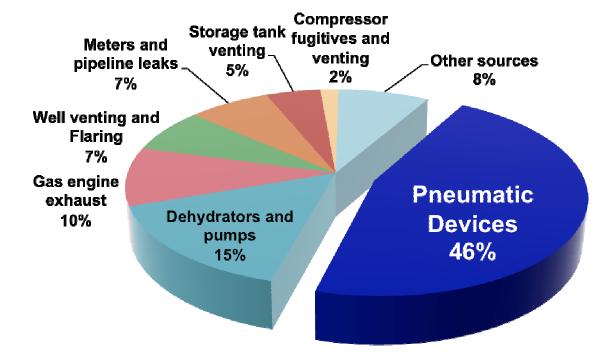
Replacing High Bleed Pneumatic Devices

IAPG & US EPA Technology Transfer Workshop

November 5, 2008 Buenos Aires, Argentina

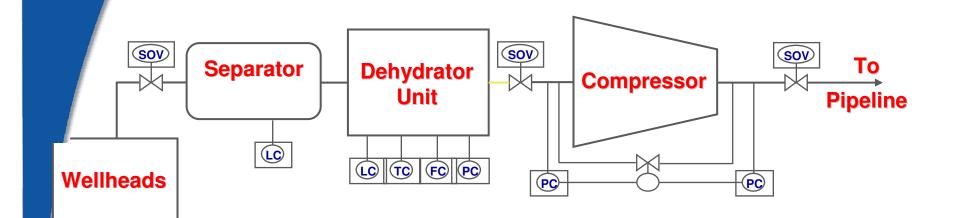

Pneumatic Devices: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

Methane Losses from Gas Operated Pneumatic Devices

Pneumatic devices account for:

 46% of methane emissions in the U.S. production, gathering, and boosting sectors (excl. offshore operations)


EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html Natural Gas STAR reductions data shown as published in the inventory.

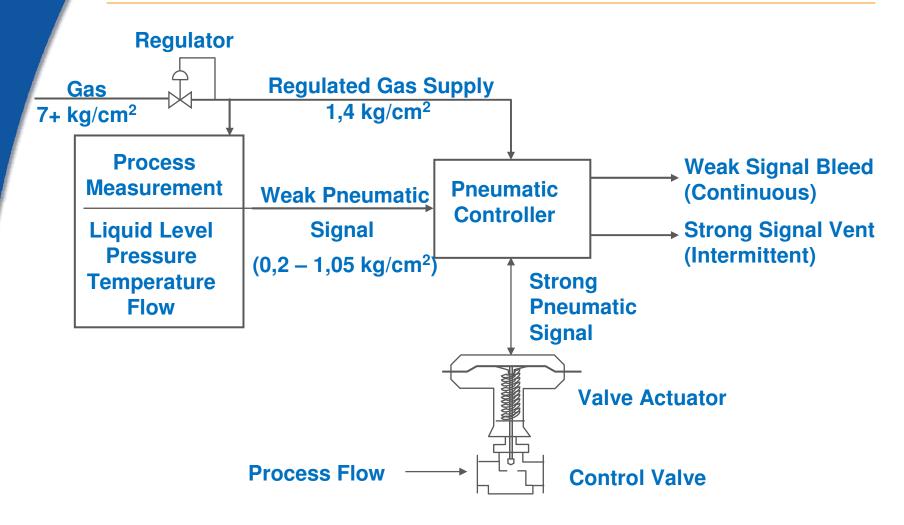
What is the Problem?

- Pneumatic devices are a major source of methane emissions from the O&G industry
- Pneumatic devices are extensively used throughout the O&G industry
- Gas operated devices are common in many O&G facilities worldwide, Argentina not being the exception

Location of Pneumatic Devices at Production Sites

SOV = Shut-off Valve (Unit Isolation)

Methane to Markets


- LC = Level Control (Separator, Contactor, TEG Regenerator)
- TC = Temperature Control (Regenerator Fuel Gas)
- FC = Flow Control (TEG Circulation, Compressor Bypass)
- PC = Pressure Control (FTS Pressure, Compressor Suction/Discharge)

Methane Emissions

- As part of normal operations, pneumatic devices release natural gas into the atmosphere
- High-bleed devices bleed in excess of 2,9 lpm
 - Equates to >1,45 Mm³ per year
 - Typical high-bleed pneumatic devices bleed an average of 4 Mm³ per year
- The actual bleed rate is largely dependent on the device's design

Pneumatic Device Schematic

How Can Methane Emissions be Reduced?

- Option 1: Replace high-bleed devices with low-bleed devices
- Option 2: Retrofit controller with bleed reduction kits
- Option 3: Maintenance aimed at reducing losses
 - Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment

Option 1: Replace High-Bleed Devices

- Most applicable to:
 - Controllers: liquid-level and pressure
 - Positioners and transducers
- Suggested Action: Evaluate replacements
 - Replace at end of device's economic life
 - Early replacement

Norriseal Pneumatic Liquid Level Controller Fisher Electro-Pneumatic Transducer

Source: www.norriseal.com

Source: www.emersonprocess.com

Option 1: Replace High-Bleed Devices (cont'd)

- Costs vary with size
 - Typical costs range from US\$700 to US\$3.000 per device
 - Incremental costs of low-bleed devices are modest (US\$150 to US\$250)
 - At US\$ 70,63/Mm³, gas savings often pay for incremental replacement costs in short periods of time (5 to 12 months)
 - Paybacks for outright replacement are longer, more than 2 years

Option 2: Retrofit with Bleed Reduction Kits

- Applicable to most high-bleed controllers
- Suggested action: Evaluate cost effectiveness as alternative to early replacement
- Retrofit kit costs ~ US\$ 500
- Typical bleed rate of 4,7 Mm³/y @ US\$70,63/Mm³
- Payback time ~ 1,5 years

Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested action: Enhance routine maintenance procedures
 - Field survey of controllers
 - Where process allows, tune controllers to minimize bleed

Option 3: Maintenance to Reduce Losses (cont'd)

- Suggested action (cont'd)
 - Re-evaluate the need for pneumatic positioners
 - Repair/replace airset regulators
 - Reduce regulated gas supply pressure to minimum
 - Routine maintenance should include repairing/replacing leaking component
- Cost is low

Source: www.bpe950.com

Typical Emissions & Mitigation Options: Pneumatic Devices

Anticipated emissions:

- Typical crude oil treatment facility has 20 control loops (200 pneumatic devices)
- Typical emissions: 5 Mm³/y per control loop for total of 100 Mm3 of gas emitted per year per facility
- Emissions affected by:

- Type of pneumatic device: intermittent, throttling, high bleed, low bleed

Mitigation Option:

Replace gas operated pneumatics with electric/ low loss/compressed air pneumatics

Five Steps for Reducing Methane Emissions from Pneumatic Devices

Evaluate economics of alternatives

Develop an implementation plan

Suggested Analysis for Replacement

- Replacing high-bleed controllers at the end of economic life
 - Determine incremental cost of low-bleed device over high-bleed equivalent
 - Determine gas saved with low-bleed device using manufacturer specifications
 - Compare savings and cost
- Early replacement of high-bleed controllers
 - Compare gas savings of low-bleed device with full cost of replacement

Economics of Replacement

	Replace	Early Replacements	
Implementation ^a	at End of Life	Level Control	Pressure Control
Cost (US\$)	150 – 250 ^b	380	1.340
Annual Gas Savings (Mm ³)	1,5 – 5,5	4,7	6,5
Annual Value of Saved Gas (US\$) ^c	100 – 400	332	456
IRR (%)	60 – 140	80	25
Payback (months)	8 – 18	14	36

^a All data based on Partners' experiences. See Lessons Learned for more information.

^b Range of incremental costs of low-bleed over high bleed equipment

^c Gas price is assumed to be US\$ 70,63/Mm³ (US\$2/mcf)

Suggested Analysis for Retrofit

- Retrofit of low-bleed kit
 - Compare savings of low-bleed device with cost of conversion kit
 - Retrofitting reduces emissions by an average of 90 percent

Economics of Retrofit

	Retrofit ^a	
Implementation Costs ^b	US\$ 500	
Bleed rate reduction		
(Mm ³ /device/year)	6,2	
Value of gas saved		
(US\$/yr) ^c	438	
Payback (months)	14	
IRR	79%	

^a On high-bleed controllers

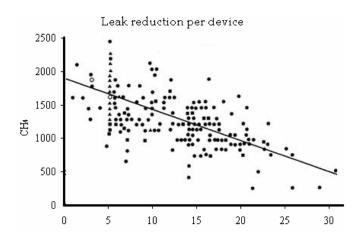
^b All data based on Partners' experiences. See Lessons Learned for more information.

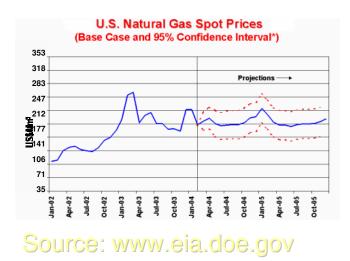
^c Gas price is assumed to be US\$ 70,63/Mm³ (US\$2/mcf)

Suggested Analysis for Maintenance

- For maintenance aimed at reducing gas losses
 - Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity

Economics of Maintenance


	Reduce supply pressure	Repair & retune	Change settings	Remove valve positioners
Implementation Cost (US\$) ^a	153	23	0	0
Gas savings (Mm ³ /yr)	5	1,25	2,5	4,5
Value of gas saved (US\$/yr) ^b	350	88	176	316
Payback (months)	5	3	2	2
IRR	201%	380%		


^a All data based on Partners' experiences. See Lessons Learned for more information. ^bGas price is assumed to be US\$ 70,63/Mm³ (US\$2/mcf)

Pneumatic Devices

- Factors affecting economics of replacement
 - Operating cost differential and capital costs
 - Estimated leak rate reduction per new device
 - Price of gas

Lessons Learned

- Most high-bleed pneumatics can be replaced with lower bleed models
- Replacement options save the most gas and are often economic
- Retrofit kits are available and can be highly cost-effective
- Maintenance is low cost and reduces gas loss

Case Study – Marathon

- Surveyed 158 pneumatic devices at 50 production sites
- Half of the controllers were low-bleed
- High-bleed devices included
 - 35 of 67 level controllers
 - 5 of 76 pressure controllers
 - 1 of 15 temperature controllers

Marathon Study: Hear It? Feel It? Replace It!

- Measured gas losses total 129 Mm³/yr
- Level controllers account for 86% of losses
 - Losses averaged 3,6 lpm
 - Losses ranged up to 22 lpm
- Concluded that excessive losses can be heard or felt

Recommendations

- Evaluate all pneumatics to identify candidates for replacement and retrofit
- Choose lower bleed models at changeout where feasible
- Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan

Discussion Questions

- To what extent are you implementing this BMP?
- How can this BMP be improved upon or altered for use in your operation(s)?
- What are the barriers that are preventing you from implementing this technology?
 - technological,
 - economic, regulatory,
 - lack of information, etc.