantage over DEA or Selexol^{TM 1}
 - 66% to 75% less methane absorbed than DEA or Selexol[™]
 - 33% less total hydrocarbons (THC) absorbed¹
 - Lower solvent circulation volumes
- Morphysorb[®] can process streams with high (>10%) acid gas composition
- At least 25% capital cost advantage from smaller contactor and recycles¹
- Flashing of Morphysorb recycling recovers about 80% of methane that is absorbed²

1 – GTI

2 – Oil and Gas Journal, July 12, 2004, p 57, Fig. 7

Comparison of AGR Alternatives

	Amine (or Selexol™) Process	Morphysorb [®] Process	Kvaerner Membrane	Molecular Gate [®] CO ₂
Absorbent or Adsorbent	Water & amine (Selexol™)	Morpholine derivatives	Cellulose acetate	Titanium silicate
Methane Savings Compared to Amine Process		66 to 75% less methane absorption	Methane in permeate gas combusted for fuel	Methane in tail gas combusted for fuel
Regeneration	Reduce pressure & heat	Reduce pressure	Replace membrane about 5 years	Reduce pressure to vacuum
Primary Operating Costs	Amine (Selexol™) & steam	Electricity	Nil	Electricity
Capital Cost	100%	75%	35%	<100%
Operating Cost	100%	60% to 70%	<10%	80%



Contact Information and Further Information

Methane to Markets

- More detail is available on these practices and over 80 others online at: <u>epa.gov/gasstar/tools/recommended.html</u>
- For further assistance, direct questions to:

Suzie Waltzer EPA Natural Gas STAR Program <u>waltzer.suzanne@epa.gov</u> (202) 343-9544 Don Robinson ICF International <u>drobinson@icfi.com</u> (703) 218-2512

