

Methane Emission Measurement Techniques

Methane To Markets Partnership International Workshop – Oil & Gas November 5, 2008 Buenos Aires, Argentina

Why Quantify Emission Rates?

- Justification for repair/control costs.
- Prioritization and optimization of efforts?
- Objective performance monitoring.
- Potential to generate marketable GHG credits and value avoided gas losses.

Key Measurement Parameters:

- Temperature
- Pressure
- CH₄ Concentration
- Volumetric Flow

Performance Requirements:

- Practical and safe to use in the field.
- Reasonable cost.
- Readily available.
- Sufficient accuracy for economic evaluations (e.g., ±25% or better).
- Greater accuracy for carbon credit projects (e.g., ± 15% or better).

Measurements at the Source

Typical Applications:
 Equipment leaks, venting and flaring.

Basic constraints:

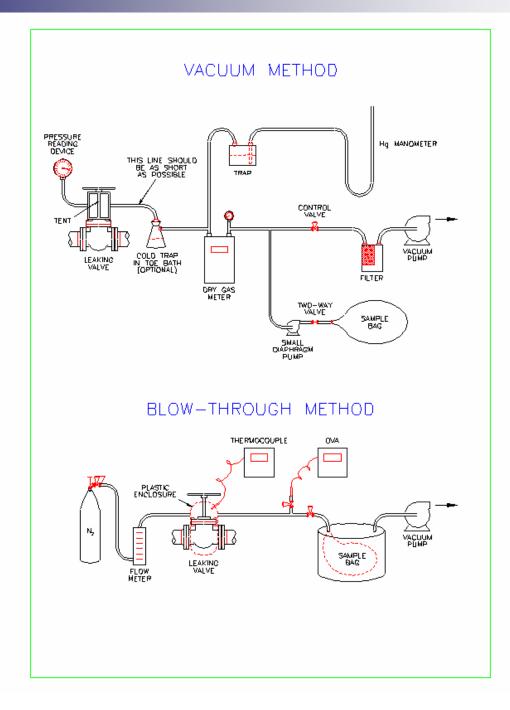
□ Requires easy or supplied access to source.

Potential Issues:

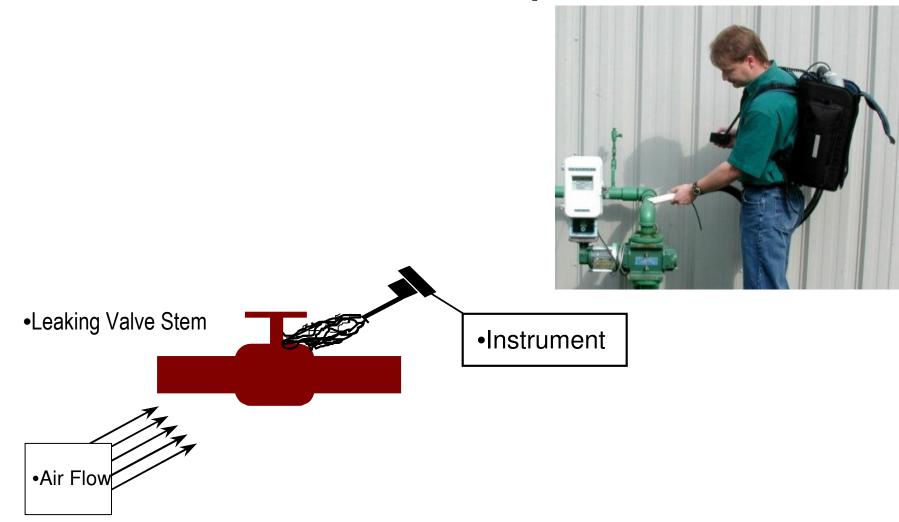
 \Box Safety concerns (H₂S or relief events).

□ Backpressure limitations.

- □ High or cold temperature surfaces.
- □ Fouling (e.g., condensing vapor or lube oil mist).



Measurements at the Source:


Methods:

□ Bagging

- Time consuming and costly to apply.
- Applicable for small to moderate leak rates.
- □ Hi-Flow Sampler
 - Convenient approach for smaller to medium sized leaks (e.g., 8 to 10 scfm or \$25,200 to \$31,500/y at \$6/mscf).
- End-of-Pipe Capture & Measurement Techniques
 - Calibrated Bag
 - Full-flow flow meters.
 - Velocity Traverses
- Inline Measurements
 - Velocity Traverses
 - Tracer Techniques

HiFlow Sampler

Compressor Seal Vents:

- Causes of Emissions:
 - □ Seal wear.
- Typical Measurement Problems:
 - Potentially multiple leakage points:
 - Centrifugal:
 - Lube oil degassing reservoir.
 - □ Seal Vent.
 - Reciprocating compressors:
 - □ Distance piece and packing case vents.
 - □ Lube oil drain tank vent.
 - Crank case vent.
 - Potentially large flows.
 - □ Minimal tolerance to any back-pressure.
 - □ Fouling due to lube oil mist.

Compressor Seal Vents:

- Typical Measurement Problems:
 Oily roof-tops and limited roof-top access.
 Lack of ports on vent lines.
 - □ Possibly weather caps on vent outlets.

Measurement Approaches.

- □ Vane anemometers.
- Diaphragm meters or calibrated bags where some backpressure can be tolerated.
- □ Hi-Flow Sampler
- Quantitative remote sensing methods.
- Permanent Solutions:
 - Flow switches.
 - Rotameters.

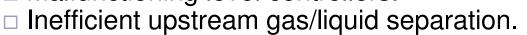
Blowdown and Vent/Flare Systems:

- Causes of Emissions (During Passive Periods):
 - \Box Purge gas.
 - Leakage past the seats of blowdown/relief valves (5 to 10% leak and 1 to 2% of these contribute over 75% of the emissions).
 - Blowdown or drain valves not fully closed.
 Compressor seals.
- Typical Measurement Problems:
 Potentially large flows.
 Difficulty accessing and of pipe
 - □ Difficulty accessing end of pipe.
 - Limited or no suitable ports for insertion of velocity probes.

Blowdown and Vent/Flare Systems:

- Typical Measurement Problems:
 Low flow velocities.
 - Potentially wet or fouling environment inside pipe.
 - □ Safety concerns (relief episodes).
- Measurement Approaches.
 - Micro-tip vane and thermal dispersion anemometers.
 - □ In-line tracer tests.
 - Ultrasonic sensors (portable & online).
 - □ Remote sensing methods.
 - Permanent Solutions:
 - Ultrasonic transit-time flow meters.
 - Flow switches.

Storage Tanks:


Causes of Emissions:

□ Working and breathing losses.

□ Flashing losses.

□ Unaccounted for contributions:

- Unintentional Gas carry-through.
 - Leaking drain and dump valves.
 - □ Malfunctioning level controllers.

- Piping changes resulting in storage of unstablized product.
- Non-routine storage of unstabilized product in atmospheric tanks.
- Malfunctioning vapor recovery systems:
 - □ Faulty blanket gas regulators or pressure controllers.
 - □ Fouled vapor collection lines.
 - □ Leaking roof fittings and seals.

Storage Tanks:

Typical Measurement Problems:

- ☐ Multiple roof openings.
- □ Edge-of-roof access only.
- Dependence on pump in/out activity and meteorological conditions.
- □ Fall protection and potentially confined space training required.
- □ Interpretation and extrapolation of results.

Measurement Approaches:

- □ Velocity profiles across openings.
 - Vane anemometers.
- □ Tracer techniques.
- Engineering Calculations
 - □ API E & P TANKS Model (Flashing, working and breathing losses).

Planned Field Trip:

- View a leak in real time through the view screen of an IR camera.
- Screen the leak using traditional methods:
 Handheld gas sensor.
 Soap test.