Methane to Markets

Natural Gas STAR Recommended Technologies and Practices for Reducing Methane Emissions from Natural Gas Distribution Systems

Gazprom – EPA Technical Seminar on Methane Emission Mitigation

28 – 30 October, 2008
Reducing Methane Emissions from Distribution Systems: Agenda

- Pipeline Rehabilitation Opportunities
 - Cast Iron Joint Sealing Robot (CISBOT)
 - Flexible Plastic Pipeline Inserts
- Recover Blowdown Gas by Injection Into Low Pressure Mains
- Leak Detection and Repair at Metering and Regulator Stations
- Discussion
Reducing Methane Emissions from Distribution Systems: Economics

- All technologies and practices promoted by Methane to Markets and Natural Gas STAR are proven based on successful field implementation by Partner companies.

- Examples represented in the following presentation are based on company specific data collected from actual projects in the U.S. and other countries; economic information is presented according to U.S. costs and gas prices.
Underground Pipelines: Methane Losses

- Fugitive emissions from underground pipelines make up over 50% of methane emissions in the U.S. distribution sector\(^1\)
- Frequency and size of leaks vary depending on:
 - Pipeline operating pressure (mains vs. services)
 - Pipeline material (cast iron, steel, plastic)
 - Pipeline age
- Cast iron was the material of choice for low pressure distribution mains in the U.S. up until the 1950s

Cast Iron Mains: Methane Losses

- 3.65 meter sections connected by bell and spigot joints
 - Joint sealed by jute packing plus cement or molten lead
- Leaks may develop in joints over time due to:
 - Heavy overhead traffic
 - Freeze-thaw cycles
 - Pipe movement in the soil
- Leaks can also increase if there is a shift towards lower moisture content (i.e., dryer) natural gas
- In the U.S., cast iron mains are a significant source of methane in the distribution sector, with an estimated national average leak rate of approximately 4.2 Mcm/kilometer/year\(^1\)

Pipeline Rehabilitation Opportunities

Focus of this presentation:

- **Cast Iron Joint Sealing Robot (CISBOT)**
 - Developed with support from Con Ed (US) and Enbridge (Canada), and licensed to ULC Robotics
 - Live main sealing technology
- **Gas main flexible liners**
 - Insert plastic liner inside existing cast iron pipe

Other Rehabilitation Options:

- Joint encapsulation
- Pipeline replacement
 - Excavate and replace cast iron main with steel or plastic pipe

Source: ULC Robotics
CISBOT

- Can be used to seal joints in live cast iron mains between 15 – 30 centimeters in diameter
- CISBOT can seal joints in up to 90 meters of pipeline through a single excavation (45 meters in each direction from launching pit)
- Equipped with:
 - Video camera
 - Pointer lights
 - Support arms
 - Drill head
 - Sealant injector
- Uses anaerobic sealant for long term repairs

Source: ULC Robotics
CISBOT Procedure

- Excavate pipe and install bidirectional fitting and CISBOT launch tube
- Launch CISBOT, and drive to the farthest joint (45 m) from the excavation
- Operator works CISBOT back, sealing joints by drilling into joint space and injecting sealant into the jute
- CISBOT is removed and launched in the opposite direction to seal additional joints

Source: ULC Robotics
Partner Experience: Consolidated Edison (U.S. Distribution Company)

- Use CISBOT for preventive maintenance
 - Have sealed over 3,000 cast iron joints
 - Benefits
 - Minimize excavation and repaving costs
 - Reduce disruption to residents and traffic
- Estimate that one CISBOT system could rehabilitate 5.8 km (1,600 joints) of cast iron per year
 - 32 weeks per year (generally not operated in freezing conditions)
 - 2 sites per week
 - 90 meters (25 joints) per site
Partner Experience: Consolidated Edison (U.S. Distribution Company)

- CISBOT services contracted from ULC Robotics
- CISBOT estimated to reduce rehabilitation costs 30 – 40% over traditional trenching operations
- Hardware cost of a complete CISBOT system is approximately $200,000 to $250,000
Video: CISBOT in Operation
Reducing Methane Emissions from Distribution Systems: Agenda

- Pipeline Rehabilitation Opportunities
 - Cast Iron Joint Sealing Robot (CISBOT)
 - **Flexible Plastic Pipeline Inserts**
- Inject Blowdown Gas Into Low Pressure Mains
- Leak Detection and Repair at Metering and Regulator Stations
- Discussion
Overview: Internal Lining Methods

- Cured in Place Liners
 - Starline
 - Minimal reduction of capacity

- Tight Fit Polyethylene
 - Rolldown
 - Size for size insertion
 - Reduction of capacity
 - Subline
 - Size for size
 - Minimal reduction of capacity
Starline – Cured in Place Liner

Components of Liner
- Polyester woven liner
- Polyurethane coating

Source: Consolidated Edison of New York
Starline Process

- Surface preparation / Pipe cleaning
 - Grit-blasting method
 - Required to obtain the proper bonding strength
 - Abrasive is propelled through the blast hose at 7.8 atm
 - Recovery of the grit is obtained by a high capacity vacuum system

Source: Consolidated Edison of New York
Starline Process

- Adhesive Mixing
 - 2-part Polyurethane adhesive mix
 - Adhesive
 - Hardener

- Liner wet–out / Adhesive application
 - Pour adhesive into liner
 - Pull liner through calibrated rollers

Source: Consolidated Edison of New York
Starline Process

- **Liner Inversion**

 - Wound on reel of pressure drum
 - Bolted onto inversion cone
 - Attached to host pipe
 - Liner forced to invert inside host pipe
 - Liner ends at catch basket

 Source: Consolidated Edison of New York
Starline – Cured in Place Liner

Source: Consolidated Edison of New York
Starline Process

- Steam curing & pressure monitoring

Steam Boiler

Air Compressor

Mixing Chamber

Temperature and Pressure Control

Liner

Source: Consolidated Edison of New York
Starline Process

- Post-lining inspection
- Service reinstatement (if necessary)
- Final pipe construction and restoration

Source: Consolidated Edison of New York
Rolldown – Tight Fit Polyethylene

- Developed by Subterra UK.
- Concentric reduction and installation of close-fit polyethylene pipe liners
- Uses thick-walled polyethylene pipe
- Diameter reduction is typically 10%
- Reverted to a close fit by cold water pressurisation

Source: Consolidated Edison of New York
Rolldown Process

- Diameter range 10 – 50 cm
- Bends up to 11¼° can be negotiated
- Typical lining lengths 300 meters
- Long insertion trench required
- Excavations required to reconnect service connections/laterals etc.

Source: Consolidated Edison of New York
Rolldown Process

Source: Consolidated Edison of New York
Subline – Tight Fit Polyethylene

- Subline is a process for the cold folding and installation of close-fit, thin-wall polyethylene pipe liners.
- Subline was developed to allow lining of large diameter pipes & improve ability to negotiate bends.
- Liner insertion process is simple slip lining.
- Reverted to a close fit by cold water pressurisation.

Source: Consolidated Edison of New York
Subline Process

- Available for polyethylene diameters 7 – 150 cm
- Folded shape helps insertion, bends up to 22½° can be negotiated
- Lengths up to 300 m
- Long lead-in trenches for welded polyethylene strings
- Local excavations to reconnect service connections/laterals etc.

Source: Consolidated Edison of New York
Reducing Methane Emissions from Distribution Systems: Agenda

- Pipeline Rehabilitation Opportunities
 - Cast Iron Joint Sealing Robot (CISBOT)
 - Flexible Plastic Pipeline Inserts

- Recover Blowdown Gas by Injection Into Low Pressure Mains

- Leak Detection and Repair at Metering and Regulator Stations

- Discussion
Methane Emissions from Blowdown Activities

- Equipment taken out of service for operational or maintenance purposes are often depressurized to atmosphere
 - Compressors
 - Pipeline segments
- Venting pressurized gas results in methane emissions and loss of product
Recover Blowdown Gas By Injection into Low Pressure Pipelines

- Plan for recovering blowdown gas during scheduled maintenance activities
- Outlets for recovered blowdown gas
 - Fuel system
 - Low pressure mains
- To blowdown to a low pressure system
 - Take advantage of existing piping
 - Temporarily reset or bypass regulator valves
 - Install temporary piping between high and low pressure systems
Blowdown Gas Recovery

- Natural Gas STAR Partners have reported evaluating the recovery of blowdown gas on a case by case basis taking into account
 - Location of pipe or compressor
 - Outlet for recovered gas
- Typical savings reported by Natural Gas STAR Partners are approximately 4,200 m³ through recovering gas from compressor blowdowns
 - 10 blowdowns per year
 - 420 m³ per blowdown
- Savings of $1,050 per year at $250/Mcm
Reducing Methane Emissions from Distribution Systems: Agenda

- Pipeline Rehabilitation Opportunities
 - Cast Iron Joint Sealing Robot (CISBOT)
 - Flexible Plastic Pipeline Inserts
- Recover Blowdown Gas by Injection Into Low Pressure Mains
- Leak Detection and Repair at Metering and Regulator Stations
- Discussion
Overview: Directed Inspection & Maintenance (DI&M)

- Fugitive losses can be reduced dramatically by implementing a systematic leak detection and repair program
- Natural Gas STAR refers to this practice as Directed Inspection and Maintenance (DI&M)
 - Program to identify and fix leaks that are cost effective to repair
 - Many options for leak detection technologies
 - Provides valuable data on sources of leaks with information on where to look
 - Strictly adapted to company’s needs
 - Cost-effective practice, by definition

Infrared Leak Imaging Camera
How Do You Implement DI&M?

1. CONDUCT baseline survey
2. SCREEN and MEASURE leaks
3. FIX on the spot leaks
4. ESTIMATE repair cost, fix to a payback criteria
5. DEVELOP a plan for future DI&M
6. RECORD savings
Summary of Screening and Measurement Techniques

<table>
<thead>
<tr>
<th>Instrument/ Technique</th>
<th>Effectiveness</th>
<th>Approximate Capital Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap Solution</td>
<td>★★</td>
<td>$</td>
</tr>
<tr>
<td>Electronic Gas Detector</td>
<td>★</td>
<td>$$</td>
</tr>
<tr>
<td>Acoustic Detector/ Ultrasound Detector</td>
<td>★★</td>
<td>$$$</td>
</tr>
<tr>
<td>TVA (Flame Ionization Detector)</td>
<td>★</td>
<td>$$$</td>
</tr>
<tr>
<td>Calibrated Bagging</td>
<td>★</td>
<td>$$</td>
</tr>
<tr>
<td>High Volume Sampler</td>
<td>★★★</td>
<td>$$$</td>
</tr>
<tr>
<td>Rotameter</td>
<td>★★</td>
<td>$$</td>
</tr>
<tr>
<td>Infrared Leak Detection</td>
<td>★★★</td>
<td>$$$</td>
</tr>
</tbody>
</table>

* - Least effective at screening/measurement

$ - Smallest capital cost

*** - Most effective at screening/measurement

$$$ - Largest capital cost
Leak Detection and Repair at Metering and Regulator Stations

- Systematic leak detection and repair at metering and regulator stations must be approached differently than at compressor stations and processing plants
 - Lower pressures, smaller leaks
 - Fewer components per site

- Some US companies elect to conduct leak screening only
 - Forego leak measurement to reduce survey costs
 - Fix all leaks that are identified
 - Survey is low cost but does not collect data on leak rates and gas savings
 - This information is needed to determine which leaks are cost-effective to repair
DI&M Industry Experience: US Distribution Company

- One US distribution company reported survey of 306 facilities
- 824 leaks found
 - Four “large” leaks
 - Seven “medium” leaks
 - Rest “small” leaks (meaning soaping or electronic detector required to find leaks)
- Total survey and repair cost: $22,200
 - $73 per facility surveyed
- Total gas savings: 3,336 Mcm
 - $834,000 savings at $250/Mcm
 - Net savings of $2,725 per facility
Common Emission Sources at Distribution Metering and Regulator Stations

- Study of U.S. and Canadian metering and regulator stations revealed common leaking components
 - Relatively small component counts per station

<table>
<thead>
<tr>
<th>Component</th>
<th>Emissions Factor (m³/year per component)</th>
<th>Total Number of Components Screened</th>
<th>Average Number Components per Site</th>
<th>% Contribution to Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball/Plug Valve</td>
<td>6</td>
<td>248</td>
<td>18</td>
<td>0.002%</td>
</tr>
<tr>
<td>Control Valve</td>
<td>13</td>
<td>17</td>
<td>1</td>
<td>0.33%</td>
</tr>
<tr>
<td>Flange</td>
<td>4</td>
<td>525</td>
<td>38</td>
<td>0.09%</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>22</td>
<td>146</td>
<td>10</td>
<td>0.6%</td>
</tr>
<tr>
<td>Pneumatic Vent</td>
<td>3,800</td>
<td>40</td>
<td>1</td>
<td>95.5%</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>137</td>
<td>5</td>
<td>1</td>
<td>3.4%</td>
</tr>
<tr>
<td>Connectors</td>
<td>3</td>
<td>1,280</td>
<td>91</td>
<td>0.08%</td>
</tr>
<tr>
<td>Total</td>
<td>2,261</td>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Repair Costs at Distribution Facilities

Example of Repair Costs and Net Savings for Selected Equipment Components

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Type of Repair</th>
<th>Repair Cost¹</th>
<th>Total Number of Components Fixed at Two Sites</th>
<th>Total Gas Savings (m³/year)</th>
<th>Estimated Net Savings² ($/year)</th>
<th>Repair Payback Period (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Valve</td>
<td>Re-grease</td>
<td>$18</td>
<td>5</td>
<td>1,700</td>
<td>$330</td>
<td>3</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>Replace valve stem packing</td>
<td>$4</td>
<td>5</td>
<td>1,900</td>
<td>$449</td>
<td><1</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>Replace valve stem packing</td>
<td>$4</td>
<td>1</td>
<td>2,600</td>
<td>$640</td>
<td><1</td>
</tr>
<tr>
<td>Connector</td>
<td>Tighten threaded fittings</td>
<td>$4</td>
<td>4</td>
<td>300</td>
<td>$61</td>
<td>3</td>
</tr>
<tr>
<td>Sr. Daniel Orifice Meter</td>
<td>Tighten fittings</td>
<td>$44</td>
<td>1</td>
<td>1,900</td>
<td>$432</td>
<td>2</td>
</tr>
<tr>
<td>Flange³</td>
<td>Tighten (estimated)</td>
<td>$54</td>
<td>5</td>
<td>2,800</td>
<td>$423</td>
<td>5</td>
</tr>
</tbody>
</table>

1 – Average repair costs include labor and materials, 2006 dollars
2 – Assumes gas price of $250/Mcm
3 – Repair cost not reported in original study.

Valve Stem Packing Replacement

- Replacing valve stem packing is a common leak repair activity at distribution gate stations and surface facilities
- GORE-TEX valve stem packing is one option for replacement
 - Polytetrafluoroethylene (PTFE) material (no asbestos)
 - Chemical resistant, pH 0 - 14
 - -268ºC to 315ºC
Valve Stem Packing Replacement: Tveroblgaz Experience (Russian)

- **Tveroblgaz Joint Implementation (JI) Project**
 - Methane Emissions Avoidance in the Tver Gas Distribution Network

- **Project Description**
 - All valves screened and inspected for leaks
 - Replace all (leaking and non-leaking) valve stem packing with GORE-TEX packing
 - Use GORE-TEX packing for all new valve installations
Valve Stem Packing Replacement: Tveroblgaz Experience (Russian)

- **Project results**
 - Valve repairs completed between April 6, 2007 and August 16, 2007
 - 2,066 leaking valves identified out of 5,993 valves screened
 - Leaking valves lose 22,800 Mcm per year
 - Average leak rate of 4 Mcm/year (all valves)
Discussion

- What is your experience applying these technologies and practices?
- What are your limitations on application of these technologies and practices?
- What are your actual costs and benefits?