Directed Inspection and Maintenance and Infrared Leak Detection

Lessons Learned from the Natural Gas STAR Program

SGA Environmental Round Table Charlotte, North Carolina June 25 - 27, 2008

epa.gov/gasstar

Directed Inspection and Maintenance and Infrared Leak Detection Agenda

- Methane Losses
 - What are the sources of emissions?
 - Mow much methane is emitted?
- Methane Recovery
 - Inspection and Maintenance (DI&M)
 - Infrared Leak Detection
- Is Recovery Profitable?
- A Partner Experience
- Discussion

Methane Losses – Natural Gas Transmission

- Fugitive emissions from gas transmission and storage facilities are estimated to be 58 billion cubic feet per year (Bcf/year)
- Estimated 26 million cubic feet per year (MMcf/year) per compressor station in fugitive emissions

Source: TransCanada

Methane Losses – Natural Gas Distribution

- Fugitive emissions from natural gas distribution systems are estimated to be 59 billion cubic feet per year (Bcf/year)
- Estimated 270 thousand cubic feet per year (Mcf/year) per surface facility in fugitive emissions

Source: ULC Robotics

What is the Problem?

- Methane gas leaks are invisible, unregulated, and go unnoticed
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane fugitive emission sources
 - Transmission and distribution fugitive methane emissions depend on operating practices, equipment age, and maintenance

Sources of Methane Emissions

Fugitive Emissions Study - Clearstone

- Clearstone studied 4 gas processing plants
 - Screened for all leaks
 - Measured larger leak rates
 - Analyzed data
- Principles are relevant to all sectors
 - Fugitive leaks from valves, connectors, compressor seals, and lines still a problem in transmission
 - Solution is the same

Source: Hy-bon Engineering

Clearstone - Distribution of Losses by Source Category

Clearstone - Distribution of Losses from Equipment Leaks by Type of Component

Source: Clearstone Engineering, 2002

Clearstone - How Much Methane is Emitted?

Methane Emissions from Leaking Components at Gas Processing Plants					
Component Type	% of Total Methane Emissions	% Leak Sources	Estimated Average Methane Emissions per Leaking Component (Mcf/year)		
Valves (Block & Control)	26.0%	7.4%	66		
Connectors	24.4%	1.2%	80		
Compressor Seals	23.4%	81.1%	372		
Open-ended Lines	11.1%	10.0%	186		
Pressure Relief Valves	3.5%	2.9%	844		
Courses Classetone Engineering, 2002, Identification and Evaluation of Opportunities to Deduce Mathema					

Source: Clearstone Engineering, 2002, *Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants*. Report of results from field study of four gas processing plants in Wyoming and Texas to evaluate opportunities to economically reduce methane emissions.

Mcf = Thousand cubic feet

Clearstone - How Much Methane is Emitted?

Summary of Natural Gas Losses from the Top Ten Leak Sources ¹				
Plant Number	Gas Losses From Top 10 Leak Sources (Mcf/day) ²	Gas Losses From All Leak Sources (Mcf/day)	Contribution By Top 10 Leak Sources (%)	Contribution By Total Leak Sources (%)
1	43.8	122.5	35.7	1.78
2	133.4	206.5	64.6	2.32
3	224.1	352.5	63.6	1.66
4	76.5	211.3	36.2	1.75
Combined	477.8	892.8	53.5	1.85
1 – Excluding leakage into flare system				

2 – Approximately 10,000 components surveyed per plant

Distribution Emissions - EPA/GRI/PRCI Study

- Sixteen M&R facilities in the U.S. and Western Canada were selected for joint EPA and GRI (GTI) study of DI&M using high volume sampler
- Average gas lost from leaks at each site was estimated at 409 Mcf per year
- Final component count 2,261
 - South East U.S. Plants 171 components
 - North East U.S. Plants 1,102 components
 - Midwest U.S. Plants 859 components
 - Western Canada Plant 129 components

Distribution Emission Factors

Average Emissions Factors for Equipment Leaks at Sixteen Metering and Regulating Facilities					
Component	Emissions Factor (Mcf/yr/component)	Total Number of Components Screened	Average Number Components per Site	% Contribution to Total	
Ball/Plug Valve	0.21	248	18	0.002%	
Control Valve	0.46	17	1	0.33%	
Flange	0.13	525	38	0.09%	
Gate Valve	0.79	146	10	0.6%	
Pneumatic Vent	134.3	40	1	95.5%	
Pressure Relief Valve	4.84	5	1	3.4%	
Connectors	0.11	1,280	91	0.08%	
Total		2,261	160		
Source: Indaco Air Quality Services, 1998.					

Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program
 - Voluntary program to identify and fix leaks that are costeffective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leak sources with information on where to look "next time"

What is Directed Inspection and Maintenance?

- Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company's needs
- DI&M is NOT the regulated volatile organic compound leak detection and repair (VOC LDAR) program

Source: TransCanada

- Screening find the leaks
 - Soap bubble screening
 - Iectronic screening ("sniffer")
 - Toxic vapor analyzer (TVA)
 - Organic vapor analyzer (OVA)
 - Iltrasound leak detection
 - Acoustic leak detection
 - Infrared leak detection

Acoustic Leak Detection

Sector Sector

- Migh volume sampler
- Toxic vapor analyzer (correlation factors)
- A Rotameters
- Calibrated bagging

Leak Measurement Using High Volume Sampler

Summary of Screening and Measurement Techniques			
Instrument/ Technique	Effectiveness	Approximate Capital Cost	
Soap Solution	**	\$	
Electronic Gas Detector	*	\$\$	
Acoustic Detector/ Ultrasound Detector	**	\$\$\$	
TVA (Flame Ionization Detector)	*	\$\$\$	
Calibrated Bagging	*	\$\$	
High Volume Sampler	***	\$\$\$	
Rotameter	**	\$\$	
Infrared Leak Detection	***	\$\$\$	
Source: EPA's Lessons Learned			

* - Least effective at screening/measurement

*** - Most effective at screening/measurement

\$ - Smallest capital cost

\$\$\$ - Largest capital cost

Estimating Comprehensive Survey Cost

- Cost of complete screening survey using high volume sampler (processing plant)
 - A Ranges \$15,000 to \$20,000 per medium size plant
 - Rule of Thumb: \$1 per component for an average processing
 plant
 - Cost per component for compressor stations would be higher than \$1
- 4 25 to 40% cost reduction for follow-up survey
 - Focus on higher probability leak sources (e.g. compressors)

DI&M by Infrared Leak Detection

- Real-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them

Infrared Leak Detection

Source: Leak Surveys Inc.

Remote Methane Leak Detector

Source: Heath Consultants

Infrared Methane Leak Detection

Video recording of fugitive leaks detected by various infrared devices

Is Recovery Profitable? – Compressor Stations

Repair the Cost-Effective Components					
Component	Value of lost gas ¹ (\$)	Estimated repair cost (\$)	Payback (months)		
Plug Valve: Valve Body	29,498	200	0.1		
Union: Fuel Gas Line	28,364	100	0.1		
Threaded Connection	24,374	10	0.0		
Distance Piece: Rod Packing	17,850	2,000	1.4		
Open-Ended Line	16,240	60	0.1		
Compressor Seals	13,496	2,000	1.8		
Gate Valve	11,032	60	0.1		
Source: Hydrocarbon Processing, May 200 1 – Based on \$7/Mcf gas price)2				

Is Recovery Profitable? – Surface Facilities

Example of Repair Costs and Net Savings for Selected Equipment Components						
Component Description	Type of Repair	Repair Cost ¹	Total Number of Components Fixed at Two Sites	Total Gas Savings (Mcf/year)	Estimated Net Savings ² (\$/yr)	Repair Payback Period (Months)
Ball Valve	Re-grease	\$18	5	60	\$330	3
Gate Valve	Replace valve stem	٨\$	5	67	\$11Q	-1
	Replace valve stem			07	ψττσ	
Gate Valve	packing	\$4	1	92	\$640	<1
Connector	Tighten threaded fittings	\$4	4	11	\$61	3
Sr. Daniel Orifice	Tighten	• ••			\$ 01	
Meter	fittings	\$44	1	68	\$432	2
Flange ³	Tighten (estimated)	\$54	5	99	\$423	5

1 – Average repair costs include labor and materials, 2006 dollars

2 – Assumes gas price of \$7/Mcf

3 - Repair cost not reported in original study.

Source: Indaco Air Quality Services, 1998.

DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines, compressor seals, blowdown valves, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new technology

Source: Chevron

- Screened 659 rod packings with IR camera to identify leaks
- High volume sampler, Rotameter, and Mueller utilized to measure leaks
- Leak rates varied from default (newly installed) to 3,155 Mcf/yr
- Regular monitoring and correction keeps rod packing emissions low
- Annual savings of 71MMcf in 2006 by replacing compressor rod packing

Source: Northern Natural Gas

DI&M - Aerial Leak Surveys

- Aerial leak surveys with infrared leak detection devices can aid in leak identification over large sections of pipelines
- Aerial surveys can be conducted in helicopters or fixed wing aircrafts using both active and passive IR detection devices

Source: LaSen Inc.

- 1,183 miles of pipeline surveyed using ITT ANGEL Service (Airborne Natural Gas Emission Lidar) with
- Data collection time: 13.4 hours
- Differential Absorption LIDAR (DIAL) laser technology provides accurate leak detection and measurement
- Color digital geospatial video of rights-of-way and surrounding areas
- Datasets show complete pipeline leak survey coverage
- Leaks found and verified in 27 locations

Source: Northern Natural Gas

Security leak detection by DIAL, Kansas

Source: Northern Natural Gas

Inderground leak detected by DIAL, Kansas

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits