Acid Gas Removal Options for Minimizing Methane Emissions

Lessons Learned from Natural Gas STAR

Occidental Petroleum Corporation and California Independent Petroleum Association

Producers Technology Transfer Workshop
Long Beach, California
August 21, 2007

dpa.gov/gasstar
Acid Gas Removal: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion
Methane Losses from Acid Gas Removal

- There are 287 acid gas removal (AGR) units in the natural gas industry\(^1\)
 - Emit 634 million cubic feet (MMcf) annually\(^1\)
 - 6 thousand cubic feet per day (Mcf/day) emitted by the average AGR unit\(^1\)
 - Most AGR units use an amine process or Selexol\(^\text{TM}\) process
 - Several new processes remove acid gas with lower methane emissions and other associated benefits

1 – Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2005
What is the Problem?

- 1/3 of U.S. gas reserves contain carbon dioxide (CO$_2$) and/or nitrogen (N$_2$)1
- Wellhead natural gas may contain acid gases
 - Hydrogen sulfide (H$_2$S), CO$_2$ are corrosive to gathering/boosting and transmission lines, compressors, pneumatic instruments, and distribution equipment
- Acid gas removal processes have traditionally used an aqueous amine solution to absorb acid gas
- Amine regeneration strips acid gas (and absorbed methane)
 - CO$_2$ (with methane) is typically vented to the atmosphere, flared, or recovered for enhanced oil recovery (EOR)
 - H$_2$S is typically flared in low concentrations or sent to sulfur recovery

1 – Daiminger and Lind, Engelhard Corporation. Adsorption Processes for Natural Gas Treatment
Typical Amine Process

- Sweet Gas
- Sour Gas
- Contactor (Absorber)
- Lean Amine
- Rich Amine
- Flash Tank
- Fuel/Recycle
- Exchanger
- Filter
- Booster Pump
- Reboiler
- Reflux Pump
- Condenser
- Stripper - Diethanol Amine (DEA)
- H₂S to sulfur plant or flare
- CO₂ / methane to atmosphere / flare / thermal oxidizer

- Contact (Absorber)
- Fuel/Recycle
- Lean Amine
- Flash Tank
- Exchanger
- Filter
- Booster Pump
- Reboiler
- Reflux Pump
- Condenser
- Stripper - Diethanol Amine (DEA)
- H₂S to sulfur plant or flare
- CO₂ / methane to atmosphere / flare / thermal oxidizer
Methane Recovery - New Acid Gas Removal Technologies

- GTI & Uhde Morphysorb® Process
- Kvaerner Membrane Process
- Guild / Engelhard Molecular Gate® Process

Primary driver is process economics, not methane emissions savings

Reduce methane venting by 50 to 100%
Morphysorb® Process
Morphysorb® Process

- Morphysorb® absorbs acid gas but also absorbs some methane
 - Methane absorbed is 66% to 75% lower than competing solvents¹

- Flash vessels 1 & 2 recycled to absorber inlet to minimize methane losses

- Flash vessels 3 & 4 at lower pressure to remove acid gas and regenerate Morphysorb®

¹ – Oil and Gas Journal, July 12, 2004, p 57
Is Recovery Profitable?

- Morphysorb® can process streams with high (>10%) acid gas composition
- Morphysorb® has a 30% to 40% operating cost advantage over DEA or Selexol™
 - 66% to 75% less methane absorbed than DEA or Selexol™
 - About 33% less total hydrocarbons (THC) absorbed
 - Lower solvent circulation volumes
- At least 25% capital cost advantage from smaller contactor and recycles
- Flash recycles 1 & 2 recover about 80% of methane that is absorbed

1 – Oil and Gas Journal, July 12, 2004, p 57, Fig. 7
2 – GTI
Industry Experience - Spectra Energy

- Kwoen plant does not produce pipeline-spec gas
 - Separates acid gas and reinjects it in reservoir
 - Frees gathering and processing capacity further downstream

- Morphysorb® retrofitted to a process unit designed for other solvent

- Morphysorb® chosen for acid gas selectivity over methane
 - Less recycle volumes; reduced gas compressor horsepower
Kvaerner Membrane Process

- Membrane separation of CO₂ from feed gas
 - Cellulose acetate spiral wound membrane
- High CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO₂ product exiting the membrane exceeds pipeline spec and is blended with feed gas

Adapted from “Trimming Residue CO₂ with Membrane Technology”, 2005
Kvaerner Membrane Technology

- CO₂ (and some methane) diffuse axially through the membrane
- High-CO₂ permeate exits from center of tube; enriched product exits from outer annular section
- One application for fuel gas permeate
 - Methane/CO₂ waste stream is added with fuel gas in a ratio to keep compressor emissions in compliance

Design requirements
- Upstream separators remove contaminants which may foul membrane
- Line heater may be necessary
Industry Experience – DCP Midstream

- Kvaerner process installed at Mewborn processing plant in Colorado, 2003
- Problem: sales gas CO₂ content increasing above the 3% pipeline spec

Evaluated options

- Blend with better-than-spec gas
 - Not enough available
- Use cryogenic natural gas liquids (NGL) recovery to reject CO₂
 - Infrastructure/capital costs too high
- Final choice: membrane or amine unit
Industry Experience - Continued

- Membrane chosen for other advantages; zero emissions is added benefit
 - 65% less capital cost than amine unit
 - About 10% operating cost (compared to amine)
 - About 10% operator man hours (compared to amine)
 - 1/3 footprint of amine unit

- Less process upsets
- Less noise
- Less additional infrastructure construction

Typical process conditions

<table>
<thead>
<tr>
<th>Flow Into Membrane</th>
<th>Membrane Residue (Product)</th>
<th>Membrane Permeate</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3 MMcf/day</td>
<td>21</td>
<td>1.3</td>
</tr>
<tr>
<td>70 to 110 degrees Fahrenheit</td>
<td>70 to 110</td>
<td>70 to 110</td>
</tr>
<tr>
<td>800 to 865 psia</td>
<td>835</td>
<td>55</td>
</tr>
<tr>
<td>3% CO₂</td>
<td>2%</td>
<td>16%</td>
</tr>
<tr>
<td>84% C₁</td>
<td>89%</td>
<td>77%</td>
</tr>
<tr>
<td>13% C₂+</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>~0% H₂O</td>
<td>~0%</td>
<td>~0%</td>
</tr>
<tr>
<td>~0% H₂S</td>
<td>~0%</td>
<td>~0%</td>
</tr>
</tbody>
</table>
Is Recovery Profitable?

Costs

- Conventional DEA AGR would cost $4.5 to $5 million capital, $0.5 million operation and maintenance (O&M) per year
- Kvaerner Membrane process cost $1.5 to $1.7 million capital, $0.02 to $0.05 million O&M per year

Optimization of permeate stream

- Permeate mixed with fuel gas, $5/Mcf fuel credit
- Only installed enough membranes to take feed from >3% to >2% CO₂, and have an economic supplemental fuel supply for compressors

In operation since 2005

Offshore Middle East using NATCO membrane process on gas with 90% CO₂, achieving pipeline spec quality
Methane Recovery - Molecular Gate®
CO₂ Removal

- Adsorbs acid gas (CO2 and H2S) in fixed bed

- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane

- Bed regenerated by depressuring
 - ~10% of feed methane lost in “tail gas” depressuring
 - Route tail gas to fuel
Molecular Gate® Applicability

- Lean gas
 - Gas wells, coal bed methane

- Associated gas
 - Tidelands Oil Production Company
 - 1.4 MMcf/day
 - 18% to 40% CO₂
 - Water saturated, rich gas
 - Design options for C₄+ in tail gas stream
 - Heavy hydrocarbon recovery before Molecular Gate®
 - Recover heavies from tail gas in adsorber bed
 - Use as fuel for process equipment
Molecular Gate® CO₂ Removal

17 psi pressure drop

Product
90 - 95% of C₁
80 - 90% of C₂
50% of C₃

Tail Gas
5 - 10% of C₁
10 - 20% of C₂
50% of C₃
C₄+
CO₂
H₂S
H₂O

Optional Enriched C₁ Recycle

Pressure Swing Adsorption

Vacuum Compressor

C₄+ Recovery

Dehydration

High Pressure Feed
C₁
C₂
C₃
C₄+
CO₂
H₂S
H₂O
Industry Experience - Tidelands Molecular Gate® Unit

- First commercial unit started in May 2002
- Process up to 1.4 MMcf/day
- No glycol system is required
- Heavy hydrocarbons and water removed with CO₂
- Tail gas used for fuel is a key optimization: no process venting
- 18% to 40% CO₂ removed to pipeline specifications (2%)
- Eliminated flaring
Molecular Gate Performance at Tidelands

<table>
<thead>
<tr>
<th></th>
<th>Design Feed</th>
<th>Actual Feed</th>
<th>Design Product</th>
<th>Actual Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow, MMcf/day</td>
<td>1.0</td>
<td>1.4</td>
<td>0.52</td>
<td>0.54</td>
</tr>
<tr>
<td>Pressure, psig</td>
<td>65</td>
<td>70</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>Temperature, F</td>
<td>60-80</td>
<td>60-80</td>
<td>60-80</td>
<td>60-80</td>
</tr>
<tr>
<td>Composition, Mol %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>71.25</td>
<td>48.35</td>
<td>95.09</td>
<td>94.17</td>
</tr>
<tr>
<td>O2</td>
<td>400 ppm</td>
<td>800 ppm</td>
<td>700 ppm</td>
<td>1500 ppm</td>
</tr>
<tr>
<td>N2</td>
<td>2.18</td>
<td>1.34</td>
<td>3.74</td>
<td>2.40</td>
</tr>
<tr>
<td>CO2</td>
<td>18.82</td>
<td>37.58</td>
<td>0.19</td>
<td>1.90</td>
</tr>
<tr>
<td>C2</td>
<td>2.35</td>
<td>2.96</td>
<td>0.90</td>
<td>0.68</td>
</tr>
<tr>
<td>C3</td>
<td>2.12</td>
<td>3.77</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>C4</td>
<td>1.75</td>
<td>3.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C5</td>
<td>0.76</td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C6+</td>
<td>0.72</td>
<td>1.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H2O</td>
<td>saturated</td>
<td>saturated</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

F = Fahrenheit
psig = pounds per square inch, gauge
ppm = parts per million
Tidelands Gas Revenue & Associated Volume

Gas Revenue

Gas Volume

Gas Price ($/Million British Thermal Unit)
Is Recovery Profitable?

- Molecular Gate® costs are 20% less than amine process
 - 9 to 35 ¢ / Mcf product depending on scale
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Eliminates venting from acid gas removal
- Other Benefits
 - Allows wells with high acid gas content to produce
 (alternative is shut-in)
 - Can dehydrate and remove acid gas to pipeline specs in one step
 - Less operator attention
Other Molecular Gate Applications

- Nitrogen removal from natural gas
- Dew point control by heavy hydrocarbon and water removal
- Removal of C_2 (<6%), C_3^+ (<3%) and C_6^+ (<0.2%) for California Air Resources Board compressed natural gas
- Removal of heavy hydrocarbons from CO$_2$ in amine plant vents to eliminate flaring
Comparison of AGR Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Amine (or Selexol™) Process</th>
<th>Molecular Gate® CO₂</th>
<th>Morphysorb® Process</th>
<th>Kvaerner Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbent or Adsorbent</td>
<td>Water & Amine (Selexol™)</td>
<td>Titanium Silicate</td>
<td>Morpholine Derivatives</td>
<td>Cellulose Acetate</td>
</tr>
<tr>
<td>Methane Savings Compared to Amine Process</td>
<td>--</td>
<td>Methane in tail gas combusted for fuel</td>
<td>66 to 75% less methane absorption</td>
<td>Methane in permeate gas combusted for fuel</td>
</tr>
<tr>
<td>Regeneration</td>
<td>Reduce Pressure & Heat</td>
<td>Reduce Pressure to Vacuum</td>
<td>Reduce Pressure</td>
<td>Replace Membrane about 5 years</td>
</tr>
<tr>
<td>Primary Operating Costs</td>
<td>Amine (Selexol™) & Steam</td>
<td>Electricity</td>
<td>Electricity</td>
<td>Nil</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>100%</td>
<td><100%</td>
<td>75%</td>
<td>35%</td>
</tr>
<tr>
<td>Operating Cost</td>
<td>100%</td>
<td>80%</td>
<td>60% to 70%</td>
<td><10%</td>
</tr>
</tbody>
</table>
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits